1
|
Eshghi S, Mousakhan Bakhtiari M, Behfar M, Izadi E, Naji P, Jafari L, Mohseni R, Saltanatpour Z, Hamidieh AA. Viral-based gene therapy clinical trials for immune deficiencies and blood disorders from 2013 until 2023 - an overview. Regen Ther 2025; 28:262-279. [PMID: 39844821 PMCID: PMC11751425 DOI: 10.1016/j.reth.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery. Generally, gene delivery systems are categorized into two types depending on utilized vectors: non-viral and viral. Viral vectors are commonly used in GT because of their high efficiency compared to non-viral vectors. In this article, all clinical trials on viral-based GT (with the exclusion of CRISPR and CAR-T cell Therapy) in the last decade for immune deficiencies and blood disorders including Severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), Chronic granulomatous disease (CGD), Leukocyte adhesion deficiency (LAD), Fanconi anemia (FA), Hemoglobinopathies, and Hemophilia will thoroughly be discussed. Moreover, viral vectors used in these trials including Retroviruses (RVs), Lentiviruses (LVs), and Adeno-Associated Viruses (AAVs) will be reviewed. This review provides a concise overview of traditional treatments for the mentioned disease and precise details of their viral-based GT clinical trial studies in the last decade, then presents the advantages, disadvantages, and potential adverse events of GT. In conclusion, this review presents GT as a hopeful and growing field in healthcare that could offer cures to diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Shirin Eshghi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Elaheh Izadi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Naji
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Kutle I, Polten R, Stalp JL, Hachenberg J, Todzey F, Hass R, Zimmermann K, von der Ohe J, von Kaisenberg C, Neubert L, Kamp JC, Schaudien D, Seyda AK, Hillemanns P, Klapdor R, Morgan MA, Schambach A. Anti-Mesothelin CAR-NK cells as a novel targeted therapy against cervical cancer. Front Immunol 2024; 15:1485461. [PMID: 39781381 PMCID: PMC11707549 DOI: 10.3389/fimmu.2024.1485461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored. This study used alpharetroviral SIN vectors to equip natural killer (NK) cells with a third-generation CAR (including CD28 and 4-1BB co-stimulatory domains) targeting Mesothelin, which was identified to be highly expressed on primary human cervical cancer tissues and cervical cancer cell lines in this and other studies. Anti-Mesothelin CAR-NK cells demonstrated high cytotoxicity against cervical cancer cells in 2D and 3D culture models, which corresponded to increased degranulation of CAR-NK-92 cells upon exposure to Mesothelin+ target cells. Mesothelin- cervical cancer cells were generated by CRISPR-Cas9-mediated knockout and used to show target antigen specificity of anti-Mesothelin CAR-NK-92 cells and primary NK cells derived from different healthy donors in co-culture experiments. Combination of anti-Mesothelin CAR-NK-92 cells with chemotherapy revealed increased elimination of cancer cells as compared to monotherapy settings. Our findings indicate the promise of anti-Mesothelin CAR-NK cells as a potential treatment option against cervical cancer, as well as other Mesothelin+ malignancies.
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Jan Lennart Stalp
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Felix Todzey
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | | | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jan C. Kamp
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, Hannover, Germany
| | - Ann-Kathrin Seyda
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Albertinen Hospital Hamburg, Hamburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2024:1-23. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
5
|
Minskaia E, Galieva A, Egorov AD, Ivanov R, Karabelsky A. Viral Vectors in Gene Replacement Therapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2157-2178. [PMID: 38462459 DOI: 10.1134/s0006297923120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels. Hematological, ophthalmological, neurodegenerative, and metabolic therapeutic areas have witnessed successful treatment of hemophilia and muscular dystrophy, restoration of immune system in children with immunodeficiencies, and restoration of vision. This review focuses on three leading vector platforms of the past two decades: adeno-associated viruses (AAVs), adenoviruses (AdVs), and lentiviruses (LVs). Special attention is given to successful preclinical and clinical studies that have led to the approval of gene therapies: six AAV-based (Glybera® for lipoprotein lipase deficiency, Luxturna® for retinal dystrophy, Zolgensma® for spinal muscular atrophy, Upstaza® for AADC, Roctavian® for hemophilia A, and Hemgenix® for hemophilia B) and three LV-based (Libmeldy® for infantile metachromatic leukodystrophy, Zynteglo® for β-thalassemia, and Skysona® for ALD). The review also discusses the problems that arise in the development of gene therapy treatments, which, nevertheless, do not overshadow the successes of already developed gene therapies and the hope these treatments give to long-suffering patients and their families.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia.
