1
|
Sangar D, Hill E, Jack K, Batchelor M, Mistry B, Ribes JM, Jackson GS, Mead S, Bieschke J. Syntaxin-6 delays prion protein fibril formation and prolongs the presence of toxic aggregation intermediates. eLife 2024; 13:e83320. [PMID: 39109999 PMCID: PMC11377041 DOI: 10.7554/elife.83320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/20/2024] [Indexed: 09/06/2024] Open
Abstract
Prions replicate via the autocatalytic conversion of cellular prion protein (PrPC) into fibrillar assemblies of misfolded PrP. While this process has been extensively studied in vivo and in vitro, non-physiological reaction conditions of fibril formation in vitro have precluded the identification and mechanistic analysis of cellular proteins, which may alter PrP self-assembly and prion replication. Here, we have developed a fibril formation assay for recombinant murine and human PrP (23-231) under near-native conditions (NAA) to study the effect of cellular proteins, which may be risk factors or potential therapeutic targets in prion disease. Genetic screening suggests that variants that increase syntaxin-6 expression in the brain (gene: STX6) are risk factors for sporadic Creutzfeldt-Jakob disease. Analysis of the protein in NAA revealed, counterintuitively, that syntaxin-6 is a potent inhibitor of PrP fibril formation. It significantly delayed the lag phase of fibril formation at highly sub-stoichiometric molar ratios. However, when assessing toxicity of different aggregation time points to primary neurons, syntaxin-6 prolonged the presence of neurotoxic PrP species. Electron microscopy and super-resolution fluorescence microscopy revealed that, instead of highly ordered fibrils, in the presence of syntaxin-6 PrP formed less-ordered aggregates containing syntaxin-6. These data strongly suggest that the protein can directly alter the initial phase of PrP self-assembly and, uniquely, can act as an 'anti-chaperone', which promotes toxic aggregation intermediates by inhibiting fibril formation.
Collapse
Affiliation(s)
- Daljit Sangar
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Elizabeth Hill
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Kezia Jack
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Mark Batchelor
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Beenaben Mistry
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Juan M Ribes
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Graham S Jackson
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Jan Bieschke
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| |
Collapse
|
2
|
Fremuntova Z, Hanusova ZB, Soukup J, Mosko T, Matej R, Holada K. Simple 3D spheroid cell culture model for studies of prion infection. Eur J Neurosci 2024; 60:4437-4452. [PMID: 38887188 DOI: 10.1111/ejn.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 μm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, β-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Medd MM, Cao Q. Perspectives on CRISPR Genome Editing to Prevent Prion Diseases in High-Risk Individuals. Biomedicines 2024; 12:1725. [PMID: 39200190 PMCID: PMC11352000 DOI: 10.3390/biomedicines12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Prion diseases are neurodegenerative disorders caused by misfolded prion proteins. Although rare, the said diseases are always fatal; they commonly cause death within months of developing clinical symptoms, and their diagnosis is exceptionally difficult pre-mortem. There are no known cures or treatments other than symptomatic care. Given the aggressiveness of prion diseases on onset, therapies after disease onset could be challenging. Prevention to reduce the incidence or to delay the disease onset has been suggested to be a more feasible approach. In this perspective article, we summarize our current understandings of the origin, risk factors, and clinical manifestations of prion diseases. We propose a PCR testing of the blood to identify PRNP gene polymorphisms at codons 129 and 127 in individuals with familial PRNP mutations to assess the risk. We further present the CRISPR/Cas9 gene editing strategy as a perspective preventative approach for these high-risk individuals to induce a polymorphic change at codon 127 of the PRNP gene, granting immunity to prion diseases in selected high-risk individuals, in particular, in individuals with familial PRNP mutations.
Collapse
Affiliation(s)
- Milan M. Medd
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qi Cao
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Loss of small GTPase Rab7 activation in prion infection negatively affects a feedback loop regulating neuronal cholesterol metabolism. J Biol Chem 2023; 299:102883. [PMID: 36623732 PMCID: PMC9926124 DOI: 10.1016/j.jbc.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.
Collapse
|
5
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
6
|
Arshad H, Patel Z, Mehrabian M, Bourkas MEC, Al-Azzawi ZAM, Schmitt-Ulms G, Watts JC. The aminoglycoside G418 hinders de novo prion infection in cultured cells. J Biol Chem 2021; 297:101073. [PMID: 34390689 PMCID: PMC8413896 DOI: 10.1016/j.jbc.2021.101073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 01/16/2023] Open
Abstract
The study of prions and the discovery of candidate therapeutics for prion disease have been facilitated by the ability of prions to replicate in cultured cells. Paradigms in which prion proteins from different species are expressed in cells with low or no expression of endogenous prion protein (PrP) have expanded the range of prion strains that can be propagated. In these systems, cells stably expressing a PrP of interest are typically generated via coexpression of a selectable marker and treatment with an antibiotic. Here, we report the unexpected discovery that the aminoglycoside G418 (Geneticin) interferes with the ability of stably transfected cultured cells to become infected with prions. In G418-resistant lines of N2a or CAD5 cells, the presence of G418 reduced levels of protease-resistant PrP following challenge with the RML or 22L strains of mouse prions. G418 also interfered with the infection of cells expressing hamster PrP with the 263K strain of hamster prions. Interestingly, G418 had minimal to no effect on protease-resistant PrP levels in cells with established prion infection, arguing that G418 selectively interferes with de novo prion infection. As G418 treatment had no discernible effect on cellular PrP levels or its localization, this suggests that G418 may specifically target prion assemblies or processes involved in the earliest stages of prion infection.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Abstract
Introduction: Prion diseases are a class of rare and fatal neurodegenerative diseases for which no cure is currently available. They are characterized by conformational conversion of cellular prion protein (PrPC) into the disease-associated 'scrapie' isoform (PrPSc). Under an etiological point of view, prion diseases can be divided into acquired, genetic, and idiopathic form, the latter of which are the most frequent.Areas covered: Therapeutic approaches targeting prion diseases are based on the use of chemical and nature-based compounds, targeting either PrPC or PrPSc or other putative player in pathogenic mechanism. Other proposed anti-prion treatments include passive and active immunization strategies, peptides, aptamers, and PrPC-directed RNA interference techniques. The treatment efficacy has been mainly assessed in cell lines or animal models of the disease testing their ability to reduce prion accumulation.Expert opinion: The assessed strategies focussing on the identification of an efficient anti-prion therapy faced various issues, which go from permeation of the blood brain barrier to immunological tolerance of the host. Indeed, the use of combinatory approaches, which could boost a synergistic anti-prion effect and lower the potential side effects of single treatments and may represent an extreme powerful and feasible way to tackle prion disease.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
8
|
Eiden M, Gedvilaite A, Leidel F, Ulrich RG, Groschup MH. Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice. Viruses 2021; 13:v13050811. [PMID: 33946367 PMCID: PMC8147134 DOI: 10.3390/v13050811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days post-inoculation compared with 202 days of the control group. These data show that immunisation with VLPs presenting PrP peptides may represent a promising strategy for an effective vaccination against transmissible spongiform encephalitis agents.
