1
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Fiacre L, Nougairède A, Migné C, Bayet M, Cochin M, Dumarest M, Helle T, Exbrayat A, Pagès N, Vitour D, Richardson JP, Failloux AB, Vazeille M, Albina E, Lecollinet S, Gonzalez G. Different viral genes modulate virulence in model mammal hosts and Culex pipiens vector competence in Mediterranean basin lineage 1 West Nile virus strains. Front Microbiol 2024; 14:1324069. [PMID: 38298539 PMCID: PMC10828019 DOI: 10.3389/fmicb.2023.1324069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3'UTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3'UTR regions are important in Cx. pipiens infection and possibly in vector competence.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
- UMR ASTRE, CIRAD, Petit-Bourg, Guadeloupe
| | - Antoine Nougairède
- Unité Des Virus Emergents (UVE), Aix-Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Camille Migné
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Maxime Cochin
- Unité Des Virus Emergents (UVE), Aix-Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Marine Dumarest
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Teheipuaura Helle
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Antoni Exbrayat
- ASTRE, CIRAD, INRAe, Université de Montpellier, Montpellier, France
| | | | - Damien Vitour
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jennifer P. Richardson
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insects Vectors, Paris, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insects Vectors, Paris, France
| | - Emmanuel Albina
- ASTRE, CIRAD, INRAe, Université de Montpellier, Montpellier, France
| | | | - Gaëlle Gonzalez
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
3
|
Schwarz ER, Long MT. Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance. Viruses 2023; 15:1230. [PMID: 37376530 DOI: 10.3390/v15061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody response, and clinicopathology are similar. The goal of this review is to provide a comparison of WNV infection in humans and horses and to identify similarities that can be exploited to enhance surveillance methods for the early detection of WNV neuroinvasive disease.
Collapse
Affiliation(s)
- Erika R Schwarz
- Montana Veterinary Diagnostic Laboratory, MT Department of Livestock, Bozeman, MT 59718, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Agliani G, Giglia G, Marshall EM, Gröne A, Rockx BH, van den Brand JM. Pathological features of West Nile and Usutu virus natural infections in wild and domestic animals and in humans: A comparative review. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
5
|
Duty L, Paul AM. Isolation of Murine Bone Marrow-Derived Neutrophils for Infection Modeling. Methods Mol Biol 2023; 2585:33-40. [PMID: 36331763 DOI: 10.1007/978-1-0716-2760-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV) is a single-stranded-RNA flavivirus that can cause neurological illnesses. The ability of WNV to cause neurological illnesses is dependent on the virus' ability to gain access into the brain. However, the mechanisms by which WNV enters the brain are elusive, with evidence that neutrophils act as vehicles for viral delivery. To determine the role of neutrophils in WNV central nervous system delivery, modified protocols for the isolation and migration of neutrophils from mouse bone marrow for in vitro WNV infection modeling is described.
Collapse
Affiliation(s)
- Laurel Duty
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Amber M Paul
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA.
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, College of Arts & Sciences (COAS), Daytona Beach, FL, USA.
| |
Collapse
|
6
|
Jiang S, Xing D, Li C, Dong Y, Zhao T, Guo X. Replication and transmission of West Nile virus in simulated overwintering adults of Culex pipiens pallens (Diptera: Culicidae) in China. Acta Trop 2023; 237:106720. [DOI: 10.1016/j.actatropica.2022.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
|
7
|
Schvartz G, Tirosh-Levy S, Bider S, Lublin A, Farnoushi Y, Erster O, Steinman A. West Nile Virus in Common Wild Avian Species in Israel. Pathogens 2022; 11:107. [PMID: 35056055 PMCID: PMC8780237 DOI: 10.3390/pathogens11010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
Abstract
In order to evaluate the contribution of different wild bird species to West Nile virus (WNV) circulation in Israel, during the months preceding the 2018 outbreak that occurred in Israel, we randomly sampled 136 frozen carcasses of a variety of avian species. Visceral and central nervous system (CNS) tissue pools were tested using WNV NS2A RT qPCR assay; of those, 15 (11.03%, 95% CI: 6.31-17.54%) tissue pools were positive. A total of 13 out of 15 WNV RT qPCR positive samples were successfully sequenced. Phylogenetic analysis indicated that all WNV isolates were identified as lineage 1 and all categorized as cluster 2 eastern European. Our results indicated that WNV isolates that circulated within the surveyed wild birds in spring 2018 were closely related to several of the isolates of the previously reported 2018 outbreak in birds in Israel and that the majority of infected birds were of local species.
Collapse
Affiliation(s)
- Gili Schvartz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
- Department of Virology, Kimron Veterinary Institute, Beit Dagan 5025001, Israel;
| | - Sharon Tirosh-Levy
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
| | - Shahar Bider
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
| | - Avishai Lublin
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 5025001, Israel; (A.L.); (Y.F.)
| | - Yigal Farnoushi
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 5025001, Israel; (A.L.); (Y.F.)
| | - Oran Erster
- Department of Virology, Kimron Veterinary Institute, Beit Dagan 5025001, Israel;
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
| |
Collapse
|
8
|
Mencattelli G, Iapaolo F, Monaco F, Fusco G, de Martinis C, Portanti O, Di Gennaro A, Curini V, Polci A, Berjaoui S, Di Felice E, Rosà R, Rizzoli A, Savini G. West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain? Viruses 2021; 14:v14010064. [PMID: 35062268 PMCID: PMC8780300 DOI: 10.3390/v14010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008-2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
- Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Correspondence:
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
| | | | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| |
Collapse
|
9
|
Mertinková P, Mochnáčová E, Bhide K, Kulkarni A, Tkáčová Z, Hruškovicová J, Bhide M. Development of peptides targeting receptor binding site of the envelope glycoprotein to contain the West Nile virus infection. Sci Rep 2021; 11:20131. [PMID: 34635758 PMCID: PMC8505397 DOI: 10.1038/s41598-021-99696-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
West Nile virus (WNV), re-emerging neurotropic flavivirus, can cross the blood-brain barrier (BBB) and cause fatal encephalitis and meningitis. Infection of the human brain microvascular endothelial cells (hBMECs), building blocks of the BBB, represents the pivotal step in neuroinvasion. Domain III (DIII) of the envelope (E) glycoprotein is a key receptor-binding domain, thus, it is an attractive target for anti-flavivirus strategies. Here, two combinatorial phage display peptide libraries, Ph.D.-C7C and Ph.D.-12, were panned against receptor-binding site (RBS) on DIII to isolate peptides that could block DIII. From series of pannings, nine peptides (seven 7-mer cyclic and two 12-mer linear) were selected and overexpressed in E. coli SHuffle T5. Presence of disulfide bond in 7-mer peptides was confirmed with thiol-reactive maleimide labeling. Except for linear peptide 19 (HYSWSWIAYSPG), all peptides proved to be DIII binders. Among all peptides, 4 cyclic peptides (CTKTDVHFC, CIHSSTRAC, CTYENHRTC, and CLAQSHPLC) showed significant blocking of the interaction between DIII and hBMECs, and ability to neutralize infection in cultured cells. None of these peptides showed toxic or hemolytic activity. Peptides identified in this study may serve as potential candidates for the development of novel antiviral therapeutics against WNV.