| | - Alima Galieva
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander D Egorov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Roman Ivanov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander Karabelsky
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| |
Collapse
|
6
|
Nowak J, Bentele M, Kutle I, Zimmermann K, Lühmann JL, Steinemann D, Kloess S, Koehl U, Roßberg W, Ahmed A, Schaudien D, Neubert L, Kamp JC, Kuehnel MP, Warnecke A, Schambach A, Morgan M. CAR-NK Cells Targeting HER1 (EGFR) Show Efficient Anti-Tumor Activity against Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2023; 15:3169. [PMID: 37370779 DOI: 10.3390/cancers15123169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: HNSCC is a highly heterogeneous and relapse-prone form of cancer. We aimed to expand the immunological tool kit against HNSCC by conducting a functional screen to generate chimeric antigen receptor (CAR)-NK-92 cells that target HER1/epidermal growth factor receptor (EGFR). (2) Methods: Selected CAR-NK-92 cell candidates were tested for enhanced reduction of target cells, CD107a expression and IFNγ secretion in different co-culture models. For representative HNSCC models, patient-derived primary HNSCC (pHNSCC) cell lines were generated by employing an EpCAM-sorting approach to eliminate the high percentage of non-malignant cells found. (3) Results: 2D and 3D spheroid co-culture experiments showed that anti-HER1 CAR-NK-92 cells effectively eliminated SCC cell lines and primary HNSCC (pHNSCC) cells. Co-culture of tumor models with anti-HER1 CAR-NK-92 cells led to enhanced degranulation and IFNγ secretion of NK-92 cells and apoptosis of target cells. Furthermore, remaining pHNSCC cells showed upregulated expression of putative cancer stem cell marker CD44v6. (4) Conclusions: These results highlight the promising potential of CAR-NK cell therapy in HNSCC and the likely necessity to target multiple tumor-associated antigens to reduce currently high relapse rates.
Collapse
Affiliation(s)
- Juliette Nowak
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Marco Bentele
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Stephan Kloess
- Institute for Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Koehl
- Institute for Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
- Institute of Clinical Immunology, University Leipzig, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, IZI, 04103 Leipzig, Germany
| | - Willi Roßberg
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Amed Ahmed
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, 30625 Hannover, Germany
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan-Christopher Kamp
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P Kuehnel
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
7
|
Polten R, Kutle I, Hachenberg J, Klapdor R, Morgan M, Schambach A. Towards Novel Gene and Cell Therapy Approaches for Cervical Cancer. Cancers (Basel) 2022; 15:cancers15010263. [PMID: 36612258 PMCID: PMC9818159 DOI: 10.3390/cancers15010263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Cervical cancer is one of the most common malignancies in women, and the majority of cases are caused by infection with high-risk human papilloma virus (HPV) subtypes. Despite effective preventative measures, such as vaccinations against HPV, over 300,000 women die world-wide from cervical cancer each year. Once cervical cancer is diagnosed, treatment may consist of radial hysterectomy, or chemotherapy and radiotherapy, or a combination of therapies dependent upon the disease stage. Unfortunately, overall prognosis for patients with metastatic or recurrent disease remains poor. In these cases, immunotherapies may be useful based on promising preclinical work, some of which has been successfully translated to the clinic. For example, approaches using monoclonal antibodies directed against surface proteins important for control of immune checkpoints (i.e., immune checkpoint inhibitors) were shown to improve outcome in many cancer settings, including cervical cancer. Additionally, initial clinical studies showed that application of cytotoxic immune cells modified to express chimeric antigen receptors (CAR) or T cell receptors (TCR) for better recognition and elimination of tumor cells may be useful to control cervical cancer. This review explores these important topics, including strengths and limitations of standard and developing approaches, and how some novel treatment strategies may be optimally used to offer the best possible treatment for cervical cancer patients.
