1
|
Ogonczyk-Makowska D, Brun P, Vacher C, Chupin C, Droillard C, Carbonneau J, Laurent E, Dulière V, Traversier A, Terrier O, Julien T, Galloux M, Paul S, Eléouët JF, Fouret J, Hamelin ME, Pizzorno A, Boivin G, Rosa-Calatrava M, Dubois J. Mucosal bivalent live attenuated vaccine protects against human metapneumovirus and respiratory syncytial virus in mice. NPJ Vaccines 2024; 9:111. [PMID: 38898106 PMCID: PMC11187144 DOI: 10.1038/s41541-024-00899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Live-Attenuated Vaccines (LAVs) stimulate robust mucosal and cellular responses and have the potential to protect against Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (HMPV), the main etiologic agents of viral bronchiolitis and pneumonia in children. We inserted the RSV-F gene into an HMPV-based LAV (Metavac®) we previously validated for the protection of mice against HMPV challenge, and rescued a replicative recombinant virus (Metavac®-RSV), exposing both RSV- and HMPV-F proteins at the virion surface and expressing them in reconstructed human airway epithelium models. When administered to BALB/c mice by the intranasal route, bivalent Metavac®-RSV demonstrated its capacity to replicate with reduced lung inflammatory score and to protect against both RSV and lethal HMPV challenges in vaccinated mice while inducing strong IgG and broad RSV and HMPV neutralizing antibody responses. Altogether, our results showed the versatility of the Metavac® platform and suggested that Metavac®-RSV is a promising mucosal bivalent LAV candidate to prevent pneumovirus-induced diseases.
Collapse
Affiliation(s)
- Daniela Ogonczyk-Makowska
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Pauline Brun
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Clémence Vacher
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Caroline Chupin
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Vaxxel, 43 Boulevard du onze novembre 1918, 69100, Villeurbanne, France
| | - Clément Droillard
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Emilie Laurent
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Victoria Dulière
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Aurélien Traversier
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Julien
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Stéphane Paul
- CIRI, Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Jean Monnet Saint-Etienne, Saint-Etienne, France
| | | | - Julien Fouret
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Nexomis, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Marie-Eve Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Andrés Pizzorno
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Manuel Rosa-Calatrava
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Julia Dubois
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada.
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France.
| |
Collapse
|
2
|
Hong SM, Ha EJ, Kim HW, Kim SJ, Ahn SM, An SH, Kim G, Kim S, Kwon HJ, Choi KS. Effects of G and SH Truncation on the Replication, Virulence, and Immunogenicity of Avian Metapneumovirus. Vaccines (Basel) 2024; 12:106. [PMID: 38276678 PMCID: PMC10818707 DOI: 10.3390/vaccines12010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Four mutants varying the length of the G and SH genes, including a G-truncated mutant (ΔG) and three G/SH-truncated mutants (ΔSH/G-1, ΔSH/G-2, and ΔSH/G-3), were generated via serially passaging the avian metapneumovirus strain SNU21004 into the cell lines Vero E6 and DF-1 and into embryonated chicken eggs. The mutant ΔG particles resembled parental virus particles except for the variance in the density of their surface projections. G and G/SH truncation significantly affected the viral replication in chickens' tracheal ring culture and in infected chickens but not in the Vero E6 cells. In experimentally infected chickens, mutant ΔG resulted in the restriction of viral replication and the attenuation of the virulence. The mutants ΔG and ΔSH/G-1 upregulated three interleukins (IL-6, IL-12, and IL-18) and three interferons (IFNα, IFNβ, and IFNγ) in infected chickens. In addition, the expression levels of innate immunity-related genes such as Mda5, Rig-I, and Lgp2, in BALB/c mice were also upregulated when compared to the parental virus. Immunologically, the mutant ΔG induced a strong, delayed humoral immune response, while the mutant ΔSH/G-1 induced no humoral immune response. Our findings indicate the potential of the mutant ΔG but not the mutant ΔSH/G-1 as a live attenuated vaccine candidate.
