1
|
Warring SL, Sisson HM, Fineran PC, Rabiey M. Strategies for the biocontrol Pseudomonas infections pre-fruit harvest. Microb Biotechnol 2024; 17:e70017. [PMID: 39364588 PMCID: PMC11450377 DOI: 10.1111/1751-7915.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
The efficiency of global crop production is under threat from microbial pathogens which is likely to be worsened by climate change. Major contributors to plant disease are Pseudomonas syringae (P. syringae) pathovars which affect a variety of important crops. This opinion piece focuses on P. syringae pathovars actinidiae and syringae, which affect kiwifruit and stone fruits, respectively. We discuss some of the current control strategies for these pathogens and highlight recent research developments in combined biocontrol agents such as bacteriophages and combinations of bacteriophages with known anti-microbials such as antibiotics and bacteriocins.
Collapse
Affiliation(s)
- Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of OtagoDunedinNew Zealand
| | - Hazel M. Sisson
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Bioprotection Aotearoa, University of OtagoDunedinNew Zealand
- Genetics OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Bioprotection Aotearoa, University of OtagoDunedinNew Zealand
- Genetics OtagoDunedinNew Zealand
| | - Mojgan Rabiey
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
2
|
González AJ, Díaz D, Ciordia M, Landeras E. Occurrence of Pseudomonas syringae pvs. actinidiae, actinidifoliorum and Other P. syringae Strains on Kiwifruit in Northern Spain. Life (Basel) 2024; 14:208. [PMID: 38398717 PMCID: PMC10890144 DOI: 10.3390/life14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa), the agent causing bacterial canker of kiwifruit, has been present in the Principality of Asturias (PA), Northern Spain, since 2013, although with restricted distribution. In this study, 53 strains collected in kiwifruit orchards in PA during the period 2014-2020 were characterized by a polyphasic approach including biochemical and phylogenetic analysis. Thirty-three strains, previously identified by PCR as Psa, have been found to be a homogeneous group in phylogenetic analysis, which seems to indicate that there have been few introductions of the pathogen into the region. Two strains were confirmed as P. syringae pv. actinidifoliorum (Pfm), so this is the first report of Pfm in the PA. The remaining 18 strains were found to be close to P. avellanae and P. syringae pv. antirrhini or to strains described as Pfm look-alikes. Pathogenicity tests carried out on peppers with a selection of strains have shown that both Psa and Pfm caused clear damage, while the 18 atypical strains caused variable lesions. It would be necessary to carry out pathogenicity testing of atypical strains on kiwifruit plants to study the role of these strains in the kiwifruit pathosystem to evaluate their pathogenic potential in this crop.
Collapse
Affiliation(s)
- Ana J. González
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (D.D.); (M.C.)
| | - David Díaz
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (D.D.); (M.C.)
| | - Marta Ciordia
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (D.D.); (M.C.)
| | - Elena Landeras
- Laboratorio de Sanidad Vegetal del Principado de Asturias, C/Lucas Rodríguez Pire, 4-Bajo, 33011 Oviedo, Spain;
| |
Collapse
|
3
|
Luo J, Dai D, Lv L, Ahmed T, Chen L, Wang Y, An Q, Sun G, Li B. Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses 2022; 14:2704. [PMID: 36560706 PMCID: PMC9785728 DOI: 10.3390/v14122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Over the last several decades, kiwifruit production has been severely damaged by the bacterial plant pathogen Pseudomonas syringae pv. actinidiae (Psa), resulting in severe economic losses worldwide. Currently, copper bactericides and antibiotics are the main tools used to control this bacterial disease. However, their use is becoming increasingly ineffective due to the emergence of antibiotic resistance. In addition, environmental issues and the changes in the composition of soil bacterial communities are also concerning when using these substances. Although biocontrol methods have shown promising antibacterial effects on Psa infection under in vitro conditions, the efficiency of antagonistic bacteria and fungi when deployed under field conditions remains unclear. Therefore, it is crucial to develop a phage-based biocontrol strategy for this bacterial pathogen. Due to the specificity of the target bacteria and for the benefit of the environment, bacteriophages (phages) have been widely regarded as promising biological agents to control plant, animal, and human bacterial diseases. An increasing number of studies focus on the use of phages for the control of plant diseases, including the kiwifruit bacterial canker. In this review, we first introduce the characteristics of the Psa-induced kiwifruit canker, followed by a description of the diversity and virulence of Psa strains. The main focus of the review is the description of recent advances in the isolation of Psa phages and their characterization, including morphology, host range, lytic activity, genome characterization, and lysis mechanism, but we also describe the biocontrol strategies together with potential challenges introduced by abiotic factors, such as high temperature, extreme pH, and UV irradiation in kiwifruit orchards. The information presented in this review highlights the potential role of phages in controlling Psa infection to ensure plant protection.