Collapse
Affiliation(s)
- Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (M.M.); (A.S.); Tel.: +49-511-532-6067 (A.S.)
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (M.M.); (A.S.); Tel.: +49-511-532-6067 (A.S.)
| |
Collapse
|
8
|
Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 2022; 110:109041. [PMID: 35839565 DOI: 10.1016/j.intimp.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Adoptive cell treatment (ACT) utilizing chimeric antigen receptors (CAR) diverts the specificity of safe cells against a target-specific antigen and portrays exceptional potential for cancer treatment. While CAR T cell treatment has risen as a breakthrough with unprecedented results within the therapeutic procedures of human malignancies, different deficiencies including challenging and costly generation processes, strict patient qualification criteria, and undesirable toxicity have ruined its application. Unlike T cells, the application of natural killer (NK) cells has attracted consideration as a reasonable alternative owing to the major histocompatibility complex (MHC)-independency, shorter life expectancy, the potential to create an off-the-shelf immune product, and potent antitumor properties. In this article, we provide an updated review of the differences between CAR T and CAR NK cells, current enhancements in CAR NK design, the available sources for collecting NK cells, and strategies for the transduction step of the CARs to NK cells. Furthermore, we focus on the published and ongoing preclinical and clinical studies of CAR NK treatment strategies both in hematologic malignancies and solid tumors. We also discuss limitations and plausible solutions to improve the perseverance, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
Affiliation(s)
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol 2021; 14:73. [PMID: 33933160 PMCID: PMC8088725 DOI: 10.1186/s13045-021-01083-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Due to their efficient recognition and lysis of malignant cells, natural killer (NK) cells are considered as specialized immune cells that can be genetically modified to obtain capable effector cells for adoptive cellular treatment of cancer patients. However, biological and technical hurdles related to gene delivery into NK cells have dramatically restrained progress. Recent technological advancements, including improved cell expansion techniques, chimeric antigen receptors (CAR), CRISPR/Cas9 gene editing and enhanced viral transduction and electroporation, have endowed comprehensive generation and characterization of genetically modified NK cells. These promising developments assist scientists and physicians to design better applications of NK cells in clinical therapy. Notably, redirecting NK cells using CARs holds important promise for cancer immunotherapy. Various preclinical and a limited number of clinical studies using CAR-NK cells show promising results: efficient elimination of target cells without side effects, such as cytokine release syndrome and neurotoxicity which are seen in CAR-T therapies. In this review, we focus on the details of CAR-NK technology, including the design of efficient and safe CAR constructs and associated NK cell engineering techniques: the vehicles to deliver the CAR-containing transgene, detection methods for CARs, as well as NK cell sources and NK cell expansion. We summarize the current CAR-NK cell literature and include valuable lessons learned from the CAR-T cell field. This review also provides an outlook on how these approaches may transform current clinical products and protocols for cancer treatment.
Collapse
Affiliation(s)
- Ying Gong
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Roel G J Klein Wolterink
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Gerard M J Bos
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,CiMaas BV, Maastricht, The Netherlands
| | - Wilfred T V Germeraad
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands. .,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands. .,CiMaas BV, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, Shomali N, Chartrand MS, Pathak Y, Jarahian M, Izadi S, Hassanzadeh A, Shirafkan N, Tahmasebi S, Khiavi FM. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther 2021; 12:81. [PMID: 33494834 PMCID: PMC7831265 DOI: 10.1186/s13287-020-02128-1] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND CARs are simulated receptors containing an extracellular single-chain variable fragment (scFv), a transmembrane domain, as well as an intracellular region of immunoreceptor tyrosine-based activation motifs (ITAMs) in association with a co-stimulatory signal. MAIN BODY Chimeric antigen receptor (CAR) T cells are genetically engineered T cells to express a receptor for the recognition of the particular surface marker that has given rise to advances in the treatment of blood disorders. The CAR T cells obtain supra-physiological properties and conduct as "living drugs" presenting both immediate and steady effects after expression in T cells surface. But, their efficacy in solid tumor treatment has not yet been supported. The pivotal challenges in the field of solid tumor CAR T cell therapy can be summarized in three major parts: recognition, trafficking, and surviving in the tumor. On the other hand, the immunosuppressive tumor microenvironment (TME) interferes with T cell activity in terms of differentiation and exhaustion, and as a result of the combined use of CARs and checkpoint blockade, as well as the suppression of other inhibitor factors in the microenvironment, very promising results were obtained from the reduction of T cell exhaustion. CONCLUSION Nowadays, identifying and defeating the mechanisms associated with CAR T cell dysfunction is crucial to establish CAR T cells that can proliferate and lyse tumor cells severely. In this review, we discuss the CAR signaling and efficacy T in solid tumors and evaluate the most significant barriers in this process and describe the most novel therapeutic methods aiming to the acquirement of the promising therapeutic outcome in non-hematologic malignancies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vladimir A. Safonov