Collapse
Affiliation(s)
- Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Correspondence:
| | - Alma Gedvilaite
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Fabienne Leidel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Task Force Animal Diseases, Darmstadt Regional Administrative Council, Luisenplatz 2, 64283 Darmstadt, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| |
Collapse
|
9
|
Chen C, Dong X. Therapeutic implications of prion diseases. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Michiels E, Liu S, Gallardo R, Louros N, Mathelié-Guinlet M, Dufrêne Y, Schymkowitz J, Vorberg I, Rousseau F. Entropic Bristles Tune the Seeding Efficiency of Prion-Nucleating Fragments. Cell Rep 2021; 30:2834-2845.e3. [PMID: 32101755 PMCID: PMC7043027 DOI: 10.1016/j.celrep.2020.01.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 01/04/2023] Open
Abstract
Prions of lower eukaryotes are self-templating protein aggregates with cores formed by parallel in-register beta strands. Short aggregation-prone glutamine (Q)- and asparagine (N)-rich regions embedded in longer disordered domains have been proposed to act as nucleation sites that initiate refolding of soluble prion proteins into highly ordered fibrils, termed amyloid. We demonstrate that a short Q/N-rich peptide corresponding to a proposed nucleation site in the prototype Saccharomyces cerevisiae prion protein Sup35 is sufficient to induce infectious cytosolic prions in mouse neuroblastoma cells ectopically expressing the soluble Sup35 NM prion domain. Embedding this nucleating core in a non-native N-rich sequence that does not form amyloid but acts as an entropic bristle quadruples seeding efficiency. Our data suggest that large disordered sequences flanking an aggregation core in prion proteins act as not only solubilizers of the monomeric protein but also breakers of the formed amyloid fibrils, enhancing infectivity of the prion seeds. A short peptide derived from Sup35 (p103–113) forms rigid amyloid fibrils p103–113 fibrils can induce infectious Sup35 NM prions in mammalian cells Embedding p103–113 in an N-rich sequence increases fibril brittleness Increased fibril brittleness enhances prion-inducing capacity
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Shu Liu
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Rodrigo Gallardo
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium.
| | - Ina Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Antibody Fragments as Tools for Elucidating Structure-Toxicity Relationships and for Diagnostic/Therapeutic Targeting of Neurotoxic Amyloid Oligomers. Int J Mol Sci 2020; 21:ijms21238920. [PMID: 33255488 PMCID: PMC7727795 DOI: 10.3390/ijms21238920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS) and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been the development of antibody fragments against amyloid oligomers. Antibody fragments, such as fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production (low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has been possible to identify antibody fragments presenting marked conformational selectivity. In this review, we summarize significant reports on antibody fragments selective for oligomers associated with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that advances in this field may lead to the development of novel oligomer-selective antibody fragments with superior selectivity and, hopefully, good clinical outcomes.
Collapse
|
12
|
Tahir W, Abdulrahman B, Abdelaziz DH, Thapa S, Walia R, Schätzl HM. An astrocyte cell line that differentially propagates murine prions. J Biol Chem 2020; 295:11572-11583. [PMID: 32561641 PMCID: PMC7450132 DOI: 10.1074/jbc.ra120.012596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the pathological isoform PrPSc. Elucidating the molecular and cellular mechanisms underlying prion propagation may help to develop disease interventions. Cell culture systems for prion propagation have greatly advanced molecular insights into prion biology, but translation of in vitro to in vivo findings is often disappointing. A wider range of cell culture systems might help overcome these shortcomings. Here, we describe an immortalized mouse neuronal astrocyte cell line (C8D1A) that can be infected with murine prions. Both PrPC protein and mRNA levels in astrocytes were comparable with those in neuronal and non-neuronal cell lines permitting persistent prion infection. We challenged astrocytes with three mouse-adapted prion strains (22L, RML, and ME7) and cultured them for six passages. Immunoblotting results revealed that the astrocytes propagated 22L prions well over all six passages, whereas ME7 prions did not replicate, and RML prions replicated only very weakly after five passages. Immunofluorescence analysis indicated similar results for PrPSc. Interestingly, when we used prion conversion activity as a readout in real-time quaking-induced conversion assays with RML-infected cell lysates, we observed a strong signal over all six passages, comparable with that for 22L-infected cells. These data indicate that the C8D1A cell line is permissive to prion infection. Moreover, the propagated prions differed in conversion and proteinase K–resistance levels in these astrocytes. We propose that the C8D1A cell line could be used to decipher prion strain biology.
Collapse
Affiliation(s)
- Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Basant Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Dalia H Abdelaziz
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rupali Walia
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hermann M Schätzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada .,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Prasad KN, Bondy SC. Oxidative and Inflammatory Events in Prion Diseases: Can They Be Therapeutic Targets? Curr Aging Sci 2020; 11:216-225. [PMID: 30636622 PMCID: PMC6635421 DOI: 10.2174/1874609812666190111100205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
Abstract
Prion diseases are a group of incurable infectious terminal neurodegenerative diseases caused by the aggregated misfolded PrPsc in selected mammals including humans. The complex physical interaction between normal prion protein PrPc and infectious PrPsc causes conformational change from the α- helix structure of PrPc to the β-sheet structure of PrPsc, and this process is repeated. Increased oxidative stress is one of the factors that facilitate the conversion of PrPc to PrPsc. This overview presents evidence to show that increased oxidative stress and inflammation are involved in the progression of this disease. Evidence is given for the participation of redoxsensitive metals Cu and Fe with PrPsc inducing oxidative stress by disturbing the homeostasis of these metals. The fact that some antioxidants block the toxicity of misfolded PrPc peptide supports the role of oxidative stress in prion disease. After exogenous infection in mice, PrPsc enters the follicular dendritic cells where PrPsc replicates before neuroinvasion where they continue to replicate and cause inflammation leading to neurodegeneration. Therefore, reducing levels of oxidative stress and inflammation may decrease the rate of the progression of this disease. It may be an important order to reduce oxidative stress and inflammation at the same time. This may be achieved by increasing the levels of antioxidant enzymes by activating the Nrf2 pathway together with simultaneous administration of dietary and endogenous antioxidants. It is proposed that a mixture of micronutrients could enable these concurrent events thereby reducing the progression of human prion disease.
Collapse
Affiliation(s)
- Kedar N Prasad
- Engage Global, 245 El Faison Drive, San Rafael, CA, United States
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, United States
| |
Collapse
|
14
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Transient multimers modulate conformer abundances of prion protein monomer through conformational selection. Sci Rep 2019; 9:12159. [PMID: 31434938 PMCID: PMC6704068 DOI: 10.1038/s41598-019-48377-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/01/2019] [Indexed: 01/15/2023] Open
Abstract
Prions are known to be involved in neurodegenerative pathologies such as Creutzfeld-Jakob disease. Current models point to a molecular event which rely on a transmissible structural change that leads to the production of β-sheet-rich prion conformer (PrPSc). PrPSc itself has the capability to trigger the structural rearrangement of the ubiquitously present prion (PrPc) substrate in a self-perpetuating cascade. In this article, we demonstrate that recombinant PrPc exists in a conformational equilibrium. The conformers’ abundances were shown to be dependent on PrPc concentration through the formation of transient multimers leading to conformational selection. The study of PrPc mutants that follow dedicated oligomerization pathways demonstrated that the conformers’ relative abundances are modified, thus reinforcing the assertion that the nature of conformers’ interactions orient the oligomerization pathways. Further this result can be viewed as the “signature” of an aborted oligomerization process. This discovery sheds a new light on the possible origin of prion protein diseases, namely that a change in prion protein structure could be transmitted through the formation of transient multimers having different conformer compositions. This could explain the selection of a transient multimeric type that could be viewed as the precursor of PrPSc responsible for structural information transmission, and strain apparition.