Collapse
Affiliation(s)
- Patrícia Mertinková
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Evelína Mochnáčová
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Katarína Bhide
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Amod Kulkarni
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia ,grid.419303.c0000 0001 2180 9405Institute of Neuroimmunology of Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia
| | - Zuzana Tkáčová
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Jana Hruškovicová
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | - Mangesh Bhide
- grid.412971.80000 0001 2234 6772Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia ,grid.419303.c0000 0001 2180 9405Institute of Neuroimmunology of Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia
| |
Collapse
|
10
|
Molchanova EV, Negodenko AO, Luchinin DN, Prilepskaya DR, Khabarova IA, Boroday NV, Baturin AA, Andrianov BV. Influence of Biological Model on the Formation of the Pathogenic Properties of the West Nile Virus Isolate. Bull Exp Biol Med 2021; 171:513-516. [PMID: 34542764 DOI: 10.1007/s10517-021-05262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/20/2022]
Abstract
Various biological models are used to isolate West Nile virus, but their role as a selection factor that facilitates selection of isolates with certain properties is usually not evaluated. We compared pathogenic properties of three strains of the West Nile virus obtained from one sample of virus-containing material using different models: WNV Volgograd 900m/18 (on the model of suckling mice), WNV Volgograd 900a/18 (on C6/36 cells) and WNV Volgograd 900v/18 (on Vero cells). WNV Volgograd 900m/18 strain demonstrated virulent (LD50 5×103±0.005×104 PFU, p≤0.05) and neuroinvasive properties, induced viremia and pathomorphological changes in the liver, lymph nodes, and brain of nonlinear white mice. WNV Volgograd 900v/18 strain had similar characteristics except for neuroinvasiveness. WNV Volgograd 900a/18 variant demonstrated minimum virulence (LD50 5×104±0.005×104 PFU, p≤0.05), did not cause neurological symptoms, and was not isolated from the blood of infected animals.
Collapse
Affiliation(s)
- E V Molchanova
- Volgograd Plague Control Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Volgograd Region, Russia.
| | - A O Negodenko
- Volgograd Plague Control Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Volgograd Region, Russia
| | - D N Luchinin
- Volgograd Plague Control Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Volgograd Region, Russia
| | - D R Prilepskaya
- Volgograd Plague Control Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Volgograd Region, Russia
| | - I A Khabarova
- Volgograd Plague Control Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Volgograd Region, Russia
| | - N V Boroday
- Volgograd Plague Control Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Volgograd Region, Russia
| | - A A Baturin
- Volgograd Plague Control Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Volgograd Region, Russia
| | - B V Andrianov
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow Region, Russia
| |
Collapse
|
11
|
Robertson SN, Cameron AI, Morales PR, Burnside WM. West Nile Virus Seroprevalence in an Outdoor Nonhuman Primate Breeding Colony in South Florida. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2021; 60:168-175. [PMID: 33441221 PMCID: PMC7974820 DOI: 10.30802/aalas-jaalas-20-000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 08/11/2020] [Indexed: 11/05/2022]
Abstract
West Nile virus (WNV) was first detected in Florida in July 2001, with 404 human cases reported to the Centers for Disease Control and Prevention as of February 2020. The subtropical climate of Florida is ideal for the mosquitoes that transmit WNV. We investigated the WNV seroprevalence in 3 NHP species housed outdoors at The Mannheimer Foundation in South Florida. From January to December 2016, 520 3 to 30 y old NHP were sampled at our 2 closed sites in Homestead and LaBelle: 200 rhesus macaques (Macaca mulatta), 212 cynomolgus macaques (Macaca fascicularis), and 108 hamadryas baboons (Papio hamadryas hamadryas). The presence of WNV IgG antibodies in these animals was determined by serum neutralization assays, which found a total seroprevalence of 14%. Seroprevalence was significantly higher in the baboons (29%) than the rhesus (11%) and cynomolgus (9%) macaques. The probability of seropositivity significantly increased with age, but sex and site did not significantly affect seroprevalence. The frequency of WNV seropositivity detected in these outdoor-housed NHP suggests that screening for WNV and other vector-borne diseases may be necessary prior to experimental use, particularly for infectious disease studies in which viremia or viral antibodies could confound results, and especially for populations housed outdoors in warm, wet climates. As no seropositive subjects demonstrated clinical signs of WNV and WNV exposure did not appear to significantly impact colony health, routine testing is likely unnecessary for most NHP colonies. However, WNV infection should still be considered as a differential diagnosis for any NHP presenting with nonspecific neurologic signs. Mosquito abatement plans and vigilant sanitation practices to further decrease mosquito and avian interaction with research NHP should also be considered.
Collapse
Affiliation(s)
| | - Angus I Cameron
- School of Pure and Applied Sciences, Florida SouthWestern State College, LaBelle, Florida
| | | | | |
Collapse
|
12
|
Fiacre L, Pagès N, Albina E, Richardson J, Lecollinet S, Gonzalez G. Molecular Determinants of West Nile Virus Virulence and Pathogenesis in Vertebrate and Invertebrate Hosts. Int J Mol Sci 2020; 21:ijms21239117. [PMID: 33266206 PMCID: PMC7731113 DOI: 10.3390/ijms21239117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird–mosquito–bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Jennifer Richardson
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- Correspondence: ; Tel.: +33-1-43967376
| | - Gaëlle Gonzalez
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| |
Collapse
|
13
|
Schvartz G, Farnoushi Y, Berkowitz A, Edery N, Hahn S, Steinman A, Lublin A, Erster O. Molecular characterization of the re-emerging West Nile virus in avian species and equids in Israel, 2018, and pathological description of the disease. Parasit Vectors 2020; 13:528. [PMID: 33092614 PMCID: PMC7579921 DOI: 10.1186/s13071-020-04399-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In this report we describe the molecular and pathological characteristics of West Nile virus (WNV) infection that occurred during the summer and fall of 2018 in avian species and equines. WNV is reported in Israel since the 1950s, with occasional outbreaks leading to significant morbidity and mortality in birds, high infection in horses and humans, and sporadic fatalities in humans. METHODS Animal and avian carcasses in a suitable condition were examined by post-mortem analysis. Tissue samples were examined for WNV by RT-qPCR and the viral load was quantified. Samples with sufficient material quality were further analyzed by Endpoint PCR and sequencing, which was used for phylogenetic analysis. Tissue samples from positive animals were used for culturing the virus in Vero and C6/36 cells. RESULTS WNV RNA was detected in one yellow-legged gull (Larus michahellis), two long-eared owls (Asio otus), two domesticated geese (Anser anser), one pheasant (Phasianus colchicus), four hooded crows (Corvus cornix), three horses and one donkey. Pathological and histopathological findings were characteristic of viral infection. Molecular analysis and viral load quantification showed varying degrees of infection, ranging between 70-1.4 × 106 target copies per sample. Phylogenetic analysis of a 906-bp genomic segment showed that all samples belonged to Lineage 1 clade 1a, with the following partition: five samples from 2018 and one sample detected in 2016 were of Cluster 2 Eastern European, two of Cluster 2 Mediterranean and four of Cluster 4. Four of the positive samples was successfully propagated in C6/36 and Vero cell lines for further work. CONCLUSIONS WNV is constantly circulating in wild and domesticated birds and animals in Israel, necessitating constant surveillance in birds and equines. At least three WNV strains were circulating in the suspected birds and animals examined. Quantitative analysis showed that the viral load varies significantly between different organs and tissues of the infected animals.