- The Laboratory of Biogeochemistry and Environment, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Kosygina 19 Street, Moscow, Russian Federation 119991
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Markov Alexander
- Tyumen State Medical University, Tyumen Industrial University, Tyumen, Russian Federation
| | - Navid Shomali
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Mostafa Jarahian
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Ali Hassanzadeh
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Naghmeh Shirafkan
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Safa Tahmasebi
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
11
|
Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020; 7:E107. [PMID: 32916815 PMCID: PMC7552685 DOI: 10.3390/bioengineering7030107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
There are currently multiple approaches to facilitate gene therapy via intramuscular gene delivery, such as electroporation, viral delivery, or direct DNA injection with or without polymeric carriers. Each of these methods has benefits, but each method also has shortcomings preventing it from being established as the ideal technique. A promising method, ultrasound-mediated gene delivery (or sonodelivery) is inexpensive, widely available, reusable, minimally invasive, and safe. Hurdles to utilizing sonodelivery include choosing from a large variety of conditions, which are often dependent on the equipment and/or research group, and moderate transfection efficiencies when compared to some other gene delivery methods. In this review, we provide a comprehensive look at the breadth of sonodelivery techniques for intramuscular gene delivery and suggest future directions for this continuously evolving field.
Collapse
Affiliation(s)
- Richard E. Decker
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Zachary E. Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| |
Collapse
|
12
|
De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW, Bondanza S, De Luca M. Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harb Perspect Biol 2020; 12:a035667. [PMID: 31653644 PMCID: PMC7197428 DOI: 10.1101/cshperspect.a035667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Maria Carmela Latella
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Alessia Secone Seconetti
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Cecilia Cattelani
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sergio Bondanza
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
13
|
Dettmer V, Bloom K, Gross M, Weissert K, Aichele P, Ehl S, Cathomen T. Retroviral UNC13D Gene Transfer Restores Cytotoxic Activity of T Cells Derived from Familial Hemophagocytic Lymphohistiocytosis Type 3 Patients In Vitro. Hum Gene Ther 2019; 30:975-984. [PMID: 31032638 DOI: 10.1089/hum.2019.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is a group of life-threatening, autosomal recessive disorders of severe hyperinflammation. FHL type 3 (FHL-3) accounts for about 30% of FHL cases. It is characterized by mutations in the UNC13D gene that give rise to functionally impaired or absent Munc13-4 protein, resulting in impaired secretion of lytic granules by cytotoxic lymphocytes. Etoposide-based therapy is currently used as the standard of care that results in around 60% 5-year survival, illustrating the need for novel treatment approaches. Key problems include treatment toxicity and failure to induce or maintain remission of the hyperinflammation. Instead of immunosuppression, transplantation of autologous gene-corrected T cells can be envisaged as an approach to restore the impaired immune reaction. This study established a protocol that enabled hyperactivated, FHL-3 patient-derived T cells to be cultured and a codon-optimized UNC13D expression cassette to be delivered by either alpha- or gamma-retroviral gene transfer. The data demonstrate that the established protocol can be applied to FHL-3 patient cells with various genetic backgrounds and that gamma-retroviral UNC13D transfer restored expression of functional Munc13-4, as well as degranulation capacity and cell-mediated cytotoxicity of those patient-derived CD8+ T cells. Furthermore, the study shows that the co-introduction of a truncated low-affinity nerve growth factor receptor coding sequence enabled the therapeutic effect to be optimized by enriching transduced cells in a Good Manufacturing Practice-compliant manner. In conclusion, this study lays the foundation for an adaptive immune cell therapy approach aiming at immunological stabilization of FHL-3 patients with autologous, immune-competent T cells prior to hematopoietic stem-cell transplantation.