Collapse
|
16
|
Walia R, Ho CC, Lee C, Gilch S, Schatzl HM. Gene-edited murine cell lines for propagation of chronic wasting disease prions. Sci Rep 2019; 9:11151. [PMID: 31371793 PMCID: PMC6673760 DOI: 10.1038/s41598-019-47629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023] Open
Abstract
Prions cause fatal infectious neurodegenerative diseases in humans and animals. Cell culture models are essential for studying the molecular biology of prion propagation. Defining such culture models is mostly a random process, includes extensive subcloning, and for many prion diseases few or no models exist. One example is chronic wasting disease (CWD), a highly contagious prion disease of cervids. To extend the range of cell models propagating CWD prions, we gene-edited mouse cell lines known to efficiently propagate murine prions. Endogenous prion protein (PrP) was ablated in CAD5 and MEF cells, using CRISPR-Cas9 editing. PrP knock-out cells were reconstituted with mouse, bank vole and cervid PrP genes by lentiviral transduction. Reconstituted cells expressing mouse PrP provided proof-of-concept for re-established prion infection. Bank voles are considered universal receptors for prions from a variety of species. Bank vole PrP reconstituted cells propagated mouse prions and cervid prions, even without subcloning for highly susceptible cells. Cells reconstituted with cervid PrP and infected with CWD prions tested positive in prion conversion assay, whereas non-reconstituted cells were negative. This novel cell culture platform which is easily adjustable and allows testing of polymorphic alleles will provide important new insights into the biology of CWD prions.
Collapse
Affiliation(s)
- Rupali Walia
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Cheng Ching Ho
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Chi Lee
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada. .,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
17
|
Vorberg IM. All the Same? The Secret Life of Prion Strains within Their Target Cells. Viruses 2019; 11:v11040334. [PMID: 30970585 DOI: 10.3390/v11040334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/23/2023] Open
Abstract
Prions are infectious β-sheet-rich protein aggregates composed of misfolded prion protein (PrPSc) that do not possess coding nucleic acid. Prions replicate by recruiting and converting normal cellular PrPC into infectious isoforms. In the same host species, prion strains target distinct brain regions and cause different disease phenotypes. Prion strains are associated with biophysically distinct PrPSc conformers, suggesting that strain properties are enciphered within alternative PrPSc quaternary structures. So far it is unknown how prion strains target specific cells and initiate productive infections. Deeper mechanistic insight into the prion life cycle came from cell lines permissive to a range of different prion strains. Still, it is unknown why certain cell lines are refractory to infection by one strain but permissive to another. While pharmacologic and genetic manipulations revealed subcellular compartments involved in prion replication, little is known about strain-specific requirements for endocytic trafficking pathways. This review summarizes our knowledge on how prions replicate within their target cells and on strain-specific differences in prion cell biology.
Collapse
Affiliation(s)
- Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany.
- Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| |
Collapse
|
18
|
Vorberg I, Chiesa R. Experimental models to study prion disease pathogenesis and identify potential therapeutic compounds. Curr Opin Pharmacol 2019; 44:28-38. [PMID: 30878006 DOI: 10.1016/j.coph.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
Prion diseases are devastating neurodegenerative disorders for which no drugs are available. The successful development of therapeutics depends on drug screening platforms and preclinical models that recapitulate key molecular and pathological features of the disease. Innovative experimental tools have been developed over the last few years that might facilitate drug discovery, including cell-free prion replication assays and prion-infected flies. However, there is still room for improvement. Animal models of genetic prion disease are few, and only partially recapitulate the complexity of the human disorder. Moreover, we still lack a human cell culture model suitable for high-content anti-prion drug screening. This review provides an overview of the models currently used in prion research, and discusses their promise and limitations for drug discovery.
Collapse
Affiliation(s)
- Ina Vorberg
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| | - Roberto Chiesa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
| |
Collapse
|
19
|
Khan T, Kandola TS, Wu J, Venkatesan S, Ketter E, Lange JJ, Rodríguez Gama A, Box A, Unruh JR, Cook M, Halfmann R. Quantifying Nucleation In Vivo Reveals the Physical Basis of Prion-like Phase Behavior. Mol Cell 2019; 71:155-168.e7. [PMID: 29979963 PMCID: PMC6086602 DOI: 10.1016/j.molcel.2018.06.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023]
Abstract
Protein self-assemblies modulate protein activities over biological timescales that can exceed the lifetimes of the proteins or even the cells that harbor them. We hypothesized that these timescales relate to kinetic barriers inherent to the nucleation of ordered phases. To investigate nucleation barriers in living cells, we developed distributed amphifluoric FRET (DAmFRET). DAmFRET exploits a photoconvertible fluorophore, heterogeneous expression, and large cell numbers to quantify via flow cytometry the extent of a protein's self-assembly as a function of cellular concentration. We show that kinetic barriers limit the nucleation of ordered self-assemblies and that the persistence of the barriers with respect to concentration relates to structure. Supersaturation resulting from sequence-encoded nucleation barriers gave rise to prion behavior and enabled a prion-forming protein, Sup35 PrD, to partition into dynamic intracellular condensates or to form toxic aggregates. Our results suggest that nucleation barriers govern cytoplasmic inheritance, subcellular organization, and proteotoxicity.
Collapse
Affiliation(s)
- Tarique Khan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tejbir S Kandola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jianzheng Wu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Ellen Ketter
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Malcolm Cook
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
20
|
Bourkas MEC, Arshad H, Al-Azzawi ZAM, Halgas O, Shikiya RA, Mehrabian M, Schmitt-Ulms G, Bartz JC, Watts JC. Engineering a murine cell line for the stable propagation of hamster prions. J Biol Chem 2019; 294:4911-4923. [PMID: 30705093 DOI: 10.1074/jbc.ra118.007135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/30/2019] [Indexed: 01/23/2023] Open
Abstract
Prions are infectious protein aggregates that cause several fatal neurodegenerative diseases. Prion research has been hindered by a lack of cellular paradigms for studying the replication of prions from different species. Although hamster prions have been widely used to study prion replication in animals and within in vitro amplification systems, they have proved challenging to propagate in cultured cells. Because the murine catecholaminergic cell line CAD5 is susceptible to a diverse range of mouse prion strains, we hypothesized that it might also be capable of propagating nonmouse prions. Here, using CRISPR/Cas9-mediated genome engineering, we demonstrate that CAD5 cells lacking endogenous mouse PrP expression (CAD5-PrP-/- cells) can be chronically infected with hamster prions following stable expression of hamster PrP. When exposed to the 263K, HY, or 139H hamster prion strains, these cells stably propagated high levels of protease-resistant PrP. Hamster prion replication required absence of mouse PrP, and hamster PrP inhibited the propagation of mouse prions. Cellular homogenates from 263K-infected cells exhibited prion seeding activity in the RT-QuIC assay and were infectious to naïve cells expressing hamster PrP. Interestingly, murine N2a neuroblastoma cells ablated for endogenous PrP expression were susceptible to mouse prions, but not hamster prions upon expression of cognate PrP, suggesting that CAD5 cells either possess cellular factors that enhance or lack factors that restrict the diversity of prion strains that can be propagated. We conclude that transfected CAD5-PrP-/- cells may be a useful tool for assessing the biology of prion strains and dissecting the mechanism of prion replication.