Collapse
Affiliation(s)
- Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Eun-Jin Ha
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Ho-Won Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Seung-Ji Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Sun-Min Ahn
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Se-Hee An
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea;
| | - Gun Kim
- Laboratory of Veterinary Pharmacology, Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 088026, Republic of Korea;
| | - Suji Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea
- Institutes of Green-bio Science Technology (GBST), Farm Animal Clinical Training and Research Center (FACTRC), Seoul National University, Pyeongchang 25354, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| |
Collapse
|
3
|
Kapandji N, Darmon M, Valade S, Salmona M, Legoff J, Zafrani L, Azoulay E, Lemiale V. Clinical significance of human metapneumovirus detection in critically ill adults with lower respiratory tract infections. Ann Intensive Care 2023; 13:21. [PMID: 36940047 PMCID: PMC10026215 DOI: 10.1186/s13613-023-01117-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Unlike other viruses, the pathogenicity of human metapneumovirus (hMPV) in adults remains uncertain. To address this question, a retrospective monocentric cohort including all patients admitted to ICU with hMPV infection between January 1, 2010, and June 30, 2018 was performed. The characteristics of hMPV infected patients were studied and compared to matched influenza infected patients. Consecutively, a systematic review and meta-analyses investigating PUBMED, EMBASE and COCHRANE databases was conducted to explore the hMPV infections in adult patients (PROSPERO number: CRD42018106617). Trials, case series, and cohorts published between January 1, 2008 and August 31, 2019 compiling adults presenting hMPV infections were included. Pediatric studies were excluded. Data were extracted from published reports. Primary endpoint was the rate of low respiratory tract infections (LRTIs) among all hMPV infected patients. RESULTS During the study period, 402 patients were tested positive for hMPV. Among them 26 (6.5%) patients were admitted to the ICU, 19 (4.7%) for acute respiratory failure. Twenty-four (92%) were immunocompromised. Bacterial coinfections were frequent 53.8%. Hospital mortality rate was 30.8%. In the case-control analysis, the clinical and imaging characteristics were not different between hMPV and influenza infected patients. The systematic review identified 156 studies and 69 of them (1849 patients) were eligible for analysis. Although there was heterogeneity between the studies, the rate of hMPV LRTIs was 45% (95% CI 31-60%; I2 = 98%). Intensive care unit (ICU) admission was required for 33% (95% CI 21-45%; I2 = 99%). Hospital mortality rate was 10% (95% CI 7-13%; I2 = 83%) and ICU mortality rate was 23% (95% CI 12-34%; I2 = 65%). Underlying malignancy was independently associated with increased mortality rate. CONCLUSIONS This preliminary work suggested that hMPV may be associated with severe infection and high mortality in patients with underlying malignancies. However, regarding the small size of the cohort and the heterogeneity of the review, more cohort studies are warranted.
Collapse
Affiliation(s)
- Natacha Kapandji
- Medical ICU, Saint Louis Academic Hospital, APHP, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| | - Michael Darmon
- Medical ICU, Saint Louis Academic Hospital, APHP, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Sandrine Valade
- Medical ICU, Saint Louis Academic Hospital, APHP, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Maud Salmona
- Virology department, Saint Louis Hospital, Paris, France
| | - Jérôme Legoff
- Virology department, Saint Louis Hospital, Paris, France
| | - Lara Zafrani
- Medical ICU, Saint Louis Academic Hospital, APHP, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Elie Azoulay
- Medical ICU, Saint Louis Academic Hospital, APHP, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Virginie Lemiale
- Medical ICU, Saint Louis Academic Hospital, APHP, 1 Avenue Claude Vellefaux, 75010, Paris, France
| |
Collapse
|
4
|
Rüger N, Sid H, Meens J, Szostak MP, Baumgärtner W, Bexter F, Rautenschlein S. New Insights into the Host-Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021; 9:microorganisms9112407. [PMID: 34835532 PMCID: PMC8618481 DOI: 10.3390/microorganisms9112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory pathogens are a health threat for poultry. Co-infections lead to the exacerbation of clinical symptoms and lesions. Mycoplasma gallisepticum (M. gallispeticum) and Avian Metapneumovirus (AMPV) are two avian respiratory pathogens that co-circulate worldwide. The knowledge about the host-pathogen interaction of M. gallispeticum and AMPV in the chicken respiratory tract is limited. We aimed to investigate how co-infections affect the pathogenesis of the respiratory disease and whether the order of invading pathogens leads to changes in host-pathogen interaction. We used chicken tracheal organ cultures (TOC) to investigate pathogen invasion and replication, lesion development, and selected innate immune responses, such as interferon (IFN) α, inducible nitric oxide synthase (iNOS) and IFNλ mRNA expression levels. We performed mono-inoculations (AMPV or M. gallispeticum) or dual-inoculations in two orders with a 24-h interval between the first and second pathogen. Dual-inoculations compared to mono-inoculations resulted in more severe host reactions. Pre-infection with AMPV followed by M. gallispeticum resulted in prolonged viral replication, more significant innate immune responses, and lesions (p < 0.05). AMPV as the secondary pathogen impaired the bacterial attachment process. Consequently, the M. gallispeticum replication was delayed, the innate immune response was less pronounced, and lesions appeared later. Our results suggest a competing process in co-infections and offer new insights in disease processes.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Munich, Germany;