Collapse
Affiliation(s)
- Gili Schvartz
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - Yigal Farnoushi
- Division of Avian diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Asaf Berkowitz
- Division of Avian diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Nir Edery
- Division of Pathology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Shelly Hahn
- Division of Pathology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - Avishai Lublin
- Division of Avian diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Oran Erster
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
- Present Address: Central Virology Laboratory, Israel Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
14
|
Exposure of Horses in Israel to West Nile Virus and Usutu Virus. Viruses 2020; 12:v12101099. [PMID: 32998459 PMCID: PMC7650752 DOI: 10.3390/v12101099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses transmitted by mosquito vectors. Whereas WNV is endemic in Israel, the Middle East, Europe, and in the Americas, data regarding the prevalence of USUV in the Middle East is limited. While both viruses share similar reservoirs and vectors, exposure of horses in the area to USUV have never been assessed. The aim of this study was to estimate the seroprevalence and co-exposure of WNV and USUV in horses in Israel. A total of 327 serum samples from healthy unvaccinated horses in Israel collected in 2018 were tested for neutralizing antibodies against WNV and USUV. Seroprevalence for neutralizing antibodies against WNV and USUV was 84.1% and 10.8%, respectively. Management and age were significantly associated with WNV and USUV seropositivity. This is the first report describing exposure of horses in Israel to USUV, which indicates that this zoonotic pathogen should be included in the differential diagnosis list of neuroinvasive disease in this country.
Collapse
|
15
|
Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020; 7:100105. [PMID: 34589866 PMCID: PMC8474605 DOI: 10.1016/j.bbih.2020.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients’ lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1β, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae. In patients with and without diagnosed WNND, there are long-lasting neurological sequelae that can mimic neurodegenerative diseases. Some rodent models of WNV reproduce some of these changes with mechanisms similar to neurodegenerative diseases. There is significant overlap between WNV and ND pathogenesis and this has been understudied. Further research needs to be done to determine accuracy of animal models compared to human patients.
Collapse
|
16
|
Guo Y, Wang H, Xu S, Zhou H, Zhou C, Fu S, Cheng M, Li F, Deng Y, Li X, Wang H, Qin CF. Recovery and Genetic Characterization of a West Nile Virus Isolate from China. Virol Sin 2020; 36:113-121. [PMID: 32632819 DOI: 10.1007/s12250-020-00246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022] Open
Abstract
West Nile virus (WNV) is an important neurotropic flavivirus that is widely distributed globally. WNV strain XJ11129 was first isolated in Xinjiang, China, and its genetic and biological characteristics remain largely unknown. In this study, phylogenetic and sequence analyses revealed that XJ11129 belongs to lineage 1a and shares high genetic identity with the highly pathogenic strain NY99. Then, the full-length genomic cDNA of XJ11129 was amplified and assembled using a modified Gibson assembly (GA) method. The virus (named rXJ11129) was successfully rescued in days following this method. Compared with other wild-type WNV isolates, rXJ11129 exhibited virulence indistinguishable from that of the NY99 strain in vivo. In summary, the genomic and virulence phenotypes of rXJ11129 were characterized in vivo and in vitro, and these data will improve the understanding of the spread and pathogenesis of this reemerging virus.
Collapse
Affiliation(s)
- Yan Guo
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Hongjiang Wang
- PLA Strategic Support Force Characteristic Medical Center, Beijing, 100071, China
| | - Songtao Xu
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hangyu Zhou
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, 215000, China
| | - Chao Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, China
| | - Shihong Fu
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Mengli Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Fan Li
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yongqiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Xiaofeng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Huanyu Wang
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China.
| |
Collapse
|
17
|
Rothan HA, Arora K, Natekar JP, Strate PG, Brinton MA, Kumar M. Z-DNA-Binding Protein 1 Is Critical for Controlling Virus Replication and Survival in West Nile Virus Encephalitis. Front Microbiol 2019; 10:2089. [PMID: 31572318 PMCID: PMC6749019 DOI: 10.3389/fmicb.2019.02089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 01/31/2023] Open
Abstract
West Nile virus (WNV), a neurotropic flavivirus, is the leading cause of viral encephalitis in the United States. Recently, Zika virus (ZIKV) infections have caused serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome and microcephaly. Z-DNA binding protein 1 (ZBP1) is a cytoplasmic sensor that that has been shown to play a significant role in initiating a robust immune response. We previously reported that WNV and ZIKV infections induce dramatic up-regulation of ZBP1 in mouse brains as well as in infected primary mouse cells. Herein, we show the critical role of ZBP1 in restricting the pathogenesis of WNV and ZIKV infections. Deletion of ZBP1 resulted in significantly higher morbidity and mortality after infection with a pathogenic WNV NY99 strain in mice. No mortality was observed in wild-type (WT) mice infected with the non-pathogenic WNV strain, Eg101. Interestingly, infection of ZBP1-/- mice with WNV Eg101 was lethal resulting in 100% mortality, suggesting that ZBP1 is required for survival after WNV infection. Viremia and brain viral load were significantly higher in ZBP1-/- mice compared to WT mice. In addition, protein levels of interferon (IFN)-α, and inflammatory cytokines and chemokines were significantly higher in the serum and brains of infected ZBP1-/- mice compared to the WT mice. Primary mouse cortical neurons and mouse embryonic fibroblasts (MEFs) derived from ZBP1-/- mice produced higher virus titers compared to WT cells after infection with WNV NY99 and WNV Eg101. Similarly, neurons and MEFs lacking ZBP1 exhibited significantly enhanced replication of PRVABC59 (Asian) and MR766 (African) ZIKV compared to WT cells. The knockout of ZBP1 function in MEFs inhibited ZBP1-dependent virus-induced cell death. In conclusion, these data reveal that ZBP1 restricts WNV and ZIKV production in mouse cells and is required for survival of a peripheral WNV infection in mice.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Komal Arora
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Janhavi P Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Philip G Strate
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Margo A Brinton
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
18
|
Nyaruaba R, Mwaliko C, Mwau M, Mousa S, Wei H. Arboviruses in the East African Community partner states: a review of medically important mosquito-borne Arboviruses. Pathog Glob Health 2019; 113:209-228. [PMID: 31664886 PMCID: PMC6882432 DOI: 10.1080/20477724.2019.1678939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mosquito-borne diseases, including arbovirus-related diseases, make up a large proportion of infectious disease cases worldwide, causing a serious global public health burden with over 700,000 deaths annually. Mosquito-borne arbovirus outbreaks can range from global to regional. In the East African Community (EAC) region, these viruses have caused a series of emerging and reemerging infectious disease outbreaks. Member states in the EAC share a lot in common including regional trade and transport, some of the factors highlighted to be the cause of mosquito-borne arbovirus disease outbreaks worldwide. In this review, characteristics of 24 mosquito-borne arboviruses indigenous to the EAC are reviewed, including lesser or poorly understood viruses, like Batai virus (BATV) and Ndumu virus (NDUV), which may escape their origins under perfect conditions to establish a foothold in new geographical locations. Factors that may influence the future spread of these viruses within the EAC are addressed. With the continued development observed in the EAC, strategies should be developed by the Community in improving mosquito and mosquito-borne arbovirus surveillance to prevent future outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Samar Mousa
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
19
|
Sule WF, Oluwayelu DO, Hernández-Triana LM, Fooks AR, Venter M, Johnson N. Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasit Vectors 2018; 11:414. [PMID: 30005653 PMCID: PMC6043977 DOI: 10.1186/s13071-018-2998-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is the aetiological agent of the mosquito-borne zoonotic disease West Nile fever. The virus, first isolated in Uganda in 1937, evolved into two distinct lineages in sub-Saharan Africa (SSA) that subsequently spread to most continents where the virus has evolved further as evident through phylogenetic analysis of extant genomes. Numerous published reports from the past 70 years from countries in SSA indicate that the virus is endemic across the region. However, due in part to the limited availability of diagnostic methods across large areas of the continent, the human burden of WNV is poorly understood. So too are the drivers for translocation of the virus from countries south of the Sahara Desert to North Africa and Europe. Migratory birds are implicated in this translocation although the transient viraemia, measured in days, and the time taken to migrate, measured in weeks, suggest a more complex mechanism is in play. This review considers the evidence for the presence of WNV across SSA and the role of migratory birds in the emergence of the virus in other continents.