Collapse
Affiliation(s)
- Matthew E C Bourkas
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Hamza Arshad
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Zaid A M Al-Azzawi
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Ondrej Halgas
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Ronald A Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| | - Mohadeseh Mehrabian
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5T 0S8, and
| | - Gerold Schmitt-Ulms
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5T 0S8, and
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| | - Joel C Watts
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8, .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| |
Collapse
|
21
|
Zavadenko NN, Khondkaryan GS, Bembeeva RT, Kholin AA, Saverskaya EN. [Human prion diseases: current issues]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:88-95. [PMID: 30040808 DOI: 10.17116/jnevro20181186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are a group of neurodegenerative diseases with progressive dementia and movement disorders. There are three variants of prion diseases pathogenesis: direct contamination, genetic and sporadic forms. The following clinical forms are known: Creutzfeldt-Jakob disease (common type), variant Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker disease, variably protease-sensitive prionopathy, fatal insomnia and fatal familial insomnia, kuru, prion disease associated with diarrhea and autonomic neuropathy. Clinical characteristic of prion diseases, molecular-genetic aspects of their pathogenesis and current diagnostic approaches are discussed. Because of the lack of effective treatment, prevention of both alimentary prion infections (consumption of contaminated meat products) and transmissible iatrogenic infections (the use of biopreparations from animal tissues) is important. The safety of such biopreparations should be ensured by modern manufacturing technologies and specially developed procedures that meet international requirements and standards.
Collapse
Affiliation(s)
- N N Zavadenko
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - G Sh Khondkaryan
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - R Ts Bembeeva
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - A A Kholin
- Pirogov Russian National Research Medical University of the Russian Federation Ministry of Health, Moscow, Russia
| | - E N Saverskaya
- Institute of Medical and Social Technologies, Moscow State University of Food Production, Moscow, Russia
| |
Collapse
|
22
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
23
|
Abstract
During the course of prion infection, the normally soluble and protease-sensitive mammalian prion protein (PrPC) is refolded into an insoluble, partially protease-resistant, and infectious form called PrPSc. The conformational conversion of PrPC to PrPSc is a critical event during prion infection and is essential for the production of prion infectivity. This chapter briefly summarizes the ways in which cell biological approaches have enhanced our understanding of how PrP contributes to different aspects of prion pathogenesis.
Collapse
|
24
|
Krejciova Z, Alibhai J, Zhao C, Krencik R, Rzechorzek NM, Ullian EM, Manson J, Ironside JW, Head MW, Chandran S. Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner. J Exp Med 2017; 214:3481-3495. [PMID: 29141869 PMCID: PMC5716027 DOI: 10.1084/jem.20161547] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023] Open
Abstract
Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype-dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Zuzana Krejciova
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK,Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA
| | - James Alibhai
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Chen Zhao
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Robert Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| | - Nina M. Rzechorzek
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK,Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Erik M. Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - Jean Manson
- Neurobiology Division, The Roslin Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - James W. Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mark W. Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Siddharthan Chandran
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK,UK Dementia Research Institute, University of Edinburgh, Edinburgh, Scotland, UK,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, India,Correspondence to Siddharthan Chandran:
| |
Collapse
|
25
|
Kanata E, Arsenakis M, Sklaviadis T. Caprine PrP variants harboring Asp-146, His-154 and Gln-211 alleles display reduced convertibility upon interaction with pathogenic murine prion protein in scrapie infected cells. Prion 2017; 10:391-408. [PMID: 27537339 DOI: 10.1080/19336896.2016.1199312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Scrapie, the prion disease of sheep and goats, is a devastating malady of small ruminants. Due to its infectious nature, epidemic outbreaks may occur in flocks/herds consisting of highly susceptible animals. Field studies identified scrapie-protective caprine PrP variants, harboring specific single amino acid changes (Met-142, Arg-143, Asp-146, Ser-146, His-154, Gln-211 and Lys-222). Their effects are under further evaluation, and aim to determine the most protective allele. We assessed some of these variants (Asp-146, His-154, Gln-211 and Lys-222), after their exogenous expression as murine-caprine chimeras in a scrapie- infected murine cell line. We report that exogenously expressed PrPs undergo conformational conversion upon interaction with the endogenous pathological murine prion protein (PrPSC), which results in the detection of goat-specific and partially PK-resistant moieties. These moieties display a PK-resistance pattern distinct from the one detected in natural goat scrapie cases. Within this cellular model, distinct conformational conversion potentials were assigned to the tested variants. Molecules carrying the Asp-146, His-154 and Gln-211 alleles showed significantly lower conversion levels compared to wild type, confirming their protective effects against scrapie. Although we utilized a heterologous conversion system, this is to our knowledge, the first study of caprine PrP variants in a cellular context of scrapie, that confirms the protective effects of some of the studied alleles.
Collapse
Affiliation(s)
- Eirini Kanata
- a Department of Genetics , Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki , Thessaloniki , Greece.,b School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Minas Arsenakis
- a Department of Genetics , Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Theodoros Sklaviadis
- b School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
26
|
Vella LJ, Coleman B, Hill AF. Generation of Infectious Prions and Detection with the Prion-Infected Cell Assay. Methods Mol Biol 2017; 1658:105-118. [PMID: 28861786 DOI: 10.1007/978-1-4939-7244-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cell lines propagating prions are an efficient and useful means for studying the cellular and molecular mechanisms implicated in prion disease. Utilization of cell-based models has led to the finding that PrPC and PrPSc are released from cells in association with extracellular vesicles known as exosomes. Exosomes have been shown to act as vehicles for infectivity, transferring infectivity between cell lines and providing a mechanism for prion spread between tissues. Here, we describe the methods for generating a prion-propagating cell line with prion-infected brain homogenate, cell lysate, conditioned media, and exosomes and also detection of protease-resistant PrP with the prion-infected cell assay.
