1
|
Salauddin M, Saha S, Hossain MG, Okuda K, Shimada M. Clinical Application of Adenovirus (AdV): A Comprehensive Review. Viruses 2024; 16:1094. [PMID: 39066256 PMCID: PMC11281619 DOI: 10.3390/v16071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Adenoviruses are non-enveloped DNA viruses that cause a wide range of symptoms, from mild infections to life-threatening diseases in a broad range of hosts. Due to the unique characteristics of these viruses, they have also become a vehicle for gene-transfer and cancer therapeutic instruments. Adenovirus vectors can be used in gene therapy by modifying wild-type viruses to render them replication-defective. This makes it possible to swap out particular viral genes for segments that carry therapeutic genes and to employ the resultant vector as a means of delivering genes to specified tissues. In this review, we outline the progressive development of adenovirus vectors, exploring their characteristics, genetic modifications, and range of uses in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing gene therapy, cancer therapy, immunotherapy, and the latest breakthroughs in vaccine development for various diseases.
Collapse
Affiliation(s)
- Md. Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna 9202, Bangladesh;
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (S.S.); (M.G.H.)
| | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (S.S.); (M.G.H.)
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| |
Collapse
|
2
|
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102027. [PMID: 37808925 PMCID: PMC10556817 DOI: 10.1016/j.omtn.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Adenoviral vectors have been widely used as vaccine candidates or potential vaccine candidates against infectious diseases due to the convenience of genome manipulation, their ability to accommodate large exogenous gene fragments, easy access of obtaining high-titer of virus, and high efficiency of transduction. At the same time, adenoviral vectors have also been used extensively in clinical research for cancer gene therapy and treatment of diseases caused by a single gene defect. However, application of adenovirus also faces a series of challenges such as poor targeting, strong immune response against the vector itself, and they cannot be used repeatedly. It is believed that these problems will be solved gradually with further research and technological development in related fields. Here, we review the construction methods of adenoviral vectors, including "gutless" adenovirus and discuss application of adenoviral vectors as prophylactic vaccines for infectious pathogens and their application prospects as therapeutic vaccines for cancer and other kinds of chronic infectious disease such as human papillomavirus, hepatitis B virus, and hepatitis C virus.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Hongdan Wang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Youcai An
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Ze Chen
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| |
Collapse
|
3
|
Lima ES, dos Santos D, Souza AL, Macedo ME, Bandeira ME, Junior SSS, Fiuza BSD, Rocha VPC, dos Santos Fonseca LM, Nunes DDG, Hodel KVS, Machado BAS. RNA Combined with Nanoformulation to Advance Therapeutic Technologies. Pharmaceuticals (Basel) 2023; 16:1634. [PMID: 38139761 PMCID: PMC10745936 DOI: 10.3390/ph16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Nucleic acid-based therapies have the potential to address numerous diseases that pose significant challenges to more traditional methods. RNA-based therapies have emerged as a promising avenue, utilizing nanoformulation treatments to target a range of pathologies. Nanoformulation offers several advantages compared to other treatment modalities, including targeted delivery, low toxicity, and bioactivity suitable for drug loading. At present, various types of nanoformulations are available, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanoshells, and solid lipid nanoparticles (SLNs). RNA-based therapy utilizes intracellular gene nanoparticles with messenger RNA (mRNA) emerging prominently in cancer therapy and immunotechnology against infectious diseases. The approval of mRNA-based technology opens doors for future technological advancements, particularly self-amplifying replicon RNA (repRNA). RepRNA is a novel platform in gene therapy, comprising viral RNA with a unique molecular property that enables the amplification of all encoded genetic information countless times. As a result, repRNA-based therapies have achieved significant levels of gene expression. In this context, the primary objective of this study is to furnish a comprehensive review of repRNA and its applications in nanoformulation treatments, with a specific focus on encapsulated nanoparticles. The overarching goal is to provide an extensive overview of the use of repRNA in conjunction with nanoformulations across a range of treatments and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC (Integrated Manufacturing and Technology Campus), Salvador 41650-010, Brazil; (E.S.L.); (D.d.S.); (A.L.S.); (M.E.M.); (M.E.B.); (S.S.S.J.); (B.S.D.F.); (V.P.C.R.); (L.M.d.S.F.); (D.D.G.N.); (K.V.S.H.)