Collapse
Affiliation(s)
- Waidi F Sule
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Daniel O Oluwayelu
- Department of Veterinary Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Anthony R Fooks
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT153NB, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Marietjie Venter
- Emerging Arbo and Respiratory Program, Centre for Viral Zoonosis, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Nicholas Johnson
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT153NB, UK. .,Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU27XH, UK.
| |
Collapse
|
20
|
Rivarola ME, de Olmos S, Albrieu-Llinás G, Tauro LB, Gorosito-Serrán M, Konigheim BS, Contigiani MS, Gruppi A. Neuronal Degeneration in Mice Induced by an Epidemic Strain of Saint Louis Encephalitis Virus Isolated in Argentina. Front Microbiol 2018; 9:1181. [PMID: 29930541 PMCID: PMC6000731 DOI: 10.3389/fmicb.2018.01181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Saint Louis encephalitis virus (SLEV) is a neglected flavivirus that causes severe neurological disorders. The epidemic strain of SLEV, CbaAr-4005, isolated during an outbreak in Córdoba city (Argentina), causes meningitis and encephalitis associated with neurological symptoms in a murine experimental model. Here, we identified the affected brain areas and the damage triggered by this neurotropic arbovirus. We performed a detailed analysis of brain neurodegeneration associated with CbaAr-4005 SLEV infection in mice. The motor cortex, corpus striatum and cerebellum were the most affected structures. Neurodegeneration was also found in the olfactory bulb, thalamus, hypothalamus, hippocampus, and hindbrain. SLEV infection triggered brain cell apoptosis as well as somatodendritic and terminal degeneration. In addition, we observed massive excitotoxic-like degeneration in many cortical structures. Apoptosis was also detected in the neuroblastoma cell line N2a cultured with SLEV. The results evidenced that SLEV CbaAr-4005 infection induced severe degenerative alterations within the central nervous system of infected mice, providing new information about the targets of this flavivirus infection.
Collapse
Affiliation(s)
- María E Rivarola
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Soledad de Olmos
- Laboratorio de Neuroanatomía e Histología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra - INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Guillermo Albrieu-Llinás
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura B Tauro
- Instituto Nacional de Medicina Tropical, Ministerio de Salud, Puerto Iguazú, Argentina
| | - Melisa Gorosito-Serrán
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda S Konigheim
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marta S Contigiani
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
21
|
Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection. Biochem Soc Trans 2018; 46:609-617. [DOI: 10.1042/bst20170399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides — heparan/chondroitin sulfate (HS/CS) — are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.
Collapse
|
22
|
Ho CY, Ames HM, Tipton A, Vezina G, Liu JS, Scafidi J, Torii M, Rodriguez FJ, du Plessis A, DeBiasi RL. Differential neuronal susceptibility and apoptosis in congenital Zika virus infection. Ann Neurol 2017; 82:121-127. [PMID: 28556287 DOI: 10.1002/ana.24968] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
To characterize the mechanism of Zika virus (ZIKV)-associated microcephaly, we performed immunolabeling on brain tissue from a 20-week fetus with intrauterine ZIKV infection. Although ZIKV demonstrated a wide range of neuronal and non-neuronal tropism, the infection rate was highest in intermediate progenitor cells and immature neurons. Apoptosis was observed in both infected and uninfected bystander cortical neurons, suggesting a role for paracrine factors in induction of neuronal apoptosis. Our results highlight differential neuronal susceptibility and neuronal apoptosis as potential mechanisms in the development of ZIKV-associated microcephaly, and may provide insights into the design and best timing of future therapy. Ann Neurol 2017;82:121-127.