Collapse
Affiliation(s)
- Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Bradley Coleman
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
27
|
Dinkel KD, Schneider DA, Muñoz-Gutiérrez JF, McElliott VR, Stanton JB. Correlation of cellular factors and differential scrapie prion permissiveness in ovine microglia. Virus Res 2017; 240:69-80. [PMID: 28754560 DOI: 10.1016/j.virusres.2017.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders by which the native cellular prion protein (PrPC) is misfolded into an accumulating, disease-associated isoform (PrPD). To improve the understanding of prion pathogenesis and develop effective treatments, it is essential to elucidate factors contributing to cellular permissiveness. We previously isolated five clones from an immortalized subline of ovine microglia, two of which had demonstrated differential permissiveness to a natural isolate of sheep scrapie and distinct transcriptomic profiles. To more robustly identify factors contributing to this activity, relative permissiveness, cell proliferation, selected gene transcript level, and matrix metalloproteinase 2 (MMP2) activity were compared amongst all five clones. Differences in cell proliferation were not detected between clones; however, significant correlations were identified between relative permissiveness and genes associated with cell growth (i.e., RARRES1 and PTN), protein degradation (i.e., CTSB and SQSTM1), and heparin binding (i.e., SEPP1). MMP2 activity varied amongst clones, but did not correlate with permissiveness. These associations support the contribution of cell division and protein degradation on the permissiveness of cultured ovine microglia to PrPD.
Collapse
Affiliation(s)
- Kelcey D Dinkel
- Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA, 99164-7040, United States.
| | - David A Schneider
- Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA, 99164-7040, United States; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Washington State University, PO Box 646630, Pullman, WA, 99164-6630, United States.
| | - Juan F Muñoz-Gutiérrez
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY, 82070, United States.
| | - Valerie R McElliott
- Department of Pathology, University of Georgia, 501 DW Brooks Dr., Athens, GA, 30602-7388, United States.
| | - James B Stanton
- Department of Pathology, University of Georgia, 501 DW Brooks Dr., Athens, GA, 30602-7388, United States.
| |
Collapse
|
28
|
Iwamaru Y, Mathiason CK, Telling GC, Hoover EA. Chronic wasting disease prion infection of differentiated neurospheres. Prion 2017; 11:277-283. [PMID: 28762865 DOI: 10.1080/19336896.2017.1336273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
A possible strategy to develop more diverse cell culture systems permissive to infection with naturally occurring prions is to exploit culture of neurospheres from transgenic mice expressing the normal prion protein (PrP) of the native host species. Accordingly, we developed differentiated neurosphere cultures from the cervid PrP-expressing mice to investigate whether this in vitro system would support replication of non-adapted cervid-origin chronic wasting disease (CWD) prions. Here we report the successful amplification of disease-associated PrP in differentiated neurosphere cultures within 3 weeks after exposure to CWD prions from both white-tailed deer or elk. This neurosphere culture system provides a new in vitro tool that can be used to assess non-adapted CWD prion propagation and transmission.
Collapse
Affiliation(s)
- Yoshifumi Iwamaru
- a Prion Research Center, Department of Microbiology, Immunology and Pathology , College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA.,b Prion Disease Research Unit , National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Candace K Mathiason
- a Prion Research Center, Department of Microbiology, Immunology and Pathology , College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Glenn C Telling
- a Prion Research Center, Department of Microbiology, Immunology and Pathology , College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Edward A Hoover
- a Prion Research Center, Department of Microbiology, Immunology and Pathology , College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
29
|
Fehlinger A, Wolf H, Hossinger A, Duernberger Y, Pleschka C, Riemschoss K, Liu S, Bester R, Paulsen L, Priola SA, Groschup MH, Schätzl HM, Vorberg IM. Prion strains depend on different endocytic routes for productive infection. Sci Rep 2017; 7:6923. [PMID: 28761068 PMCID: PMC5537368 DOI: 10.1038/s41598-017-07260-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Prions are unconventional agents composed of misfolded prion protein that cause fatal neurodegenerative diseases in mammals. Prion strains induce specific neuropathological changes in selected brain areas. The mechanism of strain-specific cell tropism is unknown. We hypothesised that prion strains rely on different endocytic routes to invade and replicate within their target cells. Using prion permissive cells, we determined how impairment of endocytosis affects productive infection by prion strains 22L and RML. We demonstrate that early and late stages of prion infection are differentially sensitive to perturbation of clathrin- and caveolin-mediated endocytosis. Manipulation of canonical endocytic pathways only slightly influenced prion uptake. However, blocking the same routes had drastic strain-specific consequences on the establishment of infection. Our data argue that prion strains use different endocytic pathways for infection and suggest that cell type-dependent differences in prion uptake could contribute to host cell tropism.
Collapse
Affiliation(s)
- Andrea Fehlinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Hanna Wolf
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - André Hossinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Yvonne Duernberger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Catharina Pleschka
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Katrin Riemschoss
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Shu Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Romina Bester
- Institut für Virologie, Technische Universität München, Trogerstr. 30, 81675, München, Germany
| | - Lydia Paulsen
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | - Hermann M Schätzl
- Dept. of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ina M Vorberg
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany. .,Department of Neurology, Rheinische Friedrich-Wilhelms-Universität, 53127, Bonn, Germany.
| |
Collapse
|
30
|
Hanspal MA, Dobson CM, Yerbury JJ, Kumita JR. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2762-2771. [PMID: 28711596 PMCID: PMC6565888 DOI: 10.1016/j.bbadis.2017.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving the formation of cytoplasmic aggregates by proteins including TDP-43 and SOD1, in affected cells in the central nervous system (CNS). Pathology spreads from an initial site of onset to contiguous anatomical regions. There is evidence that for disease-associated proteins, including TDP-43 and SOD1, non-native protein conformers can promote misfolding of the natively folded counterparts, and cell-to-cell transfer of pathological aggregates may underlie the spread of the disease throughout the CNS. A variety of studies have demonstrated that SOD1 is released by neuron-like cells into the surrounding culture medium, either in their free state or encapsulated in extracellular vesicles such as exosomes. Extracellular SOD1 can then be internalised by naïve cells incubated in this conditioned medium, leading to the misfolding and aggregation of endogenous intracellular SOD1; an effect that propagates over serial passages. A similar phenomenon has also been observed with other proteins associated with protein misfolding and progressive neurological disorders, including tau, α-synuclein and both mammalian and yeast prions. Conditioned media experiments using TDP-43 have been less conclusive, with evidence for this protein undergoing intercellular transfer being less straightforward. In this review, we describe the properties of TDP-43 and SOD1 and look at the evidence for their respective abilities to participate in cell-to-cell transfer via conditioned medium, and discuss how variations in the nature of cell-to-cell transfer suggests that a number of different mechanisms are involved in the spreading of pathology in ALS. Protein aggregates transfer between cells in motor neuron disease. Cell contact-independent mechanisms may be a route of transfer. SOD1 undergoes cell-to-cell transfer via conditioned medium in cell culture. It is still unclear whether TDP-43 consistently undergoes cell-to-cell transfer Differences between the two proteins may explain this observation.
Collapse
Affiliation(s)
- Maya A Hanspal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522, Australia.