| |
Collapse
|
4
|
Yang K, Feng S, Luo Z. Oncolytic Adenovirus, a New Treatment Strategy for Prostate Cancer. Biomedicines 2022; 10:biomedicines10123262. [PMID: 36552019 PMCID: PMC9775875 DOI: 10.3390/biomedicines10123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is the most common cancer and one of the leading causes of cancer mortality in males. Androgen-deprivation therapy (ADT) is an effective strategy to inhibit tumour growth at early stages. However, 10~50% of cases are estimated to progress to metastatic castration-resistant prostate cancer (mCRPC) which currently lacks effective treatments. Clinically, salvage treatment measures, such as endocrine therapy and chemotherapy, are mostly used for advanced prostate cancer, but their clinical outcomes are not ideal. When the existing clinical therapeutic methods can no longer inhibit the development of advanced prostate cancer, human adenovirus (HAdV)-based gene therapy and viral therapy present promising effects. Pre-clinical studies have shown its powerful oncolytic effect, and clinical studies are ongoing to further verify its effect and safety in prostate cancer treatment. Targeting the prostate by HAdV alone or in combination with radiotherapy and chemotherapy sheds light on patients with castration-resistant and advanced prostate cancer. This review summarizes the advantages of oncolytic virus-mediated cancer therapy, strategies of HAdV modification, and existing preclinical and clinical investigations of HAdV-mediated gene therapy to further evaluate the potential of oncolytic adenovirus in prostate cancer treatment.
Collapse
Affiliation(s)
- Kaiyi Yang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (K.Y.); (Z.L.)
| | - Shenghui Feng
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhijun Luo
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: (K.Y.); (Z.L.)
| |
Collapse
|
5
|
Paris O, Mennechet FJD, Kremer EJ. Human innate lymphoid cell activation by adenoviruses is modified by host defense proteins and neutralizing antibodies. Front Immunol 2022; 13:975910. [PMID: 36275713 PMCID: PMC9579290 DOI: 10.3389/fimmu.2022.975910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defense proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy.
Collapse
|
6
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
8
|
Lu L, Yu X, Cai Y, Sun M, Yang H. Application of CRISPR/Cas9 in Alzheimer's Disease. Front Neurosci 2021; 15:803894. [PMID: 34992519 PMCID: PMC8724030 DOI: 10.3389/fnins.2021.803894] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder clinically characterized by cognitive impairment, abnormal behavior, and social deficits, which is intimately linked with excessive β-amyloid (Aβ) protein deposition along with many other misfolded proteins, neurofibrillary tangles formed by hyperphosphorylated tau protein aggregates, and mitochondrial damage in neurons, leading to neuron loss. Currently, research on the pathological mechanism of AD has been elucidated for decades, still no effective treatment for this complex disease was developed, and the existing therapeutic strategies are extremely erratic, thereby leading to irreversible and progressive cognitive decline in AD patients. Due to gradually mental dyscapacitating of AD patients, AD not only brings serious physical and psychological suffering to patients themselves, but also imposes huge economic burdens on family and society. Accordingly, it is very imperative to recapitulate the progress of gene editing-based precision medicine in the emerging fields. In this review, we will mainly focus on the application of CRISPR/Cas9 technique in the fields of AD research and gene therapy, and summarize the application of CRISPR/Cas9 in the aspects of AD model construction, screening of pathogenic genes, and target therapy. Finally, the development of delivery systems, which is a major challenge that hinders the clinical application of CRISPR/Cas9 technology will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Collins LT, Curiel DT. Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies. ACS NANO 2021; 15:13970-13979. [PMID: 34415739 DOI: 10.1021/acsnano.1c04556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthetic biology centers on the design and modular assembly of biological parts so as to construct artificial biological systems. Over the past decade, synthetic biology has blossomed into a highly productive field, yielding advances in diverse areas such as neuroscience, cell-based therapies, and chemical manufacturing. Similarly, the field of gene therapy has made enormous strides both in proof-of-concept studies and in the clinical setting. One viral vector of increasing interest for gene therapy is the adenovirus (Ad). A major part of the Ad's increasing momentum comes from synthetic biology approaches to Ad engineering. Convergence of gene therapy and synthetic biology has enhanced Ad vectors by mitigating Ad toxicity in vivo, providing precise Ad tropisms, and incorporating genetic circuits to make smart therapies which adapt to environmental stimuli. Synthetic biology engineering of Ad vectors may lead to superior gene delivery and editing platforms which could find applications in a wide range of therapeutic contexts.