| | - Jochen Meens
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Michael P. Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
- Correspondence: ; Tel.: +49-511-953-8779
| |
Collapse
|
5
|
Tsalik EL, Fiorino C, Aqeel A, Liu Y, Henao R, Ko ER, Burke TW, Reller ME, Bodinayake CK, Nagahawatte A, Arachchi WK, Devasiri V, Kurukulasooriya R, McClain MT, Woods CW, Ginsburg GS, Tillekeratne LG, Schughart K. The Host Response to Viral Infections Reveals Common and Virus-Specific Signatures in the Peripheral Blood. Front Immunol 2021; 12:741837. [PMID: 34777354 PMCID: PMC8578928 DOI: 10.3389/fimmu.2021.741837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Viruses cause a wide spectrum of clinical disease, the majority being acute respiratory infections (ARI). In most cases, ARI symptoms are similar for different viruses although severity can be variable. The objective of this study was to understand the shared and unique elements of the host transcriptional response to different viral pathogens. We identified 162 subjects in the US and Sri Lanka with infections due to influenza, enterovirus/rhinovirus, human metapneumovirus, dengue virus, cytomegalovirus, Epstein Barr Virus, or adenovirus. Our dataset allowed us to identify common pathways at the molecular level as well as virus-specific differences in the host immune response. Conserved elements of the host response to these viral infections highlighted the importance of interferon pathway activation. However, the magnitude of the responses varied between pathogens. We also identified virus-specific responses to influenza, enterovirus/rhinovirus, and dengue infections. Influenza-specific differentially expressed genes (DEG) revealed up-regulation of pathways related to viral defense and down-regulation of pathways related to T cell and neutrophil responses. Functional analysis of entero/rhinovirus-specific DEGs revealed up-regulation of pathways for neutrophil activation, negative regulation of immune response, and p38MAPK cascade and down-regulation of virus defenses and complement activation. Functional analysis of dengue-specific up-regulated DEGs showed enrichment of pathways for DNA replication and cell division whereas down-regulated DEGs were mainly associated with erythrocyte and myeloid cell homeostasis, reactive oxygen and peroxide metabolic processes. In conclusion, our study will contribute to a better understanding of molecular mechanisms to viral infections in humans and the identification of biomarkers to distinguish different types of viral infections.
Collapse
Affiliation(s)
- Ephraim L. Tsalik
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
- Emergency Department Service, Durham Veterans Affairs Health Care System, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Cassandra Fiorino
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ammara Aqeel
- Duke Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Yiling Liu
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ricardo Henao
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
| | - Emily R. Ko
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke Regional Hospital, Durham, NC, United States
| | - Thomas W. Burke
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Megan E. Reller
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | | | | | | | | | | | - Micah T. McClain
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Medical Service, Durham Veterans Affairs Health Care System, Durham, NC, United States
| | - Christopher W. Woods
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Medical Service, Durham Veterans Affairs Health Care System, Durham, NC, United States
| | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
| | - L. Gayani Tillekeratne
- Duke Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Medical Service, Durham Veterans Affairs Health Care System, Durham, NC, United States
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
6
|
Host Components That Modulate the Disease Caused by hMPV. Viruses 2021; 13:v13030519. [PMID: 33809875 PMCID: PMC8004172 DOI: 10.3390/v13030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main pathogens responsible for acute respiratory infections in children up to 5 years of age, contributing substantially to health burden. The worldwide economic and social impact of this virus is significant and must be addressed. The structural components of hMPV (either proteins or genetic material) can be detected by several receptors expressed by host cells through the engagement of pattern recognition receptors. The recognition of the structural components of hMPV can promote the signaling of the immune response to clear the infection, leading to the activation of several pathways, such as those related to the interferon response. Even so, several intrinsic factors are capable of modulating the immune response or directly inhibiting the replication of hMPV. This article will discuss the current knowledge regarding the innate and adaptive immune response during hMPV infections. Accordingly, the host intrinsic components capable of modulating the immune response and the elements capable of restricting viral replication during hMPV infections will be examined.
