1
|
Gezelle JG, Korn SM, McDonald JT, Gong Z, Erickson A, Huang CH, Yang F, Cronin M, Kuo YW, Wimberly BT, Steckelberg AL. The pseudoknot structure of a viral RNA reveals a conserved mechanism for programmed exoribonuclease resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628992. [PMID: 39763890 PMCID: PMC11702639 DOI: 10.1101/2024.12.17.628992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Exoribonuclease-resistant RNAs (xrRNAs) are viral RNA structures that block degradation by cellular 5'-3' exoribonucleases to produce subgenomic viral RNAs during infection. Initially discovered in flaviviruses, xrRNAs have since been identified in wide range of RNA viruses, including those that infect plants. High sequence variability among viral xrRNAs raises questions about the shared molecular features that characterize this functional RNA class. Here, we present the first structure of a plant-virus xrRNA in its active exoribonuclease-resistant conformation. The xrRNA forms a 9 base pair pseudoknot that creates a knot-like topology similar to that of flavivirus xrRNAs, despite lacking sequence similarity. Biophysical assays confirm a compact pseudoknot structure in solution, and functional studies validate its relevance both in vitro and during infection. Our study reveals how viral RNAs achieve a common functional outcome through highly divergent sequences and identifies the knot-like topology as a defining feature of xrRNAs.
Collapse
Affiliation(s)
- Jeanine G. Gezelle
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sophie M. Korn
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jayden T. McDonald
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anna Erickson
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Chih-Hung Huang
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Feiyue Yang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Matt Cronin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Crawford G, Soper O, Kang E, Berg DA. Advancing insights into virus-induced neurodevelopmental disorders through human brain organoid modelling. Expert Rev Mol Med 2024; 27:e1. [PMID: 39587735 PMCID: PMC11707831 DOI: 10.1017/erm.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human neurodevelopment is a complex process vulnerable to disruptions, particularly during the prenatal period. Maternal viral infections represent a significant environmental factor contributing to a spectrum of congenital defects with profound and enduring impacts on affected offspring. The advent of induced pluripotent stem cell (iPSC)-derived three-dimensional (3D) human brain organoids has revolutionised our ability to model prenatal viral infections and associated neurodevelopmental disorders. Notably, human brain organoids provide a distinct advantage over traditional animal models, whose brain structures and developmental processes differ markedly from those of humans. These organoids offer a sophisticated platform for investigating viral pathogenesis, infection mechanisms and potential therapeutic interventions, as demonstrated by their pivotal role during the 2016 Zika virus outbreak. This review critically examines the utilisation of brain organoids in elucidating the mechanisms of TORCH viral infections, their impact on human brain development and contribution to associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriella Crawford
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Olivia Soper
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eunchai Kang
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel A. Berg
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Reis ÁEDM, Teixeira IS, Maia JM, Luciano LAA, Brandião LM, Silva MLS, Branco LGS, Soriano RN. Maternal nutrition and its effects on fetal neurodevelopment. Nutrition 2024; 125:112483. [PMID: 38823254 DOI: 10.1016/j.nut.2024.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Herein, we present a thorough examination of the impact of maternal nutrition on fetal and infant neurodevelopment, focusing on specific nutrients and their critical roles in perinatal and pediatric health. Through a comprehensive narrative review of the literature, this study highlights the importance of a balanced maternal diet rich in nutrients like eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), folic acid, iron, and iodine in shaping children's neurological functions. Key findings underscore the influence of maternal nutrition during pregnancy and the peri-gestational period on children's cognitive, motor, speech, and socio-emotional development. Deficiencies in essential nutrients, such as DHA, are linked to adverse long-lasting outcomes such as premature birth and intrauterine growth restriction, where a suitable intake of iron and folic acid is vital to prevent neural tube defects and promote healthy brain development. We highlight areas requiring further investigation, particularly regarding iodine's impact and the risks associated with alcohol consumption during pregnancy. In conclusion, this research sheds light on our current understanding of maternal nutrition and child neurodevelopment, offering valuable insights for health professionals and researchers.
Collapse
Affiliation(s)
| | - Ingrid Silva Teixeira
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | | | - Lucas Marques Brandião
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | | | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil.
| |
Collapse
|
4
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
5
|
Yan J, Monlong J, Cougoule C, Lacroix-Lamandé S, Wiedemann A. Mapping the scientific output of organoids for animal and human modeling infectious diseases: a bibliometric assessment. Vet Res 2024; 55:81. [PMID: 38926765 PMCID: PMC11210181 DOI: 10.1186/s13567-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 06/28/2024] Open
Abstract
The escalation of antibiotic resistance, pandemics, and nosocomial infections underscores the importance of research in both animal and human infectious diseases. Recent advancements in three-dimensional tissue cultures, or "organoids", have revolutionized the development of in vitro models for infectious diseases. Our study conducts a bibliometric analysis on the use of organoids in modeling infectious diseases, offering an in-depth overview of this field's current landscape. We examined scientific contributions from 2009 onward that focused on organoids in host‒pathogen interactions using the Web of Science Core Collection and OpenAlex database. Our analysis included temporal trends, reference aging, author, and institutional productivity, collaborative networks, citation metrics, keyword cluster dynamics, and disruptiveness of organoid models. VOSviewer, CiteSpace, and Python facilitated this analytical assessment. The findings reveal significant growth and advancements in organoid-based infectious disease research. Analysis of keywords and impactful publications identified three distinct developmental phases in this area that were significantly influenced by outbreaks of Zika and SARS-CoV-2 viruses. The research also highlights the synergistic efforts between academia and publishers in tackling global pandemic challenges. Through mostly consolidating research efforts, organoids are proving to be a promising tool in infectious disease research for both human and animal infectious disease. Their integration into the field necessitates methodological refinements for better physiological emulation and the establishment of extensive organoid biobanks. These improvements are crucial for fully harnessing the potential of organoids in understanding infectious diseases and advancing the development of targeted treatments and vaccines.
Collapse
Affiliation(s)
- Jin Yan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China.
- Research Center of Digestive Disease, Central South University, Changsha, China.
- IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| | - Jean Monlong
- IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Agnès Wiedemann
- IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| |
Collapse
|
6
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
7
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|