Collapse
Affiliation(s)
- Logan Thrasher Collins
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - David T Curiel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
10
|
Musculoskeletal tissue engineering: Regional gene therapy for bone repair. Biomaterials 2021; 275:120901. [PMID: 34091300 DOI: 10.1016/j.biomaterials.2021.120901] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Bone loss associated with fracture nonunion, revision total joint arthroplasty (TJA), and pseudoarthrosis of the spine presents a challenging clinical scenario for the orthopaedic surgeon. Current treatment options including autograft, allograft, bone graft substitutes, and bone transport techniques are associated with significant morbidity, high costs, and prolonged treatment regimens. Unfortunately, these treatment strategies have proven insufficient to safely and consistently heal bone defects in the stringent biological environments often encountered in clinical cases of bone loss. The application of tissue engineering (TE) to musculoskeletal pathology has uncovered exciting potential treatment strategies for challenging bone loss scenarios in orthopaedic surgery. Regional gene therapy involves the local implantation of nucleic acids or genetically modified cells to direct specific protein expression, and has shown promise as a potential TE technique for the regeneration of bone. Preclinical studies in animal models have demonstrated the ability of regional gene therapy to safely and effectively heal critical sized bone defects which otherwise do not heal. The purpose of the present review is to provide a comprehensive overview of the current status of gene therapy applications for TE in challenging bone loss scenarios, with an emphasis on gene delivery methods and models, scaffold biomaterials, preclinical results, and future directions.
Collapse
|
11
|
Gao J, Zhang W, Mese K, Bunz O, Lu F, Ehrhardt A. Transient Chimeric Ad5/37 Fiber Enhances NK-92 Carrier Cell-Mediated Delivery of Oncolytic Adenovirus Type 5 to Tumor Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:376-389. [PMID: 32695840 PMCID: PMC7358217 DOI: 10.1016/j.omtm.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
Methods for customizing and improving virus vector tropism are limited. In this study, we introduce a microRNA (miRNA)-regulated molecular method to enhance vector transduction without genome alteration. Based on the importance of adenovirus (Ad) vectors for cancer and gene treatment, we exemplified this technology for an Ad type 5 (Ad5) vector temporally carrying a knob from Ad37. We constructed a producer cell line stably expressing a fused Ad5/37 chimeric fiber comprising the Ad5 shaft-tail and the Ad37 knob and a miRNA inhibiting Ad5 knob expression (HEK293-Ad5/37-miRNA). The chimeric Ad5/37 vector resulted in enhanced transduction rates in Ad37 adequately and Ad5 poorly transduced cells. Particularly, encapsidation of the oncolytic Ad5-human telomerase reverse transcriptase (hTERT) vector genome into the chimeric Ad5/37 capsid showed efficient transduction of NK-92 carrier cells. These infected carrier cells then delivered the oncolytic vector to tumor cells, which resulted in enhanced Ad5-hTERT-mediated tumor cell killing. We show that this transiently capsid-modified chimeric vector carrying an Ad5 genome displayed higher transduction efficiencies of natural killer cell-derived NK-92 cells utilized as carriers in cancer immune therapy. In summary, transiently modified adenoviral vectors will have important implications for cancer and gene therapy.
Collapse
Affiliation(s)
- Jian Gao
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Oskar Bunz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
12
|
Chen M, Ren YX, Xie Y, Lu WL. Gene regulations and delivery vectors for
treatment of cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Garofalo M, Grazioso G, Cavalli A, Sgrignani J. How Computational Chemistry and Drug Delivery Techniques Can Support the Development of New Anticancer Drugs. Molecules 2020; 25:E1756. [PMID: 32290224 PMCID: PMC7180704 DOI: 10.3390/molecules25071756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023] Open
Abstract
The early and late development of new anticancer drugs, small molecules or peptides can be slowed down by some issues such as poor selectivity for the target or poor ADME properties. Computer-aided drug design (CADD) and target drug delivery (TDD) techniques, although apparently far from each other, are two research fields that can give a significant contribution to overcome these problems. Their combination may provide mechanistic understanding resulting in a synergy that makes possible the rational design of novel anticancer based therapies. Herein, we aim to discuss selected applications, some also from our research experience, in the fields of anticancer small organic drugs and peptides.
Collapse
Affiliation(s)
- Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milano, 20133 Milan, Italy
| | - Andrea Cavalli
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland
| |
Collapse
|
14
|
Peng L, Chen K, Zhu W, Lu W, Xu J, Huang Y, Kuai S, Deng Z, Wang D. Construction and characterization of an adenoviral vector encoding human bone morphogenetic protein-2. J Int Med Res 2020; 48:300060520910320. [PMID: 32191550 PMCID: PMC7105281 DOI: 10.1177/0300060520910320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Construction of adenoviral vectors can be complicated and time-consuming. The aim of this study was to construct an adenoviral vector expressing human bone morphogenetic protein 2 (BMP-2). Methods An adenoviral vector expressing human BMP-2 was constructed using the Gateway™ technique based on site-specific recombination. Briefly, BMP-2 cDNA was obtained by polymerase chain reaction, inserted into the pMD19-T cloning vector, and subcloned into a shuttle vector. The DNA sequence encoding BMP-2 was then subcloned from pEC3.1-BMP2 into the pAd/BLOCK-iT™-DEST adenoviral vector genome, which was then linearized and used to transfect 293 cells for adenovirus packaging. Adenovirus particles were generated with a titer of 1 × 1010 infectious units/mL. Results Potent expression of BMP-2 mRNA and protein was detected in adenovirus-infected 293 cells, confirming that the adenoviral vector encoding BMP-2 was successfully constructed. Conclusions This recombinant adenoviral vector encoding BMP-2 can be applied in future studies to explore the roles of BMP-2 in various cell types and tissues.