Collapse
Affiliation(s)
- Viviane Dettmer
- 1Institute for Transfusion Medicine and Gene Therapy, University of Freiburg, Freiburg, Germany.,2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,3Institute for Immunodeficiency, and University of Freiburg, Freiburg, Germany
| | - Kristie Bloom
- 1Institute for Transfusion Medicine and Gene Therapy, University of Freiburg, Freiburg, Germany.,2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Miriam Gross
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,3Institute for Immunodeficiency, and University of Freiburg, Freiburg, Germany.,4Institute of Immunology, Medical Center-University of Freiburg, Freiburg, Germany; University of Freiburg, Freiburg, Germany
| | - Kristoffer Weissert
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,3Institute for Immunodeficiency, and University of Freiburg, Freiburg, Germany.,5Faculty of Biology and University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,5Faculty of Biology and University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,4Institute of Immunology, Medical Center-University of Freiburg, Freiburg, Germany; University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- 1Institute for Transfusion Medicine and Gene Therapy, University of Freiburg, Freiburg, Germany.,2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Abstract
Replication-defective retroviral vectors have been used for more than 25 years as a tool for efficient and stable insertion of therapeutic transgenes in human cells. Patients suffering from severe genetic diseases have been successfully treated by transplantation of autologous hematopoietic stem-progenitor cells (HSPCs) transduced with retroviral vectors, and the first of this class of therapies, Strimvelis, has recently received market authorization in Europe. Some clinical trials, however, resulted in severe adverse events caused by vector-induced proto-oncogene activation, which showed that retroviral vectors may retain a genotoxic potential associated to proviral integration in the human genome. The adverse events sparked a renewed interest in the biology of retroviruses, which led in a few years to a remarkable understanding of the molecular mechanisms underlying retroviral integration site selection within mammalian genomes. This review summarizes the current knowledge on retrovirus-host interactions at the genomic level, and the peculiar mechanisms by which different retroviruses, and their related gene transfer vectors, integrate in, and interact with, the human genome. This knowledge provides the basis for the development of safer and more efficacious retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
15
|
Klöß S, Oberschmidt O, Morgan M, Dahlke J, Arseniev L, Huppert V, Granzin M, Gardlowski T, Matthies N, Soltenborn S, Schambach A, Koehl U. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells. Hum Gene Ther 2017; 28:897-913. [PMID: 28810809 DOI: 10.1089/hum.2017.157] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56+CD3-) was carried out with the CliniMACS Prodigy® in a single process, starting with approximately 1.2 × 109 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 106 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO™10, CellGro®, TexMACS™, and NK MACS®). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56+CD3- target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3 depletion and CD56 enrichment steps. Manually performed experiments to test different culture media demonstrated significantly higher NK cell expansion rates and an approximately equal distribution of CD56dimCD16pos and CD56brightCD16dim&neg NK subsets on day 14 with cells cultivated in NK MACS® media. Moreover, effector cell expansion in manually performed experiments with NK MACS® containing IL-2 and irradiated autologous FCs and IL-21, both added at the initiation of the culture, induced an 85-fold NK cell expansion. Compared to freshly isolated NK cells, expanded NK cells expressed significantly higher levels of NKp30, NKp44, NKG2D, TRAIL, FasL, CD69, and CD137, and showed comparable cell viabilities and killing/degranulation activities against tumor and leukemic cell lines in vitro. NK cells used for CAR transduction showed the highest anti-CD123 CAR expression on day 3 after gene modification. These anti-CD123 CAR-engineered NK cells demonstrated improved cytotoxicity against the CD123pos AML cell line KG1a and primary AML blasts. In addition, CAR NK cells showed higher degranulation and enhanced secretion of tumor necrosis factor alpha, interferon gamma, and granzyme A and B. In fluorescence imaging, specific interactions that initiated apoptotic processes in the AML target cells were detected between CAR NK cells and KG1a. After the fully automated NK cell separation process on Prodigy, a new NK cell expansion protocol was generated that resulted in high numbers of NK cells with potent antitumor activity, which could be modified efficiently by novel third-generation, alpha-retroviral SIN vector constructs. Next steps are the integration of the manual expansion procedure in the fully integrated platform for a standardized GMP-compliant overall process in this closed system that also may include gene modification of NK cells to optimize target-specific antitumor activity.