Collapse
|
7
|
Piñana M, Vila J, Maldonado C, Galano-Frutos JJ, Valls M, Sancho J, Nuvials FX, Andrés C, Martín-Gómez MT, Esperalba J, Codina MG, Pumarola T, Antón A. Insights into immune evasion of human metapneumovirus: novel 180- and 111-nucleotide duplications within viral G gene throughout 2014-2017 seasons in Barcelona, Spain. J Clin Virol 2020; 132:104590. [PMID: 32957052 PMCID: PMC7418790 DOI: 10.1016/j.jcv.2020.104590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
HMPV has a prevalence of 3%, affecting equally children and adults. 180- and 111-nucleotide duplications emerged, increasing in prevalence over seasons. G proteins w/ duplications protruded more from the membrane than w/o duplication. Viruses w/ duplications were more associated to LRTI in adults than w/o duplication. These facts suggest these duplications might enhance an immune evasion mechanism
Background Human metapneumovirus (HMPV) is an important aetiologic agent of respiratory tract infection (RTI). This study aimed to describe its genetic diversity and clinical impact in patients attended at a tertiary university hospital in Barcelona from the 2014-2015 to the 2016-2017 seasons, focusing on the emerging duplications in G gene and their structural properties. Methods Laboratory-confirmed HMPV were characterised based on partial-coding F and G gene sequences with MEGA.v6.0. Computational analysis of disorder propensity, aggregation propensity and glycosylation sites in viral G predicted protein sequence were carried out. Clinical data was retrospectively reviewed and further associated to virological features. Results HMPV prevalence was 3%. The 180- and 111-nucleotide duplications occurred in A2c lineage G protein increased in prevalence throughout the study, in addition to short genetic changes observed in other HMPV lineages. The A2c G protein without duplications was calculated to protrude over F protein in 23% of cases and increased to a 39% and a 46% with the 111- and 180-nucleotide duplications, respectively. Children did not seem to be more affected by these mutant viruses, but there was a strong association of these variants to LRTI in adults. Discussion HMPV presents a high genetic diversity in all lineages. Novel variants carrying duplications might present an evolutionary advantage due to an improved steric shielding, which would have been responsible for the reported increasing prevalence and the association to LRTI in adults.
Collapse
Affiliation(s)
- Maria Piñana
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jorgina Vila
- Paediatric Hospitalization Unit, Paediatrics Department, Hospital Universitari Maternoinfantil Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Carolina Maldonado
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Juan José Galano-Frutos
- Biochemistry and Molecular and Cell Biology Department, Sciences Faculty, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Maria Valls
- Paediatric Hospitalization Unit, Paediatrics Department, Hospital Universitari Maternoinfantil Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Sancho
- Biochemistry and Molecular and Cell Biology Department, Sciences Faculty, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Francesc Xavier Nuvials
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - María Teresa Martín-Gómez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Andrés Antón
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
8
|
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018; 29:434-444. [PMID: 30539045 PMCID: PMC6261883 DOI: 10.1007/s13337-018-0498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important pneumovirus which causes acute respiratory disease in human beings. The viral infection leads to mild to severe respiratory symptoms depending on the age and immune status of the infected individual. Several groups across the world are working on the development of immunogens and therapy to manage HMPV infection with promising results under laboratory conditions but till date any virus specific vaccine or therapy has not been approved for clinical use. This minireview gives an overview of the prophylactic and therapeutic approaches to manage HMPV infections.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| | - Mansi Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| |
Collapse
|
9
|
Danziger O, Pupko T, Bacharach E, Ehrlich M. Interleukin-6 and Interferon-α Signaling via JAK1-STAT Differentially Regulate Oncolytic versus Cytoprotective Antiviral States. Front Immunol 2018; 9:94. [PMID: 29441069 PMCID: PMC5797546 DOI: 10.3389/fimmu.2018.00094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Malignancy-induced alterations to cytokine signaling in tumor cells differentially regulate their interactions with the immune system and oncolytic viruses. The abundance of inflammatory cytokines in the tumor microenvironment suggests that such signaling plays key roles in tumor development and therapy efficacy. The JAK-STAT axis transduces signals of interleukin-6 (IL-6) and interferons (IFNs), mediates antiviral responses, and is frequently altered in prostate cancer (PCa) cells. However, how activation of JAK-STAT signaling with different cytokines regulates interactions between oncolytic viruses and PCa cells is not known. Here, we employ LNCaP PCa cells, expressing (or