Collapse
Affiliation(s)
- Liangquan Peng
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.,Guangzhou Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Tissue Engineering of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Kang Chen
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weimin Zhu
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Lu
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Xu
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yong Huang
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Shengzheng Kuai
- Key Laboratory of Tissue Engineering of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Zhenhan Deng
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Daping Wang
- Department of Sports Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.,Guangzhou Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Tissue Engineering of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: lessons from mice. FEBS Lett 2019; 593:3461-3483. [PMID: 31769012 PMCID: PMC6928416 DOI: 10.1002/1873-3468.13696] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Adenovirus is a highly evolutionary successful pathogen, as it is widely prevalent across the animal kingdom, infecting hosts ranging from lizards and frogs to dolphins, birds, and humans. Although natural adenovirus infections in humans rarely cause severe pathology, intravenous injection of high doses of adenovirus-based vectors triggers rapid activation of the innate immune system, leading to cytokine storm syndrome, disseminated intravascular coagulation, thrombocytopenia, and hepatotoxicity, which individually or in combination may cause morbidity and mortality. Much of the information on exactly how adenovirus activates the innate immune system has been gathered from mouse experimental systems. Intravenous administration of adenovirus to mice revealed mechanistic insights into cellular and molecular components of the innate immunity that detect adenovirus particles, activate pro-inflammatory signaling pathways and cytokine production, sequester adenovirus particles from the bloodstream, and eliminate adenovirus-infected cells. Collectively, this information greatly improved our understanding of mechanisms of activation of innate immunity to adenovirus and may pave the way for designing safer adenovirus-based vectors for therapy of genetic and acquired human diseases.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Children’s Center for Transplantation and Immuno-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Abstract
As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.
Collapse
|
17
|
Chen G, Katrekar D, Mali P. RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry 2019; 58:1947-1957. [PMID: 30943016 DOI: 10.1021/acs.biochem.9b00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeted transcriptome engineering, in contrast to genome engineering, offers a complementary and potentially tunable and reversible strategy for cellular engineering. In this regard, adenosine to inosine (A-to-I) RNA base editing was recently engineered to make programmable base conversions on target RNAs. Similar to the DNA base editing technology, A-to-I RNA editing may offer an attractive alternative in a therapeutic setting, especially for the correction of point mutations. This Perspective introduces five currently characterized RNA editing systems and serves as a reader's guide for implementing an appropriate RNA editing strategy for applications in research or therapeutics.
Collapse
Affiliation(s)
- Genghao Chen
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Dhruva Katrekar
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Prashant Mali
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| |
Collapse
|
18
|
Falanga AP, Cerullo V, Marzano M, Feola S, Oliviero G, Piccialli G, Borbone N. Peptide Nucleic Acid-Functionalized Adenoviral Vectors Targeting G-Quadruplexes in the P1 Promoter of Bcl-2 Proto-Oncogene: A New Tool for Gene Modulation in Anticancer Therapy. Bioconjug Chem 2019; 30:572-582. [PMID: 30620563 DOI: 10.1021/acs.bioconjchem.8b00674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The B-cell lymphoma 2 (Bcl-2) gene encodes for an antiapoptotic protein associated with the onset of many human tumors. Several oligonucleotides (ONs) and ON analogues are under study as potential tools to counteract the Bcl-2 expression. Among these are Peptide Nucleic Acids (PNAs). The absence of charges on PNA backbones allows the formation of PNA/DNA complexes provided with higher stability than the corresponding natural DNA/DNA counterparts. To date, the use of PNAs in antigene or antisense strategies is strongly limited by their inability to efficiently cross the cellular membranes. With the aim of downregulating the expression of Bcl-2, we propose here a novel antigene approach which uses oncolytic adenoviral vectors (OAds) as a new cancer cell-targeted PNA delivery system. The ability of oncolytic Ad5D24 vectors to selectively infect and kill cancer cells was exploited to transfect with high efficiency and selectivity a short cytosine-rich PNA complementary to the longest loop of the main G-quadruplex formed by the 23-base-long bcl2midG4 sequence located 52-30 bp upstream of the P1 promoter of Bcl-2 gene. Physico-chemical and biological investigations confirmed the ability of the PNA-conjugated Ad5D24 vectors to load and transfect their PNA cargo into human A549 and MDA-MB-436 cancer cell lines, as well as the synergistic (OAd+PNA) cytotoxic effect against the same cell lines. This approach holds promise for safer chemotherapy because of reduced toxicity to healthy tissues and organs.