Collapse
Affiliation(s)
- Stephan Klöß
- 1 Institute for Cellular Therapeutics, GMPDU, IFB-Tx, Hannover Medical School , Hannover, Germany
| | - Olaf Oberschmidt
- 1 Institute for Cellular Therapeutics, GMPDU, IFB-Tx, Hannover Medical School , Hannover, Germany
| | - Michael Morgan
- 2 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Julia Dahlke
- 2 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Lubomir Arseniev
- 1 Institute for Cellular Therapeutics, GMPDU, IFB-Tx, Hannover Medical School , Hannover, Germany
| | | | | | - Tanja Gardlowski
- 1 Institute for Cellular Therapeutics, GMPDU, IFB-Tx, Hannover Medical School , Hannover, Germany
| | - Nadine Matthies
- 1 Institute for Cellular Therapeutics, GMPDU, IFB-Tx, Hannover Medical School , Hannover, Germany
| | | | - Axel Schambach
- 2 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School , Hannover, Germany.,5 Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Ulrike Koehl
- 1 Institute for Cellular Therapeutics, GMPDU, IFB-Tx, Hannover Medical School , Hannover, Germany
| |
Collapse
|
16
|
Albagli O, Pelczar H. Le rôle des protéines BET dans l’intégration des γ-rétrovirus. Med Sci (Paris) 2017; 32:1071-1075. [DOI: 10.1051/medsci/20163212009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
HAMDOUN Z, EHSAN H. Aftermath of the Human Genome Project: an era of struggle and discovery. Turk J Biol 2017. [DOI: 10.3906/biy-1609-77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
18
|
Abstract
Viral vector use in gene therapy has highlighted several safety concerns, including genotoxic events. Generally, vector-mediated genotoxicity results from upregulation of cellular proto-oncogenes via promoter insertion, promoter activation, or gene transcript truncation, with enhancer-mediated activation of nearby genes the primary mechanism reported in gene therapy trials. Vector-mediated genotoxicity can be influenced by virus type, integration target site, and target cell type; different vectors have distinct integration profiles which are cell-specific. Non-viral factors, including patient age, disease, and dose can also influence genotoxic potential, thus the choice of test models and clinical trial populations is important to ensure they are indicative of efficacy and safety. Efforts have been made to develop viral vectors with less risk of insertional mutagenesis, including self-inactivating (SIN) vectors, enhancer-blocking insulators, and microRNA targeting of vectors, although insertional mutagenesis is not completely abrogated. Here we provide an overview of the current understanding of viral vector-mediated genotoxicity risk from factors contributing to viral vector-mediated genotoxicity to efforts made to reduce genotoxicity, and testing strategies required to adequately assess the risk of insertional mutagenesis. It is clear that there is not a 'one size fits all' approach to vector modification for reducing genotoxicity, and addressing these challenges will be a key step in the development of therapies such as CRISPR-Cas9 and delivery of future gene-editing technologies.
Collapse
Affiliation(s)
- Rhiannon M David
- Genetic Toxicology, Discovery Safety, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Ann T Doherty
- Genetic Toxicology, Discovery Safety, AstraZeneca, Cambridge, CB4 0WG, UK
| |
Collapse
|
19
|
Diener Y, Bosio A, Bissels U. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Exp Hematol 2016; 44:991-1001. [PMID: 27576131 DOI: 10.1016/j.exphem.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.