not) JAK1, activated (or not) with IFNs (α or γ) or IL-6, and infected with RNA viruses of different oncolytic potential (EHDV-TAU, hMPV-GFP, or HIV-GFP) to address this matter. We show that in JAK1-expressing cells, IL-6 sensitized PCa cells to viral cell death in the presence or absence of productive infection, with dependence on virus employed. Contrastingly, IFNα induced a cytoprotective antiviral state. Biochemical and genetic (knockout) analyses revealed dependency of antiviral state or cytoprotection on STAT1 or STAT2 activation, respectively. In IL-6-treated cells, STAT3 expression was required for anti-proliferative signaling. Quantitative proteomics (SILAC) revealed a core repertoire of antiviral IFN-stimulated genes, induced by IL-6 or IFNs. Oncolysis in the absence of productive infection, induced by IL-6, correlated with reduction in regulators of cell cycle and metabolism. These results call for matching the viral features of the oncolytic agent, the malignancy-induced genetic-epigenetic alterations to JAK/STAT signaling and the cytokine composition of the tumor microenvironment for efficient oncolytic virotherapy.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Hartmann S, Sid H, Rautenschlein S. Avian metapneumovirus infection of chicken and turkey tracheal organ cultures: comparison of virus-host interactions. Avian Pathol 2016; 44:480-9. [PMID: 26365279 DOI: 10.1080/03079457.2015.1086974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Avian metapneumovirus (aMPV) is a pathogen with worldwide distribution, which can cause high economic losses in infected poultry. aMPV mainly causes infection of the upper respiratory tract in both chickens and turkeys, although turkeys seem to be more susceptible. Little is known about virus-host interactions at epithelial surfaces after aMPV infection. Tracheal organ cultures (TOC) are a suitable model to investigate virus-host interaction in the respiratory epithelium. Therefore, we investigated virus replication rates and lesion development in chicken and turkey TOC after infection with a virulent aMPV subtype A strain. Aspects of the innate immune response, such as interferon-α and inducible nitric oxide synthase mRNA expression, as well as virus-induced apoptosis were determined. The aMPV-replication rate was higher in turkey (TTOC) compared to chicken TOC (CTOC) (P < 0.05), providing circumstantial evidence that indeed turkeys may be more susceptible. The interferon-α response was down-regulated from 2 to 144 hours post infection in both species compared to virus-free controls (P < 0.05); this was more significant for CTOC than TTOC. Inducible nitric oxide synthase expression was significantly up-regulated in aMPV-A-infected TTOC and CTOC compared to virus-free controls (P < 0.05). However, the results suggest that NO may play a different role in aMPV pathogenesis between turkeys and chickens as indicated by differences in apoptosis rate and lesion development between species. Overall, our study reveals differences in innate immune response regulation and therefore may explain differences in aMPV - A replication rates between infected TTOC and CTOC, which subsequently lead to more severe clinical signs and a higher rate of secondary infections in turkeys.
Collapse
Affiliation(s)
- Sandra Hartmann
- a Clinic for Poultry , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Hicham Sid
- a Clinic for Poultry , University of Veterinary Medicine Hannover , Hannover , Germany
| | - Silke Rautenschlein
- a Clinic for Poultry , University of Veterinary Medicine Hannover , Hannover , Germany
| |
Collapse
|
11
|
Pancham K, Perez GF, Huseni S, Jain A, Kurdi B, Rodriguez-Martinez CE, Preciado D, Rose MC, Nino G. Premature infants have impaired airway antiviral IFNγ responses to human metapneumovirus compared to respiratory syncytial virus. Pediatr Res 2015; 78:389-94. [PMID: 26086642 PMCID: PMC5529168 DOI: 10.1038/pr.2015.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/09/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND It is unknown why human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) cause severe respiratory infection in children, particularly in premature infants. Our aim was to investigate if there are defective airway antiviral responses to these viruses in young children with history of prematurity. METHODS Nasal airway secretions were collected from 140 children ≤ 3 y old without detectable virus (n = 80) or with PCR-confirmed HMPV or RSV infection (n = 60). Nasal protein levels of IFNγ, CCL5/RANTES, IL-10, IL-4, and IL-17 were determined using a multiplex magnetic bead immunoassay. RESULTS Full-term children with HMPV and RSV infection had increased levels of nasal airway IFNγ, CCL5, and IL-10 along with an elevation in Th1 (IFNγ)/Th2 (IL-4) ratios, which is expected during antiviral responses. In contrast, HMPV-infected premature children (< 32 wk gestation) did not exhibit increased Th1/Th2 ratios or elevated nasal airway secretion of IFNγ, CCL5, and IL-10 relative to uninfected controls. CONCLUSION Our study is the first to demonstrate that premature infants have defective IFNγ, CCL5/RANTES, and IL-10 airway responses during HMPV infection and provides novel insights about the potential reason why HMPV causes severe respiratory disease in children with history of prematurity.