Collapse
Affiliation(s)
- Andrea Patrizia Falanga
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | - Vincenzo Cerullo
- Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Via Sergio Pansini 5 , 80131 Naples , Italy
| | - Maria Marzano
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | | | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Via Sergio Pansini 5 , 80131 Naples , Italy
| | - Gennaro Piccialli
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | - Nicola Borbone
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| |
Collapse
|
19
|
Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W, He Q. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1241-1251. [PMID: 30813005 DOI: 10.1016/j.msec.2019.01.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Studies have demonstrated that scaffolds, a component of bone tissue engineering, play an indispensable role in bone repair. However, these scaffolds involving ex-vivo cultivated cells seeded have disadvantages in clinical practice, such as limited autologous cells, time-consuming cell expansion procedures, low survival rate and immune-rejection issues. To overcome these disadvantages, recent focus has been placed on the design of functionalized cell-free scaffolds, instead of cell-seeded scaffolds, that can reduplicate the natural self-healing events of bone fractures, such as inflammation, cell recruitment, vascularization, and osteogenic differentiation. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of functionalized cell-free scaffolds for bone repair. In this review, the self-healing processes were highlighted, and approaches for the functionalization were summarized. Also, ongoing efforts and breakthroughs in the field of functionalization for bone defect repair were discussed. Finally, a brief summery and new perspectives for functionalization strategies were presented to provide guidelines for further efforts in the design of bioinspired cell-free scaffolds.
Collapse
Affiliation(s)
- Li Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongwei Lu
- Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Yulan Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Jiangming Luo
- Center of Joint Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Qingyi He
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
20
|
Grol MW, Stone A, Ruan MZ, Guse K, Lee BH. Prospects of Gene Therapy for Skeletal Diseases. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:119-137. [DOI: 10.1016/b978-0-12-804182-6.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Assessment of Specificity of an Adenovirus Targeted to HER3/4. Methods Mol Biol 2017. [PMID: 28791648 DOI: 10.1007/978-1-4939-7219-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Gene therapy with viral vectors, such as adenovirus (Ad), targeted to the human epidermal growth factor receptors 3 and 4 (HER3/4) are potentially useful for cancer therapy. Testing the expression of a reporter gene from these viruses in target cells is essential to determine functionality of the targeted virus. A competition assay with a relevant ligand (heregulin, HRG) can provide convincing evidence that blocking binding to the HER3/4 receptor results in decreased reporter gene expression. Labeling individual viruses with a fluorescent molecule allows examination of the targeted virus in specific steps in the infection. Virus internalization into cell lines can be determined using antibody-labeled receptors, and the virus colocalization with receptors can also be visualized. Characterization of a targeted virus in this fashion is important to demonstrate that the targeting of the virus functions in an expected manner, and provides support for larger-scale testing of the virus. Information acquired in these experiments may also be useful to inform and improve on the design of future targeted viruses.
Collapse
|
22
|
Keeler AM, ElMallah MK, Flotte TR. Gene Therapy 2017: Progress and Future Directions. Clin Transl Sci 2017; 10:242-248. [PMID: 28383804 PMCID: PMC5504480 DOI: 10.1111/cts.12466] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- A M Keeler
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - M K ElMallah
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - T R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
23
|
Maunder HE, Wright J, Kolli BR, Vieira CR, Mkandawire TT, Tatoris S, Kennedy V, Iqball S, Devarajan G, Ellis S, Lad Y, Clarkson NG, Mitrophanous KA, Farley DC. Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system. Nat Commun 2017; 8:14834. [PMID: 28345582 PMCID: PMC5378976 DOI: 10.1038/ncomms14834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
A key challenge in the field of therapeutic viral vector/vaccine manufacturing is maximizing production. For most vector platforms, the ‘benchmark' vector titres are achieved with inert reporter genes. However, expression of therapeutic transgenes can often adversely affect vector titres due to biological effects on cell metabolism and/or on the vector virion itself. Here, we exemplify the novel ‘Transgene Repression In vector Production' (TRiP) system for the production of both RNA- and DNA-based viral vectors. The TRiP system utilizes a translational block of one or more transgenes by employing the bacterial tryptophan RNA-binding attenuation protein (TRAP), which binds its target RNA sequence close to the transgene initiation codon. We report enhancement of titres of lentiviral vectors expressing Cyclo-oxygenase-2 by 600-fold, and adenoviral vectors expressing the pro-apoptotic gene Bax by >150,000-fold. The TRiP system is transgene-independent and will be a particularly useful platform in the clinical development of viral vectors expressing problematic transgenes. The maximum titre of therapeutic viral vectors can be adversely affected by the encoded transgene. Here the authors repress transgene expression in producing cells by employing the tryptophan RNA-binding attenuation protein and show that it improves titre of RNA- and DNA-based viral vectors expressing toxic transgenes.