Collapse
Affiliation(s)
- Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD.,Division of Pathology, Children's National Health System, Washington, DC
| | - Heather M Ames
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Ashley Tipton
- Division of Pathology, Children's National Health System, Washington, DC
| | - Gilbert Vezina
- Department of Diagnostic Radiology and Imaging, Children's National Health System, Washington, DC
| | - Judy S Liu
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Masaaki Torii
- Center for Neuroscience Research, Children's National Health System, Washington, DC.,Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC.,Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Adre du Plessis
- Fetal Medicine Institute, Children's National Health System, Washington, DC
| | - Roberta L DeBiasi
- Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC.,Fetal Medicine Institute, Children's National Health System, Washington, DC.,Division of Pediatric Infectious Diseases, Children's National Health System, Washington, DC.,Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC
| |
Collapse
|
23
|
Kaiser JA, Wang T, Barrett AD. Virulence determinants of West Nile virus: how can these be used for vaccine design? Future Virol 2017; 12:283-295. [PMID: 28919920 DOI: 10.2217/fvl-2016-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
West Nile virus (WNV), a neurotropic mosquito-borne flavivirus, has become endemic in the USA and parts of Europe since 1999. There is no licensed WNV vaccine for humans. Considering the robust immunity from immunization with live, attenuated vaccines, a live WNV vaccine is an ideal platform for disease control. Animal and mosquito studies have identified a number of candidate attenuating mutations, including the structural proteins premembrane/membrane and envelope, and the nonstructural proteins NS1, NS2A, NS3, NS4A, NS4B and NS5, and the 3' UTR. Many of the mutations that have been examined attenuate WNV using different mechanisms, thus providing a greater understanding of WNV virulence while also identifying specific mutations as candidates to include in a WNV live vaccine.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan Dt Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
24
|
Pérez-Ramírez E, Llorente F, del Amo J, Fall G, Sall AA, Lubisi A, Lecollinet S, Vázquez A, Jiménez-Clavero MÁ. Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories. J Gen Virol 2017; 98:662-670. [DOI: 10.1099/jgv.0.000743] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Javier del Amo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Gamou Fall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Amadou Alpha Sall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Alison Lubisi
- ARC-Onderstepoort Veterinary Institute, Onderstepoort, 0110 Pretoria, South Africa
| | - Sylvie Lecollinet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Animal Health Laboratory, UMR1161 Virology, INRA, ANSES, ENVA, Maisons-Alfort 94706, France
| | - Ana Vázquez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| |
Collapse
|
25
|
Tantely LM, Cêtre-Sossah C, Rakotondranaivo T, Cardinale E, Boyer S. Population dynamics of mosquito species in a West Nile virus endemic area in Madagascar. Parasite 2017; 24:3. [PMID: 28134093 PMCID: PMC5780677 DOI: 10.1051/parasite/2017005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
Human and animal serological surveys suggest that West Nile virus (WNV) circulation is widely distributed in Madagascar. However, there are no reported West Nile fever outbreaks or epizootics in the country and only one fatal human case has been reported to date. Currently there is very limited information on the maintenance and the transmission of WNV in Madagascar and particularly on the mosquito species involved in transmission cycles. In 2014, we initiated a study to investigate mosquito species composition, relative abundance, and trophic behavior in Mitsinjo District close to Lake Kinkony, a WNV endemic area in north-western Madagascar. We collected a total of 2519 adult mosquitoes belonging to 21 different species. The most abundant species was Aedeomyia (Aedeomyia) madagascarica Brunhes, Boussès & da Cunha Ramos, which made up 83% of all the mosquitoes collected. Mosquito abundance was associated with proximity to the lake (Morafeno and Ankelimitondrotra). Additionally, a correlation was observed between the lake-side biotope and the abundance of mosquito vectors in Morafeno. WNV RNA was detected in one pool of Ae. madagascarica and one pool of Anopheles (Cellia) pauliani Grjebine, suggesting that these two species may be involved in the maintenance and/or transmission of WNV in Madagascar.
Collapse
Affiliation(s)
- Luciano Michaël Tantely
- Laboratoire d'Entomologie Médicale, Institut Pasteur de Madagascar, Ambatofotsikely, Antananarivo 101, Madagascar
| | - Catherine Cêtre-Sossah
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR CMAEE, 97491 Sainte Clotilde, La Réunion, France - INRA, UMR 1309 CMAEE, 34398 Montpellier, France - Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien (CRVOI), 97490 Sainte Clotilde, La Réunion, France
| | - Tsiriniaina Rakotondranaivo
- Laboratoire d'Entomologie Médicale, Institut Pasteur de Madagascar, Ambatofotsikely, Antananarivo 101, Madagascar
| | - Eric Cardinale
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR CMAEE, 97491 Sainte Clotilde, La Réunion, France - INRA, UMR 1309 CMAEE, 34398 Montpellier, France - Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien (CRVOI), 97490 Sainte Clotilde, La Réunion, France
| | - Sébastien Boyer
- Laboratoire d'Entomologie Médicale, Institut Pasteur de Madagascar, Ambatofotsikely, Antananarivo 101, Madagascar
| |
Collapse
|
26
|
Tantely ML, Goodman SM, Rakotondranaivo T, Boyer S. Review of West Nile virus circulation and outbreak risk in Madagascar: Entomological and ornithological perspectives. Parasite 2016; 23:49. [PMID: 27849515 PMCID: PMC5112766 DOI: 10.1051/parasite/2016058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/23/2016] [Indexed: 12/24/2022] Open
Abstract
West Nile fever (WNF) is a zoonotic disease, occurring nearly globally. In Madagascar, West Nile virus (WNV) was first detected in 1978 from wild birds and the virus is currently distributed across the island, but no epidemic or epizootic period has been recorded. One fatal human case of WNV infection was reported in 2011, suggesting a "tip of the iceberg" phenomenon of a possible WNF epidemic/epizootic on the island. The main objective of this literature-based survey is to review patterns of WNV circulation in Madagascar from the entomological and ornithological points of view. Among the 235 mosquito species described from Madagascar, 29 species are widely associated with WNV infection; 16 of them are found naturally infected with WNV on the island and categorized into major, candidate, and potential vectors of WNV according to their vector capacity. This study upholds the hypothesis that WNV enzooticity is independent of annual movements of migratory birds passing through Madagascar. Moreover, the lack of regular migratory bird flux between Africa and Madagascar would reduce the probability of transmission and the subsequent reintroduction of the virus into locally occurring mosquito species. Given that Palearctic migratory birds are strongly implicated in the transmission of WNV, we highlight notable differences in the movements and species diversity of these birds in Madagascar as compared to eastern and northern Africa. Risk factors from this two-pronged approach are presented for the emergence of WNF outbreak.
Collapse
Affiliation(s)
- Michaël Luciano Tantely
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| | - Steven M. Goodman
-
Field Museum of Natural History 1400 South Lake Shore Drive Chicago
60605 Illinois USA
-
Association Vahatra BP 3972 Antananarivo 101 Madagascar
| | - Tsirinaina Rakotondranaivo
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| | - Sébastien Boyer
-
Medical Entomology Unit, Institut Pasteur de Madagascar, Ambatofotsikely BP 1274 Antananarivo 101 Madagascar
| |
Collapse
|
27
|
Medin CL, Rothman AL. Zika Virus: The Agent and Its Biology, With Relevance to Pathology. Arch Pathol Lab Med 2016; 141:33-42. [PMID: 27763795 DOI: 10.5858/arpa.2016-0409-ra] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Once obscure, Zika virus (ZIKV) has attracted significant medical and scientific attention in the past year because of large outbreaks associated with the recent introduction of this virus into the Western hemisphere. In particular, the occurrence of severe congenital infections and cases of Guillain-Barré syndrome has placed this virus squarely in the eyes of clinical and anatomic pathologists. This review article provides a basic introduction to ZIKV, its genetics, its structural characteristics, and its biology. A multidisciplinary effort will be essential to establish clinicopathologic correlations of the basic virology of ZIKV in order to advance development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
| | - Alan L Rothman
- From the Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence. Drs Medin and Rothman both contributed equally to the manuscript
| |
Collapse
|
28
|
Vázquez A, Herrero L, Negredo A, Hernández L, Sánchez-Seco MP, Tenorio A. Real time PCR assay for detection of all known lineages of West Nile virus. J Virol Methods 2016; 236:266-270. [PMID: 27481597 DOI: 10.1016/j.jviromet.2016.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
Abstract
West Nile virus (WNV) is one of the most widespread arbovirus and a large variety of WNV strains and lineages have been described. The molecular methods for the diagnosis of WNV target mainly lineages 1 and 2, which have caused outbreaks in humans, equines and birds. But the last few years new and putative WNV lineages of unknown pathogenicity have been described. Here we describe a new sensitive and specific real-time PCR assay for the detection and quantification of all the WNV lineages described until now. Primers and probe were designed in the 3'-untranslated region (3'-UTR) of the WNV genome and were designed to match all sequenced WNV strains perfectly. The sensitivity of the assay ranged from 1,5 to 15 copies per reaction depending on the WNV lineage tested. The method was validated for WNV diagnosis using different viral strains, human samples (cerebrospinal fluid, biopsies, serum and plasma) and mosquito pools. The assay did not amplify any other phylogenetically or symptomatically related viruses. All of the above make it a very suitable tool for the diagnosis of WNV and for surveillance studies.