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
31
|
Miyazawa K, Masujin K, Okada H, Ushiki-Kaku Y, Matsuura Y, Yokoyama T. Selective propagation of mouse-passaged scrapie prions with long incubation period from a mixed prion population using GT1-7 cells. PLoS One 2017. [PMID: 28636656 PMCID: PMC5479544 DOI: 10.1371/journal.pone.0179317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Kentaro Masujin
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | | - Yuichi Matsuura
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
32
|
Shape matters: the complex relationship between aggregation and toxicity in protein-misfolding diseases. Essays Biochem 2017; 60:181-190. [PMID: 27744334 DOI: 10.1042/ebc20160008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
A particular subgroup of protein-misfolding diseases, comprising Alzheimer's and Parkinson's disease, involves amyloidogenic proteins that can form alternative pathogenic conformations with a high tendency to self-assemble into oligomeric and fibrillar species. Although misfolded proteins have been clearly linked to disease, the exact nature of the toxic species remains highly controversial. Increasing evidence suggests that there is little correlation between the occurrence of macroscopic protein deposits and toxic phenotypes in affected cells and tissues. In this article, we recap amyloid aggregation pathways, describe prion-like propagation, elaborate on detrimental interactions of protein aggregates with the cellular protein quality control system and discuss why some aggregates are toxic, whereas others seem to be beneficial. On the basis of recent studies on prion strains, we reason that the specific aggregate conformation and the resulting individual interaction with the cellular environment might be the major determinant of toxicity.
Collapse
|
33
|
Liu S, Hossinger A, Göbbels S, Vorberg IM. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates. Prion 2017; 11:98-112. [PMID: 28402718 PMCID: PMC5399892 DOI: 10.1080/19336896.2017.1306162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.
Collapse
Affiliation(s)
- Shu Liu
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - André Hossinger
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - Sarah Göbbels
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany
| | - Ina M Vorberg
- a German Center for Neurodegenerative Diseases (DZNE e.V.) , Bonn , Germany.,b Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| |
Collapse
|
34
|
Kang SG, Kim C, Aiken J, Yoo HS, McKenzie D. Dual MicroRNA to Cellular Prion Protein Inhibits Propagation of Pathogenic Prion Protein in Cultured Cells. Mol Neurobiol 2017; 55:2384-2396. [PMID: 28357807 DOI: 10.1007/s12035-017-0495-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 01/08/2023]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders affecting humans and various mammals. In spite of intensive efforts, there is no effective cure or treatment for prion diseases. Cellular forms of prion protein (PrPC) is essential for propagation of abnormal isoforms of prion protein (PrPSc) and pathogenesis. The effect of an artificial dual microRNA (DmiR) on PrPC suppression and resultant inhibition of prion replication was determined using prion-infectible cell cultures: differentiated C2C12 culture and primary mixed neuronal and glial cells culture (MNGC). Processing of DmiR by prion-susceptible myotubes, but not by reserve cells, in differentiated C2C12 culture slowed prion replication, implying an importance of cell type-specific PrPC targeting. In MNGC, reduction of PrPC with DmiR was effective for suppressing prion replication. MNGC lentivirally transduced with non-targeting control miRNAs (scrambled) reduced prion replication at a level similar to that with a synthetic analogue of viral RNA, poly I:C. The results suggest that a synergistic combination of the immunostimulatory RNA duplexes (miRNA) and PrPC silencing with DmiR might augment a therapeutic potential of RNA interference.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, BK21 PLUS, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
35
|
Mukundan V, Maksoudian C, Vogel MC, Chehade I, Katsiotis MS, Alhassan SM, Magzoub M. Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation. Arch Biochem Biophys 2016; 613:31-42. [PMID: 27818203 DOI: 10.1016/j.abb.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Prion diseases are associated with conversion of cellular prion protein (PrPC) into an abnormally folded and infectious scrapie isoform (PrPSc). We previously showed that peptides derived from the unprocessed N-termini of mouse and bovine prion proteins, mPrP1-28 and bPrP1-30, function as cell-penetrating peptides (CPPs), and destabilize model membrane systems, which could explain the infectivity and toxicity of prion diseases. However, subsequent studies revealed that treatment with mPrP1-28 or bPrP1-30 significantly reduce PrPSc levels in prion-infected cells. To explain these seemingly contradictory results, we correlated the aggregation, membrane perturbation and cytotoxicity of the peptides with their cellular uptake and intracellular localization. Although the peptides have a similar primary sequence, mPrP1-28 is amyloidogenic, whereas bPrP1-30 forms smaller oligomeric or non-fibrillar aggregates. Surprisingly, bPrP1-30 induces much higher cytotoxicity than mPrP1-28, indicating that amyloid formation and toxicity are independent. The toxicity is correlated with prolonged residence at the plasma membrane and membrane perturbation. Both ordered aggregation and toxicity of the peptides are inhibited by low pH. Under non-toxic conditions, the peptides are internalized by lipid-raft dependent macropinocytosis and localize to acidic lysosomal compartments. Our results shed light on the antiprion mechanism of the prion protein-derived CPPs and identify a potential site for PrPSc formation.
Collapse
Affiliation(s)
- Vineeth Mukundan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christy Maksoudian
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marios S Katsiotis
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Saeed M Alhassan
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
36
|
McKinnon C, Goold R, Andre R, Devoy A, Ortega Z, Moonga J, Linehan JM, Brandner S, Lucas JJ, Collinge J, Tabrizi SJ. Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system. Acta Neuropathol 2016; 131:411-25. [PMID: 26646779 PMCID: PMC4752964 DOI: 10.1007/s00401-015-1508-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 01/25/2023]
Abstract
Prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of misfolded prion protein (PrP(Sc)) in the brain. The critical relationship between aberrant protein misfolding and neurotoxicity currently remains unclear. The accumulation of aggregation-prone proteins has been linked to impairment of the ubiquitin-proteasome system (UPS) in a variety of neurodegenerative disorders, including Alzheimer's, Parkinson's and Huntington's diseases. As the principal route for protein degradation in mammalian cells, this could have profound detrimental effects on neuronal function and survival. Here, we determine the temporal onset of UPS dysfunction in prion-infected Ub(G76V)-GFP reporter mice, which express a ubiquitin fusion proteasome substrate to measure in vivo UPS activity. We show that the onset of UPS dysfunction correlates closely with PrP(Sc) deposition, preceding earliest behavioural deficits and neuronal loss. UPS impairment was accompanied by accumulation of polyubiquitinated substrates and found to affect both neuronal and astrocytic cell populations. In prion-infected CAD5 cells, we demonstrate that activation of the UPS by the small molecule inhibitor IU1 is sufficient to induce clearance of polyubiquitinated substrates and reduce misfolded PrP(Sc) load. Taken together, these results identify the UPS as a possible early mediator of prion pathogenesis and promising target for development of future therapeutics.
Collapse
Affiliation(s)
- Chris McKinnon
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rob Goold
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ralph Andre
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Anny Devoy
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Zaira Ortega
- Centro de Biología Molecular "Severo Ochoa", (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie Moonga
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit, University College London, Institute of Neurology, Queen Square, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa", (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - John Collinge
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Prion Unit, University College London, Institute of Neurology, Queen Square, London, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
37
|
Shim SY, Karri S, Law S, Schatzl HM, Gilch S. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells. Sci Rep 2016; 6:21658. [PMID: 26865414 PMCID: PMC4749993 DOI: 10.1038/srep21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022] Open
Abstract
Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrPSc) of the cellular prion protein (PrPc). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrPc into PrPSc. Within neurons, PrPSc accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dysfunction and death it is critical to know the impact of PrPSc accumulation on cellular pathways. We have investigated the effects of prion infection on endo-lysosomal transport. Our study demonstrates that prion infection interferes with rab7 membrane association. Consequently, lysosomal maturation and degradation are impaired. Our findings indicate a mechanism induced by prion infection that supports stable prion replication. We suggest modulation of endo-lysosomal vesicle trafficking and enhancement of lysosomal maturation as novel targets for the treatment of prion diseases.