Collapse
Affiliation(s)
- Krishna Pancham
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC
| | - Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC,Department of Pediatrics, George Washington University, Washington, DC,Department of Integrative Systems Biology, George Washington University, Washington, DC,Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC
| | - Shehlanoor Huseni
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC
| | - Amisha Jain
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC
| | - Bassem Kurdi
- Department of Pediatrics, George Washington University, Washington, DC
| | - Carlos E. Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia,Research Unit, Military Hospital of Colombia, Bogota, Colombia
| | - Diego Preciado
- Department of Pediatrics, George Washington University, Washington, DC,Department of Integrative Systems Biology, George Washington University, Washington, DC,Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC,Division of Pediatric Otorhinolaryngology, Department of Surgery, George Washington University, Washington, DC,Division of Pediatric Otorhinolaryngology, Department of Pediatrics, George Washington University, Washington, DC
| | - Mary C. Rose
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC,Department of Pediatrics, George Washington University, Washington, DC,Department of Integrative Systems Biology, George Washington University, Washington, DC,Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC,Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC,Department of Pediatrics, George Washington University, Washington, DC,Department of Integrative Systems Biology, George Washington University, Washington, DC,Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC
| |
Collapse
|
12
|
New Approaches for Immunization and Therapy against Human Metapneumovirus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:858-66. [PMID: 26063237 DOI: 10.1128/cvi.00230-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human metapneumovirus (HMPV) is a paramyxovirus discovered in 2001 in the Netherlands. Studies have identified HMPV as an important causative agent of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. There are currently no licensed therapeutics or vaccines against HMPV. However, several research groups have tested vaccine candidates and monoclonal antibodies in various animal models. Several of these approaches have shown promise in animal models. This minireview summarizes the current therapies used to treat HMPV infection as well as different approaches for immunization.
Collapse
|
13
|
Komaravelli N, Kelley JP, Garofalo MP, Wu H, Casola A, Kolli D. Role of dietary antioxidants in human metapneumovirus infection. Virus Res 2015; 200:19-23. [PMID: 25645280 DOI: 10.1016/j.virusres.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Human metapneumovirus (hMPV) is a major cause of respiratory tract infections in children, elderly and immunocompromised hosts, for which no vaccine or treatment are currently available. Oxidative stress and inflammatory responses represent important pathogenic mechanism(s) of hMPV infection. Here, we explored the potential protective role of dietary antioxidants in hMPV infection. Treatment of airway epithelial cells with resveratrol and quercetin during hMPV infection significantly reduced cellular oxidative damage, inflammatory mediator secretion and viral replication, without affecting viral gene transcription and protein synthesis, indicating that inhibition of viral replication occurred at the level of viral assembly and/or release. Modulation of proinflammatory mediator expression occurred through the inhibition of transcription factor nuclear factor (NF)-κB and interferon regulatory factor (IRF)-3 binding to their cognate site of endogenous gene promoters. Our results indicate the use of dietary antioxidants as an effective treatment approach for modulating hMPV induced lung oxidative damage and inflammation.