Collapse
Affiliation(s)
- H E Maunder
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - J Wright
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - B R Kolli
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - C R Vieira
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - T T Mkandawire
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Tatoris
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - V Kennedy
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Iqball
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - G Devarajan
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Ellis
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Y Lad
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - N G Clarkson
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - K A Mitrophanous
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - D C Farley
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| |
Collapse
|
24
|
Watanabe S, Ogasawara T, Tamura Y, Saito T, Ikeda T, Suzuki N, Shimosawa T, Shibata S, Chung UI, Nangaku M, Uchida S. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments. PLoS One 2017; 12:e0168638. [PMID: 28253301 PMCID: PMC5333796 DOI: 10.1371/journal.pone.0168638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023] Open
Abstract
Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. "adenovirus driven NPT2a-EGFP and endogenous NHE3 protein", "adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein" and "adenovirus driven AQP2-EGFP and endogenous AQP2 protein". Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and effective gene therapy in the kidney tubule diseases.
Collapse
Affiliation(s)
- Sumiyo Watanabe
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
- * E-mail:
| | - Toru Ogasawara
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Yoshifuru Tamura
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Toshiyuki Ikeda
- Department of Blood Transfusion, Faculty of Medicine, The University of Tokyo, Japan
| | - Nobuchika Suzuki
- Department of Bioregulation, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Tatsuo Shimosawa
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Shibata
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| | - Ung-il Chung
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shunya Uchida
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
25
|
Chandran JS, Scarrott JM, Shaw PJ, Azzouz M. Gene Therapy in the Nervous System: Failures and Successes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:241-257. [PMID: 28840561 DOI: 10.1007/978-3-319-60733-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic disorders, caused by deleterious changes in the DNA sequence away from the normal genomic sequence, affect millions of people worldwide. Gene therapy as a treatment option for patients is an attractive proposition due to its conceptual simplicity. In principle, gene therapy involves correcting the genetic disorder by either restoring a normal functioning copy of a gene or reducing the toxicity arising from a mutated gene. In this way specific genetic function can be restored without altering the expression of other genes and the proteins they encode. The reality however is much more complex, and as a result the vector systems used to deliver gene therapies have by necessity continued to evolve and improve over time with respect to safety profile, efficiency, and long-term expression. In this chapter we examine the current approaches to gene therapy, assess the different gene delivery systems utilized, and highlight the failures and successes of relevant clinical trials. We do not intend for this chapter to be a comprehensive and exhaustive assessment of all clinical trials that have been conducted in the CNS, but instead will focus on specific diseases that have seen successes and failures with different gene therapy vehicles to gauge how preclinical models have informed the design of clinical trials.
Collapse
Affiliation(s)
- Jayanth S Chandran
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Joseph M Scarrott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
26
|
Maggio I, Stefanucci L, Janssen JM, Liu J, Chen X, Mouly V, Gonçalves MAFV. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res 2016; 44:1449-70. [PMID: 26762977 PMCID: PMC4756843 DOI: 10.1093/nar/gkv1540] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles.