Collapse
Affiliation(s)
- Su Yeon Shim
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Srinivasarao Karri
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sampson Law
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hermann M Schatzl
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
38
|
Miyazawa K, Okada H, Iwamaru Y, Masujin K, Yokoyama T. Susceptibility of GT1-7 cells to mouse-passaged field scrapie isolates with a long incubation. Prion 2015; 8:306-13. [PMID: 25482605 PMCID: PMC4601507 DOI: 10.4161/pri.32232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A typical feature of scrapie in sheep and goats is the accumulation of disease-associated prion protein. Scrapie consists of many strains with different biological properties. Nine natural sheep scrapie cases were transmitted to wild-type mice and mouse-passaged isolates were classified into 2 types based on incubation time: short and long. These 2 types displayed a distinct difference in their pathology. We attempted to transmit these mouse-passaged isolates to 2 murine cell lines (GT1–7 and L929) to compare their properties. All of the isolates were transmitted to L929 cells. However, only mouse-passaged field isolates with a long incubation time were transmitted to GT1–7 cells. This specific susceptibility of GT1–7 cells was also confirmed with a primary-passaged isolate that was not completely adapted to the new host species. Characterization of the mechanisms of the specific susceptibility of GT1–7 cells to isolates with a long incubation time may lead to a greater understanding of the differences among prion strains.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- a Influenza and Prion Disease Research Center ; National Institute of Animal Health; NARO ; Tsukuba , Ibaraki , Japan
| | | | | | | | | |
Collapse
|
39
|
Abstract
UNLABELLED Mammalian prions are unconventional infectious agents composed primarily of the misfolded aggregated host prion protein PrP, termed PrP(Sc). Prions propagate by the recruitment and conformational conversion of cellular prion protein into abnormal prion aggregates on the cell surface or along the endocytic pathway. Cellular glycosaminoglycans have been implicated as the first attachment sites for prions and cofactors for cellular prion replication. Glycosaminoglycan mimetics and obstruction of glycosaminoglycan sulfation affect prion replication, but the inhibitory effects on different strains and different stages of the cell infection have not been thoroughly addressed. We examined the effects of a glycosaminoglycan mimetic and undersulfation on cellular prion protein metabolism, prion uptake, and the establishment of productive infections in L929 cells by two mouse-adapted prion strains. Surprisingly, both treatments reduced endogenous sulfated glycosaminoglycans but had divergent effects on cellular PrP levels. Chemical or genetic manipulation of glycosaminoglycans did not prevent PrP(Sc) uptake, arguing against their roles as essential prion attachment sites. However, both treatments effectively antagonized de novo prion infection independently of the prion strain and reduced PrP(Sc) formation in chronically infected cells. Our results demonstrate that sulfated glycosaminoglycans are dispensable for prion internalization but play a pivotal role in persistently maintained PrP(Sc) formation independent of the prion strain. IMPORTANCE Recently, glycosaminoglycans (GAGs) became the focus of neurodegenerative disease research as general attachment sites for cell invasion by pathogenic protein aggregates. GAGs influence amyloid formation in vitro. GAGs are also found in intra- and extracellular amyloid deposits. In light of the essential role GAGs play in proteinopathies, understanding the effects of GAGs on protein aggregation and aggregate dissemination is crucial for therapeutic intervention. Here, we show that GAGs are dispensable for prion uptake but play essential roles in downstream infection processes. GAG mimetics also affect cellular GAG levels and localization and thus might affect prion propagation by depleting intracellular cofactor pools.
Collapse
|
40
|
The standard scrapie cell assay: development, utility and prospects. Viruses 2015; 7:180-98. [PMID: 25602372 PMCID: PMC4306833 DOI: 10.3390/v7010180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 11/23/2022] Open
Abstract
Prion diseases are a family of fatal neurodegenerative diseases that involve the misfolding of a host protein, PrPC. Measuring prion infectivity is necessary for determining efficacy of a treatment or infectivity of a prion purification procedure; animal bioassays are, however, very expensive and time consuming. The Standard Scrapie Cell Assay (SSCA) provides an alternative approach. The SSCA facilitates quantitative in vitro analysis of prion strains, titres and biological properties. Given its robust nature and potential for high throughput, the SSCA has substantial utility for in vitro characterization of prions and can be deployed in a number of settings. Here we provide an overview on establishing the SSCA, its use in studies of disease dissemination and pathogenesis, potential pitfalls and a number of remaining challenges.
Collapse
|
41
|
Simoneau S, Thomzig A, Ruchoux MM, Vignier N, Daus ML, Poleggi A, Lebon P, Freire S, Durand V, Graziano S, Galeno R, Cardone F, Comoy E, Pocchiari M, Beekes M, Deslys JP, Fournier JG. Synthetic scrapie infectivity: interaction between recombinant PrP and scrapie brain-derived RNA. Virulence 2015; 6:132-44. [PMID: 25585171 DOI: 10.4161/21505594.2014.989795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The key molecular event in human cerebral proteinopathies, which include Alzheimer's, Parkinson's and Huntington's diseases, is the structural conversion of a specific host protein into a β-sheet-rich conformer. With regards to this common mechanism, it appears difficult to explain the outstanding infectious properties attributed to PrP(Sc), the hallmark of another intriguing family of cerebral proteinopathies known as transmissible spongiform encephalopathies (TSE) or prion diseases. The infectious PrP(Sc) or "prion" is thought to be composed solely of a misfolded form of the otherwise harmless cellular prion protein (PrP(c)). To gain insight into this unique situation, we used the 263K scrapie hamster model to search for a putative PrP(Sc)-associated factor that contributes to the infectivity of PrP(Sc) amyloid. In a rigorously controlled set of experiments that included several bioassays, we showed that originally innocuous recombinant prion protein (recPrP) equivalent to PrP(c) is capable of initiating prion disease in hamsters when it is converted to a prion-like conformation (β-sheet-rich) in the presence of RNA purified from scrapie-associated fibril (SAF) preparations. Analysis of the recPrP-RNA infectious mixture reveals the presence of 2 populations of small RNAs of approximately 27 and 55 nucleotides. These unprecedented findings are discussed in light of the distinct relationship that may exist between this RNA material and the 2 biological properties, infectivity and strain features, attributed to prion amyloid.