Collapse
Affiliation(s)
- Ana Vázquez
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain.
| | - Laura Herrero
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Anabel Negredo
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Lourdes Hernández
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - María Paz Sánchez-Seco
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Antonio Tenorio
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
29
|
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genus Flavivirus and the family Flaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especially those due to arboviruses such as dengue and chikungunya. ZIKV infection was associated with only mild illness prior to the large French Polynesian outbreak in 2013 and 2014, when severe neurological complications were reported, and the emergence in Brazil of a dramatic increase in severe congenital malformations (microcephaly) suspected to be associated with ZIKV. Laboratory diagnosis of Zika fever relies on virus isolation or detection of ZIKV-specific RNA. Serological diagnosis is complicated by cross-reactivity among members of the Flavivirus genus. The adaptation of ZIKV to an urban cycle involving humans and domestic mosquito vectors in tropical areas where dengue is endemic suggests that the incidence of ZIKV infections may be underestimated. There is a high potential for ZIKV emergence in urban centers in the tropics that are infested with competent mosquito vectors such as Aedes aegypti and Aedes albopictus.
Collapse
Affiliation(s)
- Didier Musso
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Tahiti, French Polynesia
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore Partnership for Dengue Control, Lyon, France
| |
Collapse
|
30
|
Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 2016; 6:26350. [PMID: 27211830 PMCID: PMC4876452 DOI: 10.1038/srep26350] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics.
Collapse
|
31
|
Wong SSY, Poon RWS, Wong SCY. Zika virus infection-the next wave after dengue? J Formos Med Assoc 2016; 115:226-42. [PMID: 26965962 DOI: 10.1016/j.jfma.2016.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
Zika virus was initially discovered in east Africa about 70 years ago and remained a neglected arboviral disease in Africa and Southeast Asia. The virus first came into the limelight in 2007 when it caused an outbreak in Micronesia. In the ensuing decade, it spread widely in other Pacific islands, after which its incursion into Brazil in 2015 led to a widespread epidemic in Latin America. In most infected patients the disease is relatively benign. Serious complications include Guillain-Barré syndrome and congenital infection which may lead to microcephaly and maculopathy. Aedes mosquitoes are the main vectors, in particular, Ae. aegypti. Ae. albopictus is another potential vector. Since the competent mosquito vectors are highly prevalent in most tropical and subtropical countries, introduction of the virus to these areas could readily result in endemic transmission of the disease. The priorities of control include reinforcing education of travellers to and residents of endemic areas, preventing further local transmission by vectors, and an integrated vector management programme. The container habitats of Ae. aegypti and Ae. albopictus means engagement of the community and citizens is of utmost importance to the success of vector control.
Collapse
Affiliation(s)
- Samson Sai-Yin Wong
- Department of Microbiology, Research Centre for Infection and Immunology, Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
32
|
Blázquez AB, Martín-Acebes MA, Saiz JC. Inhibition of West Nile Virus Multiplication in Cell Culture by Anti-Parkinsonian Drugs. Front Microbiol 2016; 7:296. [PMID: 27014219 PMCID: PMC4779909 DOI: 10.3389/fmicb.2016.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus maintained in a transmission cycle between mosquitoes and birds, but it can also infect other vertebrates, including humans, in which it can cause neuroinvasive diseases. To date, no licensed vaccine or therapy for human use against this pathogen is yet available. A recent approach to search for new antiviral agent candidates is the assessment of long-used drugs commonly administered by clinicians to treat human disorders in drug antiviral development. In this regard, as patients with West Nile encephalitis frequently develop symptoms and features of parkinsonism, and cellular factors altered in parkinsonism, such as alpha-synuclein, have been shown to play a role on WNV infection, we have assessed the effect of four drugs (L-dopa, Selegiline, Isatin, and Amantadine), that are used as therapy for Parkinson's disease in the inhibition of WNV multiplication. L-dopa, Isatin, and Amantadine treatments significantly reduced the production of infectious virus in all cell types tested, but only Amantadine reduced viral RNA levels. These results point to antiparkinsonian drugs as possible therapeutic candidates for the development of antiviral strategies against WNV infection.
Collapse
Affiliation(s)
- Ana B Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| |
Collapse
|
33
|
Szentpáli-Gavallér K, Lim SM, Dencső L, Bányai K, Koraka P, Osterhaus ADME, Martina BEE, Bakonyi T, Bálint Á. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model. Viruses 2016; 8:v8020049. [PMID: 26907325 PMCID: PMC4776204 DOI: 10.3390/v8020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.
Collapse
Affiliation(s)
| | - Stephanie M Lim
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - László Dencső
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Budapest, Hungary.
| | - Penelope Koraka
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | | | - Byron E E Martina
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, H-1143, Budapest, Hungary.
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, A-1210, Vienna, Austria.
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| |
Collapse
|
34
|
Alsaleh K, Khou C, Frenkiel MP, Lecollinet S, Vàzquez A, de Arellano ER, Després P, Pardigon N. The E glycoprotein plays an essential role in the high pathogenicity of European-Mediterranean IS98 strain of West Nile virus. Virology 2016; 492:53-65. [PMID: 26896935 DOI: 10.1016/j.virol.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/25/2023]
Abstract
West Nile virus (WNV) is the most widespread arbovirus in the world. Several recent outbreaks and epizootics have been reported in Europe and the Mediterranean basin with increased virulence. In contrast to the well-characterized American and Australian strains, little is known about the virulence determinants of the WNV European-Mediterranean strains. To investigate the viral factors involved in the virulence of these strains, we generated chimeras between the highly neuropathogenic Israel 1998 (IS-98-ST1, IS98) strain and the non-pathogenic Malaysian Kunjin virus (KJMP-502). In vivo analyses in a mouse model of WNV pathogenesis shows that chimeric virus where KJMP-502 E glycoprotein was replaced by that of IS98 is neuropathogenic, demonstrating that this protein is a major virulence determinant. Presence of the N-glycosylation site had limited impact on virus virulence and the 5'UTR does not seem to influence pathogenesis. Finally, mice inoculated with KJMP-502 virus were protected against lethal IS98 infection.