Collapse
Affiliation(s)
- Narayana Komaravelli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - John P Kelley
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Matteo P Garofalo
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Haotian Wu
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Antonella Casola
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Deepthi Kolli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Aerts L, Rhéaume C, Carbonneau J, Lavigne S, Couture C, Hamelin MÈ, Boivin G. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines. J Gen Virol 2014; 96:767-774. [PMID: 25519171 DOI: 10.1099/vir.0.000031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human metapneumovirus (HMPV) fusion (F) protein is the most immunodominant protein, yet subunit vaccines containing only this protein do not confer complete protection. The HMPV matrix (M) protein induces the maturation of antigen-presenting cells in vitro. The inclusion of the M protein into an F protein subunit vaccine might therefore provide an adjuvant effect. We administered the F protein twice intramuscularly, adjuvanted with alum, the M protein or both, to BALB/c mice at 3 week intervals. Three weeks after the boost, mice were infected with HMPV and monitored for 14 days. At day 5 post-challenge, pulmonary viral titres, histopathology and cytokine levels were analysed. Mice immunized with F+alum and F+M+alum generated significantly more neutralizing antibodies than mice immunized with F only [titres of 47 ± 7 (P<0.01) and 147 ± 13 (P<0.001) versus 17 ± 2]. Unlike F only [1.6 ± 0.5 × 10(3) TCID50 (g lung)(-1)], pulmonary viral titres in mice immunized with F+M and F+M+alum were undetectable. Mice immunized with F+M presented the most important reduction in pulmonary inflammation and the lowest T-helper Th2/Th1 cytokine ratio. In conclusion, addition of the HMPV-M protein to an F protein-based vaccine modulated both humoral and cellular immune responses to subsequent infection, thereby increasing the protection conferred by the vaccine.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Sophie Lavigne
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec G1V 4G5, Canada
| | - Christian Couture
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec G1V 4G5, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Guy Boivin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|
15
|
Panda S, Mohakud NK, Pena L, Kumar S. Human metapneumovirus: review of an important respiratory pathogen. Int J Infect Dis 2014; 25:45-52. [PMID: 24841931 PMCID: PMC7110553 DOI: 10.1016/j.ijid.2014.03.1394] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022] Open
Abstract
Human metapneumovirus (hMPV), discovered in 2001, most commonly causes upper and lower respiratory tract infections in young children, but is also a concern for elderly subjects and immune-compromised patients. hMPV is the major etiological agent responsible for about 5% to 10% of hospitalizations of children suffering from acute respiratory tract infections. hMPV infection can cause severe bronchiolitis and pneumonia in children, and its symptoms are indistinguishable from those caused by human respiratory syncytial virus. Initial infection with hMPV usually occurs during early childhood, but re-infections are common throughout life. Due to the slow growth of the virus in cell culture, molecular methods (such as reverse transcriptase PCR (RT-PCR)) are the preferred diagnostic modality for detecting hMPV. A few vaccine candidates have been shown to be effective in preventing clinical disease, but none are yet commercially available. Our understanding of hMPV has undergone major changes in recent years and in this article we will review the currently available information on the molecular biology and epidemiology of hMPV. We will also review the current therapeutic interventions and strategies being used to control hMPV infection, with an emphasis on possible approaches that could be used to develop an effective vaccine against hMPV.
Collapse
Affiliation(s)
- Swagatika Panda
- School of Biotechnology, KIIT University, Campus XI, Patia, Bhubaneswar 751024, Orissa, India
| | - Nirmal Kumar Mohakud
- Department of Paediatrics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Orissa, India
| | - Lindomar Pena
- Department of Cell and Molecular Biology, Centre for Biotechnology, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Subrat Kumar
- School of Biotechnology, KIIT University, Campus XI, Patia, Bhubaneswar 751024, Orissa, India.
| |
Collapse
|
16
|
Abstract
A hallmark of the antiviral response is the induction of interferons. First discovered in 1957 by Issac and Lindeman, interferons are noted for their ability to interfere with viral replication. Interferons act via autocrine and paracrine pathways to induce an antiviral state in infected cells and in neighboring cells containing interferon receptors. Interferons are the frontline defenders against viral infection and their primary function is to locally restrict viral propagation. Viruses have evolved mechanisms to escape the host interferon response, thus gaining a replicative advantage in host cells. This review will discuss recent findings on the mechanisms viruses use to evade the host interferon response. This knowledge is important because the treatment of viral infections is a challenge of global proportions and a better understanding of the mechanisms viruses use to persist in the host may uncover valuable insights applicable to the discovery of novel drug targets.
Collapse
|
17
|
Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 2013; 425:4872-92. [PMID: 24056173 DOI: 10.1016/j.jmb.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022]
Abstract
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.
Collapse
|