1
|
Lertwanakarn T, Khemthong M, Setthawong P, Phaonakrop N, Roytrakul S, Ploypetch S, Surachetpong W. Proteomic and phosphoproteomic profilings reveal distinct cellular responses during Tilapinevirus tilapiae entry and replication. PeerJ 2025; 13:e18923. [PMID: 39995988 PMCID: PMC11849505 DOI: 10.7717/peerj.18923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Background Tilapia Lake virus (TiLV) poses a significant threat to global tilapia aquaculture, causing high mortality rates and severe economic losses. However, the molecular mechanisms underlying TiLV-host interactions remain largely unexplored. Methodology We investigated the proteomic and phosphoproteomic changes in two piscine cell lines, E-11 and RHTiB cells, following TiLV inoculation at different time points. Differential protein expressions at 10-min and 24-h post infection were selected for constructing protein-protein interactions and analyzing enriched pathways related to the viral entry and replication. Results Our findings revealed significant alterations in protein expression and phosphorylation states, highlighting distinct responses between the cell lines. In E-11 cells, TiLV infection suppressed proteins involved in the Janus kinase-signal transducer and activator of transcription and Fas-associated death domain protein-tumor necrosis factor receptor-associated factor pathways, leading to activation of nucleotide oligomerization domain signaling and apoptosis. In RHTiB cells, TiLV suppressed host cellular metabolism by reducing protein phosphatase activity to facilitate early viral entry, while later stages of infection showed increased activity of myosin heavy chain 9 and enhanced host immune responses via phosphorylation of ribosomal protein L17 and GTPase immunity-associated protein 7 (GIMAP7). Conclusion Our study suggested that TiLV employs different strategies to manipulate host cellular pathways depending on the cell type. Further studies are essential to validate these findings and ultimately facilitate the development of effective antiviral strategies.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
2
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Mohamad A, Yamkasem J, Paimeeka S, Khemthong M, Lertwanakarn T, Setthawong P, Nuez-Ortin WG, Isern Subich MM, Surachetpong W. Efficacy of Feed Additives on Immune Modulation and Disease Resistance in Tilapia in Coinfection Model with Tilapia Lake Virus and Aeromonas hydrophila. BIOLOGY 2024; 13:938. [PMID: 39596893 PMCID: PMC11591586 DOI: 10.3390/biology13110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Coinfections by multiple pathogens, including viruses and bacteria, have severely impacted tilapia aquaculture globally. This study evaluated the impacts of dietary supplementation on red hybrid tilapia (Oreochromis spp.) coinfected with Tilapia lake virus (TiLV) and Aeromonas hydrophila. Fish were divided into three groups: a control group on a normal diet, and two experimental groups received diets supplemented with strategy A, an organic acid blend combined with a lyso-phospholipid-based digestive enhancer, and strategy B, an organic acid blend combined with natural immunostimulants and nutrients. Following exposure to both pathogens, the fish supplemented with strategies A and B showed lower cumulative mortality rates of 50.0% and 41.7%, respectively, compared to 76.3% in the control group. Notably, fish fed with strategy B-supplemented diet displayed a stronger immune response, with a lower expression of il-8, mx, and rsad2, and showed less pathological changes in the liver, spleen, and intestines, suggesting enhanced resistance to coinfection. In contrast, fish receiving strategy A did not exhibit significant changes in the immune-related gene expression or pathogen load, but demonstrate less pathological alterations, indicating intestinal protection. These findings highlight the potential of feed additives, particularly strategy B, to reduce the impact of virus-bacterial coinfections and improve outcomes in tilapia farming.
Collapse
Affiliation(s)
- Aslah Mohamad
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Jidapa Yamkasem
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Suwimon Paimeeka
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.L.); (P.S.)
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.L.); (P.S.)
| | - Waldo G. Nuez-Ortin
- ADISSEO France S.A.S., Immeuble Antony Parc 2 10, Place du Général de Gaulle, 92160 Antony, France; (W.G.N.-O.); (M.M.I.S.)
| | - Maria Mercè Isern Subich
- ADISSEO France S.A.S., Immeuble Antony Parc 2 10, Place du Général de Gaulle, 92160 Antony, France; (W.G.N.-O.); (M.M.I.S.)
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
4
|
Raksaseri P, Lertwanakarn T, Tattiyapong P, Kijtawornrat A, Klomkleaw W, Surachetpong W. Tilapia lake virus causes mitochondrial damage: a proposed mechanism that leads to extensive death in fish cells. PeerJ 2023; 11:e16190. [PMID: 37814626 PMCID: PMC10560495 DOI: 10.7717/peerj.16190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Background Tilapia lake virus (TiLV), also known as Tilapinevirus tilapiae, poses a significant threat to tilapia aquaculture, causing extensive mortality and economic losses. Understanding the mechanisms and pathogenesis of TiLV is crucial to mitigate its impact on this valuable fish species. Methodology In this study, we utilized transmission electron microscopy to investigate the ultrastructural changes in E-11 cells following TiLV infection. We also examined the presence of TiLV particles within the cells. Cellular viability and mitochondrial functions were assessed using MTT and ATP measurement assays and mitochondrial probes including JC-1 staining and MitoTracker™ Red. Results Our findings provide novel evidence demonstrating that TiLV causes cytotoxicity through the destruction of mitochondria. Transmission electron micrographs showed that TiLV particles were present in the cytoplasm of E-11 cells as early as 1 h after infection. Progressive swelling of mitochondria and ultrastructural damage to the cells were observed at 1, 3 and 6 days post-infection. Furthermore, losses of mitochondrial mass and membrane potential (MMP) were detected at 1 day after TiLV inoculation, as determined by mitochondrial probes. The results of the MTT assay also supported the hypothesis that the cell deaths in E-11 cells during TiLV infection may be caused by the disruption of mitochondrial structure and function. Conclusions Our study reveals the significant role of mitochondrial disruption in contributing to cellular death during the early stages of TiLV infection. These findings advance the understanding of TiLV pathogenesis and further enhance our knowledge of viral diseases in fish.
Collapse
Affiliation(s)
- Promporn Raksaseri
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wuthichai Klomkleaw
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|