Collapse
Affiliation(s)
| | - Cécile Khou
- Institut Pasteur, URE ERI/CIBU, Paris, France
| | | | - Sylvie Lecollinet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR1161 Virology, INRA, ANSES, ENVA, Maisons-Alfort, France
| | - Ana Vàzquez
- Arbovirus & Imported Viral Diseases, Centro Nacional de Microbiología, Ctra. Pozuelo, Madrid, Spain
| | - Eva Ramírez de Arellano
- Arbovirus & Imported Viral Diseases, Centro Nacional de Microbiología, Ctra. Pozuelo, Madrid, Spain
| | - Philippe Després
- University of La Réunion Island, UM134 PIMIT, INSERM U1187, CNRS UMR9192, IRD UMR249, Technology Platform CYROI, 97490 Saint-Clotilde, La Réunion, France
| | | |
Collapse
|
35
|
High Prevalence of West Nile Virus in Domestic Birds and Detection in 2 New Mosquito Species in Madagascar. PLoS One 2016; 11:e0147589. [PMID: 26807720 PMCID: PMC4725773 DOI: 10.1371/journal.pone.0147589] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
West Nile virus is an arthropod-borne zoonosis transmitted by a large number of mosquito species, and birds play a key role as reservoir of the virus. Its distribution is largely widespread over Africa, Asia, the Americas and Europe. Since 1978, it has frequently been reported in Madagascar. Studies described a high seroprevalence level of the virus in humans in different areas of the island and a human fatal case of WNV infection was reported in 2011. Despite these reports, the epidemiology of WNV in Madagascar, in particular, viral circulation remains unclear. To explore the transmission of WNV in two rural human populations of Madagascar, we investigated local mosquitoes and poultry for evidence of current infections, and determined seroprevalence of candidate sentinel species among the local poultry. These 2 areas are close to lakes where domestic birds, migratory wild birds and humans coexist. Serological analysis revealed WNV antibodies in domestic birds (duck, chicken, goose, turkey and guinea fowl) sampled in both districts (Antsalova 29.4% and Mitsinjo 16.7%). West Nile virus nucleic acid was detected in one chicken and in 8 pools of mosquitoes including 2 mosquito species (Aedeomyia madagascarica and Anopheles pauliani) that have not been previously described as candidate vectors for WNV. Molecular analysis of WNV isolates showed that all viruses detected were part of the lineage 2 that is mainly distributed in Africa, and were most closely matched by the previous Malagasy strains isolated in 1988. Our study showed that WNV circulates in Madagascar amongst domestic birds and mosquitoes, and highlights the utility of poultry as a surveillance tool to detect WNV transmission in a peri-domestic setting.
Collapse
|
36
|
Kumar M, Roe K, O'Connell M, Nerurkar VR. Induction of virus-specific effector immune cell response limits virus replication and severe disease in mice infected with non-lethal West Nile virus Eg101 strain. J Neuroinflammation 2015; 12:178. [PMID: 26392176 PMCID: PMC4578235 DOI: 10.1186/s12974-015-0400-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/11/2015] [Indexed: 01/11/2023] Open
Abstract
Background West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. Herein, we investigated the immunological responses induced by two phylogenetically related WNV strains of lineage 1, WNV NY99, and WNV Eg101. Methods Eight-week-old C57BL/6J mice were inoculated with WNV NY99 or WNV Eg101 and mortality, virus burden in the periphery and brain, type 1 interferon response, WNV-specific antibodies, leukocyte infiltration, and inflammatory responses were analyzed. Results As expected, WNV NY99 infected mice demonstrated high morbidity and mortality, whereas no morbidity and mortality was observed in WNV Eg101 infected mice. Virus titers were comparable in the serum of both WNV NY99 and WNV Eg101 infected mice at day 3 after inoculation; however, at day 6, the virus was cleared from WNV Eg101 infected mice but the virus titer remained high in the WNV NY99 infected mice. Virus was detected in the brains of both WNV NY99 and Eg101 infected mice, albeit significantly higher in the brains of WNV NY99 infected mice. Surprisingly, levels of type 1 interferon and WNV-specific antibodies were significantly higher in the serum and brains of WNV NY99 infected mice. Similarly, protein levels of multiple cytokines and chemokines were significantly higher in the serum and brains of WNV NY99 infected mice. In contrast, we observed significantly higher numbers of innate and adaptive immune cells in the spleens and brains of WNV Eg101 infected mice. Moreover, total number and percentage of IFN-γ and TNF-α producing WNV-specific CD8+ T cells were also significantly high in WNV Eg101 infected mice. Conclusions Our data demonstrate that induction of virus-specific effector immune cell response limits virus replication and severe WNV disease in Eg101 infected mice. Our data also demonstrate an inverse correlation between leukocyte accumulation and production of pro-inflammatory mediators in WNV-infected mice. Moreover, increased production of pro-inflammatory mediators was associated with high-virus titers and increased mortality in WNV NY99 infected mice.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, 96813, Hawaii, USA. .,Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, Hawaii, 96813, USA.
| | - Kelsey Roe
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, 96813, Hawaii, USA. .,Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, Hawaii, 96813, USA.
| | - Maile O'Connell
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, 96813, Hawaii, USA. .,Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, Hawaii, 96813, USA.
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, 96813, Hawaii, USA. .,Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, Hawaii, 96813, USA.
| |
Collapse
|
37
|
Barzon L, Pacenti M, Sinigaglia A, Berto A, Trevisan M, Palù G. West Nile virus infection in children. Expert Rev Anti Infect Ther 2015; 13:1373-86. [PMID: 26325613 DOI: 10.1586/14787210.2015.1083859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus responsible for an increasing number of outbreaks of neuroinvasive disease in North America, Europe, and neighboring countries. Almost all WNV infections in humans are transmitted through the bite of infected mosquitoes. Transmission during pregnancy and through breastfeeding has been reported, but the risk seems to be very low. West Nile disease in children is less common (1-5% of all WNV cases) and associated with milder symptoms and better outcome than in elderly individuals, even though severe neuroinvasive disease and death have been reported also among children. However, the incidence of WNV infection and disease in children is probably underestimated and the disease spectrum is not fully understood because of lack of reporting and underdiagnosis in children. Infection is diagnosed by detection of WNV-specific antibodies in serum and WNV RNA in plasma and urine. Since no effective WNV-specific drugs are available, therapy is mainly supportive.