Collapse
MESH Headings
- Adenoviridae/genetics
- Alleles
- Base Sequence
- Blotting, Western
- CRISPR-Cas Systems
- Cell Line
- DNA End-Joining Repair
- Dystrophin/genetics
- Dystrophin/metabolism
- Endonucleases/genetics
- Endonucleases/metabolism
- Genetic Therapy/methods
- Genetic Vectors/genetics
- HEK293 Cells
- HeLa Cells
- Humans
- Microscopy, Fluorescence
- Molecular Sequence Data
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/therapy
- Mutation
- Myoblasts/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Ignazio Maggio
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Luca Stefanucci
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC Leiden, The Netherlands Facoltà di Scienze Matematiche Fisiche e Naturali, Universitá di Roma Tor Vergata, Rome, Italy
| | - Josephine M Janssen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jin Liu
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Xiaoyu Chen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Vincent Mouly
- Center for Research in Myology, UMRS 974 UPMC-INSERM, FRE 3617 CNRS, Paris, France
| | - Manuel A F V Gonçalves
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
27
|
Garofalo M, Iovine B, Kuryk L, Capasso C, Hirvinen M, Vitale A, Yliperttula M, Bevilacqua MA, Cerullo V. Oncolytic Adenovirus Loaded with L-carnosine as Novel Strategy to Enhance the Antitumor Activity. Mol Cancer Ther 2016; 15:651-60. [PMID: 26861248 DOI: 10.1158/1535-7163.mct-15-0559] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/30/2016] [Indexed: 11/16/2022]
Abstract
Oncolytic viruses are able to specifically replicate, infect, and kill only cancer cells. Their combination with chemotherapeutic drugs has shown promising results due to the synergistic action of virus and drugs; the combinatorial therapy is considered a potential clinically relevant approach for cancer. In this study, we optimized a strategy to absorb peptides on the viral capsid, based on electrostatic interaction, and used this strategy to deliver an active antitumor drug. We used L-carnosine, a naturally occurring histidine dipeptide with a significant antiproliferative activity. An ad hoc modified, positively charged L-carnosine was combined with the capsid of an oncolytic adenovirus to generate an electrostatic virus-carnosine complex. This complex showed enhanced antitumor efficacy in vitro and in vivo in different tumor models. In HCT-116 colorectal and A549 lung cancer cell lines, the complex showed higher transduction ratio and infectious titer compared with an uncoated oncolytic adenovirus. The in vivo efficacy of the complex was tested in lung and colon cancer xenograft models, showing a significant reduction in tumor growth. Importantly, we investigated the molecular mechanisms underlying the effects of complex on tumor growth reduction. We found that complex induces apoptosis in both cell lines, by using two different mechanisms, enhancing viral replication and affecting the expression of Hsp27. Our system could be used in future studies also for delivery of other bioactive drugs. Mol Cancer Ther; 15(4); 651-60. ©2016 AACR.
Collapse
Affiliation(s)
- Mariangela Garofalo
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples, Italy
| | - Barbara Iovine
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples, Italy
| | - Lukasz Kuryk
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Oncos Therapeutics Ltd., Helsinki, Finland. Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Cristian Capasso
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mari Hirvinen
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Andrea Vitale
- Department of Movement Sciences and Wellness (DiSMEB), University of Naples Parthenope and CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences and Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Maria Assunta Bevilacqua
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples, Italy
| | - Vincenzo Cerullo
- Laboratory of ImmunoViroTherapy, Centre for Drug Research (CDR), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
28
|
Abstract
Many nonhuman adenoviruses (AdVs) of simian, bovine, porcine, canine, ovine, murine, and fowl origin are being developed as gene delivery systems for recombinant vaccines and gene therapy applications. In addition to circumventing preexisting human AdV (HAdV) immunity, nonhuman AdV vectors utilize coxsackievirus-adenovirus receptor or other receptors for vector internalization, thereby expanding the range of cell types that can be targeted. Nonhuman AdV vectors also provide excellent platforms for veterinary vaccines. A specific nonhuman AdV vector when used in its species of origin could provide an excellent animal model for evaluating the vector efficacy and pathogenesis. These vectors are useful in prime–boost approaches with other AdV vectors or with other gene delivery systems including DNA immunization and viral or bacterial vectors. When multiple vector inoculations are required, nonhuman AdV vectors could supplement HAdV or other viral vectors.
Collapse
|
29
|
Donnelly A, Yata T, Bentayebi K, Suwan K, Hajitou A. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents. Viruses 2015; 7:6476-89. [PMID: 26670247 PMCID: PMC4690874 DOI: 10.3390/v7122951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications.
Collapse
Affiliation(s)
- Amanda Donnelly
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Teerapong Yata
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand.
| | - Kaoutar Bentayebi
- Laboratory of Genetics, University of Balearic islands, Valldemossa Road Km. 7,5, 07122 Palma, Spain.