Collapse
Affiliation(s)
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
20
|
Zhou H, He Z, Wang C, Xie T, Liu L, Liu C, Song F, Ma Y. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir. Int J Mol Sci 2016; 17:ijms17060891. [PMID: 27275821 PMCID: PMC4926425 DOI: 10.3390/ijms17060891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Zhiliang He
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Tingting Xie
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Lin Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Chuanyang Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Fangzhou Song
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Yongping Ma
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| |
Collapse
|
21
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
22
|
Morgan RA, Boyerinas B. Genetic Modification of T Cells. Biomedicines 2016; 4:biomedicines4020009. [PMID: 28536376 PMCID: PMC5344249 DOI: 10.3390/biomedicines4020009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Gene transfer technology and its application to human gene therapy greatly expanded in the last decade. One area of investigation that appears particularly promising is the transfer of new genetic material into T cells for the potential treatment of cancer. Herein, we describe several core technologies that now yield high-efficiency gene transfer into primary human T cells. These gene transfer techniques include viral-based gene transfer methods based on modified Retroviridae and non-viral methods such as DNA-based transposons and direct transfer of mRNA by electroporation. Where specific examples are cited, we emphasize the transfer of chimeric antigen receptors (CARs) to T cells, which permits engineered T cells to recognize potential tumor antigens.
Collapse
|
23
|
Grandgenett DP, Pandey KK, Bera S, Aihara H. Multifunctional facets of retrovirus integrase. World J Biol Chem 2015; 6:83-94. [PMID: 26322168 PMCID: PMC4549773 DOI: 10.4331/wjbc.v6.i3.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/01/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023] Open
Abstract
The retrovirus integrase (IN) is responsible for integration of the reverse transcribed linear cDNA into the host DNA genome. First, IN cleaves a dinucleotide from the 3’ OH blunt ends of the viral DNA exposing the highly conserved CA sequence in the recessed ends. IN utilizes the 3’ OH ends to catalyze the concerted integration of the two ends into opposite strands of the cellular DNA producing 4 to 6 bp staggered insertions, depending on the retrovirus species. The staggered ends are repaired by host cell machinery that results in a permanent copy of the viral DNA in the cellular genome. Besides integration, IN performs other functions in the replication cycle of several studied retroviruses. The proper organization of IN within the viral internal core is essential for the correct maturation of the virus. IN plays a major role in reverse transcription by interacting directly with the reverse transcriptase and by binding to the viral capsid protein and a cellular protein. Recruitment of several other host proteins into the viral particle are also promoted by IN. IN assists with the nuclear transport of the preintegration complex across the nuclear membrane. With several retroviruses, IN specifically interacts with different host protein factors that guide the preintegration complex to preferentially integrate the viral genome into specific regions of the host chromosomal target. Human gene therapy using retrovirus vectors is directly affected by the interactions of IN with these host factors. Inhibitors directed against the human immunodeficiency virus (HIV) IN bind within the active site of IN containing viral DNA ends thus preventing integration and subsequent HIV/AIDS.
Collapse
|
24
|
Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther 2015; 15:455-64. [PMID: 25645308 DOI: 10.1517/14712598.2015.1009886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Currently, joint arthroplasty remains the only definitive management of osteoarthritis, while other treatment modalities only provide temporary and symptomatic relief. The use of genetically engineered chondrocytes is currently undergoing clinical trials. Specifically, it has been designed to induce cartilage growth and differentiation in patients with degenerative arthritis, with the aim to play a curative role in the disease process. AREAS COVERED This treatment involves the incorporation of TGF-β1, which has been determined to play an influential role in chondrogenesis and extracellular matrix synthesis. Using genetic manipulation and viral transduction, TGF-β1 is incorporated into human chondrocytes and administered in a minimally invasive fashion directly to the affected joint. Following a database literature search, we evaluated the current evidence on this product and its outcomes. Furthermore, we also briefly reviewed other treatments developed for chondrogenesis and cartilage regeneration for comparison. EXPERT OPINION This treatment method has sustained positive effects on functional outcomes and cartilage growth in initial trials. It allows administration in a minimally invasive manner that does not require extended recovery time. Although several treatment modalities are currently under investigation and appear promising, we hope that these effects can be sustained in further studies. Ultimately, we anticipate that the results may be reproducible in many clinical settings and allow us to effectively treat cartilage damage in patients with degenerative arthritis.
Collapse
Affiliation(s)
- Randa K Elmallah
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Center for Joint Preservation and Replacement , 2401 West Belvedere Avenue, Baltimore, MD 21215 , USA +1 410 601 8500 ; +1 410 601 8501 ; ;
| | | | | | | | | | | |
Collapse
|