Collapse
Affiliation(s)
- Luisa Barzon
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Monia Pacenti
- b 2 Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, 35128 Padova, Italy
| | | | - Alessandro Berto
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Marta Trevisan
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Giorgio Palù
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
38
|
West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLoS Negl Trop Dis 2015. [PMID: 26225555 PMCID: PMC4520649 DOI: 10.1371/journal.pntd.0003956] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic. Methodology/Principal Findings We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase. Conclusions/Significance Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe. West Nile virus (WNV) is on the rise in Europe, with increasing numbers of human cases of neurological disease and death since 2010. However, it is currently unknown whether or not WNV will continue to spread to north-western Europe (NWE), in a fashion similar to the WNV epidemic sweep in the United States (1999–2004). The presence of competent mosquitoes is a strict requirement for WNV transmission, but no laboratory studies have been conducted with the new European lineage 2 WNV outbreak strain. Our study is the first to investigate transmissibility in NWE Culex pipiens for lineage 2 WNV in a systematic, direct comparison with North American Culex pipiens and with the lineage 1 WNV strain. We demonstrate that European mosquitoes are highly competent for both WNV lineages, which underscores the epidemic potential of WNV in Europe. However, the transmission rate for lineage 2 WNV was significantly lower in North American mosquitoes, which indicates different risk levels between both continents for lineage 2 but not lineage 1 WNV. Based on our result, we propose that WNV surveillance in mosquitoes and birds must be intensified in Europe to allow early detection, timely intervention strategies and prevent outbreaks of WNV neurological disease.
Collapse
|
39
|
Evaluation of Cross-Protection of a Lineage 1 West Nile Virus Inactivated Vaccine against Natural Infections from a Virulent Lineage 2 Strain in Horses, under Field Conditions. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1040-9. [PMID: 26178384 DOI: 10.1128/cvi.00302-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/05/2015] [Indexed: 12/27/2022]
Abstract
Although experimental data regarding cross-protection of horse West Nile virus (WNV) vaccines against lineage 2 infections exist, the cross-protective efficacy of these vaccines under field conditions has not been demonstrated. This study was conducted to evaluate the capability of an inactivated lineage 1 vaccine (Equip WNV) to protect against natural infections from the Nea Santa-Greece-2010 lineage 2 strain. In total, 185 WNV-seronegative horses in Thessaloniki, Greece, were selected during 2 consecutive years (2011 and 2012); 140 were immunized, and 45 were used as controls. Horses were examined for signs compatible with WNV infection. Neutralizing antibody titers against the Greek strain and the PaAn001/France lineage 1 strain were determined in immunized horses. WNV circulation was detected during both years in the study area. It was estimated that 37% and 27% of the horses were infected during 2011 and 2012, respectively. Three control animals developed clinical signs, and the WNV diagnosis was confirmed. Signs related to WNV infection were not observed in the vaccinated animals. The nonvaccinated animals had a 7.58% ± 1.82% higher chance of exhibiting signs than immunized animals (P < 0.05). Neutralizing antibodies raised against both strains in all immunized horses were detectable 1 month after the initial vaccination course. The cross-protective capacity of the lowest titer (1:40) was evident in 19 animals which were subsequently infected and did not exhibit signs. Neutralizing antibodies were detectable until the annual booster, when strong anamnestic responses were observed (geometrical mean titer ratio [GMTR] for lineage 1 of 30.2; GMTR for lineage 2 of 27.5). The results indicate that Equip WNV is capable of inducing cross-protection against natural infections from a virulent lineage 2 WNV strain in horses.
Collapse
|
40
|
Putative novel lineage of West Nile virus in Uranotaenia unguiculata mosquito, Hungary. Virusdisease 2014; 25:500-3. [PMID: 25674630 DOI: 10.1007/s13337-014-0234-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/08/2014] [Indexed: 12/21/2022] Open
Abstract
West Nile virus (WNV) is an increasing public health concern in Europe with numerous human cases. A total of 23,029 female mosquitoes were tested for a variety of mosquito-borne flaviviruses and orthobunyaviruses supposedly endemic in Southern Transdanubia, Hungary, in the frames of a large-scale surveillance between 2011 and 2013. WNV nucleic acid was detected in a single pool containing Uranotaenia unguiculata mosquitoes. Sequence- and phylogenetic analyses for two different regions (NS5 and E) of the viral genome showed that the novel Hungarian WNV strain was different from other previously described WNV lineages. These findings may indicate the presence of a putative, novel lineage of WNV in Europe. Our results also indicate that U. unguiculata mosquito may become relevant species as a potential vector for West Nile virus in Europe.
Collapse
|
41
|
Infection with non-lethal West Nile virus Eg101 strain induces immunity that protects mice against the lethal West Nile virus NY99 strain. Viruses 2014; 6:2328-39. [PMID: 24915459 PMCID: PMC4074930 DOI: 10.3390/v6062328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/25/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
Herein we demonstrate that infection of mice with West Nile virus (WNV) Eg101 provides protective immunity against lethal challenge with WNV NY99. Our data demonstrated that WNV Eg101 is largely non-virulent in adult mice when compared to WNV NY99. By day 6 after infection, WNV-specific IgM and IgG antibodies, and neutralizing antibodies were detected in the serum of all WNV Eg101 infected mice. Plaque reduction neutralization test data demonstrated that serum from WNV Eg101 infected mice neutralized WNV Eg101 and WNV NY99 strains with similar efficiency. Three weeks after infection, WNV Eg101 immunized mice were challenged subcutaneously or intracranially with lethal dose of WNV NY99 and observed for additional three weeks. All the challenged mice were protected against disease and no morbidity and mortality was observed in any mice. In conclusion, our data for the first time demonstrate that infection of mice with WNV Eg101 induced high titers of WNV specific IgM and IgG antibodies, and cross-reactive neutralizing antibodies, and the resulting immunity protected all immunized animals from both subcutaneous and intracranial challenge with WNV NY99. These observations suggest that WNV Eg101 may be a suitable strain for the development of a vaccine in humans against virulent strains of WNV.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW West Nile virus (WNV) is the most important cause of epidemic encephalitis in the United States. We review articles published in the last 18 months related to the epidemiology, immunology, clinical features, and treatment of this disease. RECENT FINDINGS There was a resurgence in WNV disease in the United States in 2012. The WNV strain now predominant in the United States (NA/WN02) differs from the initial emergent isolate in 1999 (NY99). However, differences in the genetics of currently circulating United States WNV strains do not explain variations in epidemic magnitude or disease severity. Innate and acquired immunity are critical in control of WNV, and in some cases pathways are central nervous system specific. The clinical features of infection are now well understood, although nonconfirmed observations of chronic viral excretion in urine remain controversial. There is no specific antiviral therapy for WNV, but studies of antivirals specific for other flaviviruses may identify agents with promise against WNV. Phase I and II human WNV vaccine clinical trials have established that well tolerated and immunogenic WNV vaccines can be developed. SUMMARY WNV remains an important public health problem. Although recent studies have significantly increased our understanding of host immune and genetic factors involved in control of WNV infection, no specific therapy is yet available. Development of a well tolerated, immunogenic, and effective vaccine against WNV is almost certainly feasible, but economic factors and the lack of predictability of the magnitude and location of outbreaks are problematic for designing phase III trials and ultimate licensure.
Collapse
Affiliation(s)
- Kenneth L. Tyler
- Department of Neurology, University of Colorado School of Medicine, Aurora
- Denver Veterans Affairs Medical Center, Eastern Colorado Healthcare System, Denver, Colorado, USA
| |
Collapse
|