| | - Keittisak Suwan
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Amin Hajitou
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
30
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
31
|
Capasso C, Hirvinen M, Garofalo M, Romaniuk D, Kuryk L, Sarvela T, Vitale A, Antopolsky M, Magarkar A, Viitala T, Suutari T, Bunker A, Yliperttula M, Urtti A, Cerullo V. Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma. Oncoimmunology 2015; 5:e1105429. [PMID: 27141389 PMCID: PMC4839367 DOI: 10.1080/2162402x.2015.1105429] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/11/2015] [Accepted: 10/04/2015] [Indexed: 11/06/2022] Open
Abstract
The stimulation of the immune system using oncolytic adenoviruses (OAds) has attracted significant interest and several studies suggested that OAds immunogenicity might be important for their efficacy. Therefore, we developed a versatile and rapid system to adsorb tumor-specific major histocompatibility complex class I (MHC-I) peptides onto the viral surface to drive the immune response toward the tumor epitopes. By studying the model epitope SIINFEKL, we demonstrated that the peptide-coated OAd (PeptiCRAd) retains its infectivity and the cross presentation of the modified-exogenous epitope on MHC-I is not hindered. We then showed that the SIINFEKL-targeting PeptiCRAd achieves a superior antitumor efficacy and increases the percentage of antitumor CD8+ T cells and mature epitope-specific dendritic cells in vivo. PeptiCRAds loaded with clinically relevant tumor epitopes derived from tyrosinase-related protein 2 (TRP-2) and human gp100 could reduce the growth of primary-treated tumors and secondary-untreated melanomas, promoting the expansion of antigen-specific T-cell populations. Finally, we tested PeptiCRAd in humanized mice bearing human melanomas. In this model, a PeptiCRAd targeting the human melanoma-associated antigen A1 (MAGE-A1) and expressing granulocyte and macrophage colony-stimulating factor (GM-CSF) was able to eradicate established tumors and increased the human MAGE-A1-specific CD8+ T cell population. Herein, we show that the immunogenicity of OAds plays a key role in their efficacy and it can be exploited to direct the immune response system toward exogenous tumor epitopes. This versatile and rapid system overcomes the immunodominance of the virus and elicits a tumor-specific immune response, making PeptiCRAd a promising approach for clinical testing.
Collapse
Affiliation(s)
- Cristian Capasso
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Mari Hirvinen
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Mariangela Garofalo
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki, Viikinkaari 5, Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, Naples, Italy
| | - Dmitrii Romaniuk
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Lukasz Kuryk
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Teea Sarvela
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Andrea Vitale
- Department of Movement Sciences and Wellness (DiSMEB), University of Naples Parthenope, Via Medina 40, Naples, Italy, CEINGE-Biotecnologie Avanzate , Via G. Salvatore 486 , Naples, Italy
| | - Maxim Antopolsky
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Aniket Magarkar
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Teemu Suutari
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Alex Bunker
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Arto Urtti
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki, Viikinkaari 5, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| |
Collapse
|
32
|
Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5-based Constructs. Mol Ther 2015; 24:6-16. [PMID: 26478249 PMCID: PMC4754553 DOI: 10.1038/mt.2015.194] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022] Open
Abstract
Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes.
Collapse
|
33
|
Mennechet FJD, Tran TTP, Eichholz K, van de Perre P, Kremer EJ. Ebola virus vaccine: benefit and risks of adenovirus-based vectors. Expert Rev Vaccines 2015; 14:1471-8. [PMID: 26325242 DOI: 10.1586/14760584.2015.1083429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 2014, an outbreak of Ebola virus spread rapidly in West Africa. The epidemic killed more than 10,000 people and resulted in transmissions outside the endemic countries. WHO hopes for effective vaccines by the end of 2015. Numerous vaccine candidates have been proposed, and several are currently being evaluated in humans. Among the vaccine candidates are vectors derived from adenovirus (Ad). Despite previous encouraging preclinical and Phase I/II trials, Ad vectors used in three Phase II trials targeting HIV were prematurely interrupted because of the lack of demonstrated efficacy. The vaccine was not only ineffective but also led to a higher rate of HIV acquisition. In this context, the authors discuss the potential benefits, risks and impact of using Ad-derived vaccines to control Ebola virus disease.
Collapse
Affiliation(s)
- Franck J D Mennechet
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| | - Thi Thu Phuong Tran
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| | - Karsten Eichholz
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| | | | - Eric J Kremer
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| |
Collapse
|
34
|
Kim JW, Kane JR, Young JS, Chang AL, Kanojia D, Morshed RA, Miska J, Ahmed AU, Balyasnikova IV, Han Y, Zhang L, Curiel DT, Lesniak MS. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma. Hum Gene Ther 2015; 26:635-46. [PMID: 26058317 DOI: 10.1089/hum.2015.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy.
Collapse
Affiliation(s)
- Julius W Kim
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - J Robert Kane
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jacob S Young
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Alan L Chang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Deepak Kanojia
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Ramin A Morshed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jason Miska
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Atique U Ahmed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Irina V Balyasnikova
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Yu Han
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Lingjiao Zhang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - David T Curiel
- 2 Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Maciej S Lesniak
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| |
Collapse
|
35
|
Somatostatin receptor based imaging and radionuclide therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:917968. [PMID: 25879040 PMCID: PMC4387942 DOI: 10.1155/2015/917968] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/09/2023]
Abstract
Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors.
Collapse
|