Collapse
Affiliation(s)
- Steve Simoneau
- a Division of Prions and Related Diseases (SEPIA); Institute of Emerging Diseases and Innovative Therapies (iMETI); CEA ; Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Prion protein-specific antibodies-development, modes of action and therapeutics application. Viruses 2014; 6:3719-37. [PMID: 25275428 PMCID: PMC4213558 DOI: 10.3390/v6103719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are lethal neurodegenerative disorders involving the misfolding of the host encoded cellular prion protein, PrPC. This physiological form of the protein is expressed throughout the body, and it reaches the highest levels in the central nervous system where the pathology occurs. The conversion into the pathogenic isoform denoted as prion or PrPSc is the key event in prion disorders. Prominent candidates for the treatment of prion diseases are antibodies and their derivatives. Anti-PrPC antibodies are able to clear PrPSc from cell culture of infected cells. Furthermore, application of anti-PrPC antibodies suppresses prion replication in experimental animal models. Major drawbacks of immunotherapy are immune tolerance, the risks of neurotoxic side effects, limited ability of compounds to cross the blood-brain barrier and their unfavorable pharmacokinetic. The focus of this review is to recapitulate the current understanding of the molecular mechanisms for antibody mediated anti-prion activity. Although relevant for designing immunotherapeutic tools, the characterization of key antibody parameters shaping the molecular mechanism of the PrPC to PrPSc conversion remains elusive. Moreover, this review illustrates the various attempts towards the development of anti-PrP antibody compounds and discusses therapeutic candidates that modulate PrP expression.
Collapse
|
43
|
Krejciova Z, De Sousa P, Manson J, Ironside JW, Head MW. Human tonsil-derived follicular dendritic-like cells are refractory to human prion infection in vitro and traffic disease-associated prion protein to lysosomes. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:64-70. [PMID: 24183781 PMCID: PMC3873479 DOI: 10.1016/j.ajpath.2013.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 01/09/2023]
Abstract
The molecular mechanisms involved in human cellular susceptibility to prion infection remain poorly defined. This is due, in part, to the absence of any well characterized and relevant cultured human cells susceptible to infection with human prions, such as those involved in Creutzfeldt-Jakob disease. In variant Creutzfeldt-Jakob disease, prion replication is thought to occur first in the lymphoreticular system and then spread into the brain. We have, therefore, examined the susceptibility of a human tonsil-derived follicular dendritic cell-like cell line (HK) to prion infection. HK cells were found to display a readily detectable, time-dependent increase in cell-associated abnormal prion protein (PrP(TSE)) when exposed to medium spiked with Creutzfeldt-Jakob disease brain homogenate, resulting in a coarse granular perinuclear PrP(TSE) staining pattern. Despite their high level of cellular prion protein expression, HK cells failed to support infection, as judged by longer term maintenance of PrP(TSE) accumulation. Colocalization studies revealed that exposure of HK cells to brain homogenate resulted in increased numbers of detectable lysosomes and that these structures immunostained intensely for PrP(TSE) after exposure to Creutzfeldt-Jakob disease brain homogenate. Our data suggest that human follicular dendritic-like cells and perhaps other human cell types are able to avoid prion infection by efficient lysosomal degradation of PrP(TSE).
Collapse
Affiliation(s)
- Zuzana Krejciova
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul De Sousa
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean Manson
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark W Head
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
44
|
Prions Ex Vivo: What Cell Culture Models Tell Us about Infectious Proteins. Int J Cell Biol 2013; 2013:704546. [PMID: 24282413 PMCID: PMC3825132 DOI: 10.1155/2013/704546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
Prions are unconventional infectious agents that are composed of misfolded aggregated prion protein. Prions replicate their conformation by template-assisted conversion of the endogenous prion protein PrP. Templated conversion of soluble proteins into protein aggregates is also a hallmark of other neurodegenerative diseases. Alzheimer's disease or Parkinson's disease are not considered infectious diseases, although aggregate pathology appears to progress in a stereotypical fashion reminiscent of the spreading behavior ofmammalian prions. While basic principles of prion formation have been studied extensively, it is still unclear what exactly drives PrP molecules into an infectious, self-templating conformation. In this review, we discuss crucial steps in the life cycle of prions that have been revealed in ex vivo models. Importantly, the persistent propagation of prions in mitotically active cells argues that cellular processes are in place that not only allow recruitment of cellular PrP into growing prion aggregates but also enable the multiplication of infectious seeds that are transmitted to daughter cells. Comparison of prions with other protein aggregates demonstrates that not all the characteristics of prions are equally shared by prion-like aggregates. Future experiments may reveal to which extent aggregation-prone proteins associated with other neurodegenerative diseases can copy the replication strategies of prions.
Collapse
|
45
|
Abstract
Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions.
Collapse
Affiliation(s)
- Julia Hofmann
- German Center for Neurodegenerative Diseases (DZNE e.V.); Bonn, Germany
| | - Ina Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.); Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität; Bonn, Germany
| |
Collapse
|
46
|
A specific population of abnormal prion protein aggregates is preferentially taken up by cells and disaggregated in a strain-dependent manner. J Virol 2013; 87:11552-61. [PMID: 23966386 DOI: 10.1128/jvi.01484-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are characterized by the conversion of the soluble protease-sensitive host-encoded prion protein (PrP(C)) into its aggregated, protease-resistant, and infectious isoform (PrP(Sc)). One of the earliest events occurring in cells following exposure to an exogenous source of prions is the cellular uptake of PrP(Sc). It is unclear how the biochemical properties of PrP(Sc) influence its uptake, although aggregate size is thought to be important. Here we show that for two different strains of mouse prions, one that infects cells (22L) and one that does not (87V), a fraction of PrP(Sc) associated with distinct sedimentation properties is preferentially taken up by the cells. However, while the fraction of PrP(Sc) and the kinetics of uptake were similar for both strains, PrP(Sc) derived from the 87V strain was disaggregated more rapidly than that derived from 22L. The increased rate of PrP(Sc) disaggregation did not correlate with either the conformational or aggregate stability of 87V PrP(Sc), both of which were greater than those of 22L PrP(Sc). Our data suggest that the kinetics of disaggregation of PrP(Sc) following cellular uptake is independent of PrP(Sc) stability but may be dependent upon some component of the PrP(Sc) aggregate other than PrP. Rapid disaggregation of 87V PrP(Sc) by the cell may contribute, at least in part, to the inability of 87V to infect cells in vitro.
Collapse
|
47
|
Cell-to-cell propagation of infectious cytosolic protein aggregates. Proc Natl Acad Sci U S A 2013; 110:5951-6. [PMID: 23509289 DOI: 10.1073/pnas.1217321110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prions are self-templating protein conformers that replicate by recruitment and conversion of homotypic proteins into growing protein aggregates. Originally identified as causative agents of transmissible spongiform encephalopathies, increasing evidence now suggests that prion-like phenomena are more common in nature than previously anticipated. In contrast to fungal prions that replicate in the cytoplasm, propagation of mammalian prions derived from the precursor protein PrP is confined to the cell membrane or endocytic vesicles. Here we demonstrate that cytosolic protein aggregates can also behave as infectious entities in mammalian cells. When expressed in the mammalian cytosol, protein aggregates derived from the prion domain NM of yeast translation termination factor Sup35 persistently propagate and invade neighboring cells, thereby inducing a self-perpetuating aggregation state of NM. Cell contact is required for efficient infection. Aggregates can also be induced in primary astrocytes, neurons, and organotypic cultures, demonstrating that this phenomenon is not specific to immortalized cells. Our data have important implications for understanding prion-like phenomena of protein aggregates associated with human diseases and for the growing number of amyloidogenic proteins discovered in mammals.
Collapse
|