Collapse
Affiliation(s)
- Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Dejiang Dai
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Luqiong Lv
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lei Chen
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qianli An
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Warring SL, Malone LM, Jayaraman J, Easingwood RA, Rigano LA, Frampton RA, Visnovsky SB, Addison SM, Hernandez L, Pitman AR, Lopez Acedo E, Kleffmann T, Templeton MD, Bostina M, Fineran PC. A lipopolysaccharide-dependent phage infects a pseudomonad phytopathogen and can evolve to evade phage resistance. Environ Microbiol 2022; 24:4834-4852. [PMID: 35912527 PMCID: PMC9796965 DOI: 10.1111/1462-2920.16106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T = 9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage resistance is overcome by mutations in a tail fibre and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa.
Collapse
Affiliation(s)
- Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Lucia M. Malone
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant & Food Research Limited, Mt AlbertAucklandNew Zealand,Bioprotection AotearoaCanterburyNew Zealand
| | | | - Luciano A. Rigano
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Plant Health & Environment Laboratory, Biosecurity New ZealandMinistry for Primary IndustriesAucklandNew Zealand
| | - Rebekah A. Frampton
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Sandra B. Visnovsky
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Shea M. Addison
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Loreto Hernandez
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Andrew R. Pitman
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand,Foundation for Arable Research (FAR), TempletonChristchurchNew Zealand
| | - Elena Lopez Acedo
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | | | - Matthew D. Templeton
- The New Zealand Institute for Plant & Food Research Limited, Mt AlbertAucklandNew Zealand,Bioprotection AotearoaCanterburyNew Zealand,School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Mihnea Bostina
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Otago Centre for Electron MicroscopyUniversity of OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Bioprotection AotearoaCanterburyNew Zealand
| |
Collapse
|
5
|
Wang F, Liu HW, Zhang L, Liu ST, Zhang JR, Zhou X, Wang PY, Yang S. Discovery of novel rost-4-ene derivatives as potential plant activators for preventing phytopathogenic bacterial infection: Design, synthesis and biological studies. PEST MANAGEMENT SCIENCE 2022; 78:3404-3415. [PMID: 35527698 DOI: 10.1002/ps.6981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gradually aggravated disease caused by phytopathogenic bacteria severely restricts food security and crop yield, and few pesticides can relieve this severe situation. Thus, development and excavation of new agrochemicals with high bioactivity and novel action mechanism may be a feasible strategy to control intractable bacterial diseases. As a privileged molecular framework, steroid molecules exhibit diversiform bioactivities. Herein, a series of novel androst-4-ene derivatives were designed, synthesised and investigated for their antibacterial behaviour to excavate novel agrochemicals on the base of steroid molecules. RESULTS Bioassay results indicated that target compounds displayed high bioactivities toward three destructive phytopathogenic bacteria, including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Pseudomonas syringae pv. actinidiae (Psa). Compound III19 displayed excellent in vitro antibacterial profiling (EC50 = 2.37 mg L-1 towards Xoo, EC50 = 2.10 mg L-1 towards Xac, EC50 = 9.50 mg L-1 towards Psa). Furthermore, compound III19 showed outstanding in vivo protective activities, with values of 81.81% and 58.75% towards kiwifruit bacterial canker and rice bacterial leaf blight, respectively. Analysis of the antibacterial mechanism disclosed that compound III19 enhanced host defence enzyme activities superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and catalase (CAT) and increased the salicylate synthase content to induce host resistance. In addition, compound III19 increased the membrane permeability, destroyed the cell membrane and killed the bacteria. CONCLUSION Given these profiles of target compounds, we highlight a new strategy for controlling intractable plant bacterial diseases by inducing plant resistance and targeting the bacterial cell membrane. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shi-Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Tarakanov RI, Lukianova AA, Evseev PV, Toshchakov SV, Kulikov EE, Ignatov AN, Miroshnikov KA, Dzhalilov FSU. Bacteriophage Control of Pseudomonas savastanoi pv. glycinea in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:938. [PMID: 35406917 PMCID: PMC9003214 DOI: 10.3390/plants11070938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Bacterial viruses (bacteriophages) have been considered as potential agents for the biological control of bacterial phytopathogens due to their safety and host specificity. Pseudomonas savastanoi pv. glycinea (Psg) is a causative agent of the bacterial spotting of soybean (Glycine max Willd). The harm caused by this bacterium to crop production and the development of antibiotic resistance in Psg and other pathogenic microorganisms has led to the pursuit of alternative management strategies. In this study, three Psg-specific lytic bacteriophages were isolated from soybean field soil in geographically distant regions of Russia, and their potential for protective action on plants was assessed. Sequencing of phage genomes has revealed their close relatedness and attribution to the genus Ghunavirus, subfamily Studiervirinae, family Autographiviridae. Extensive testing of the biological properties of P421, the representative of the isolated phage group, has demonstrated a relatively broad host range covering closely related Pseudomonas species and stability over wide temperature (4-40 °C) and pH (pH 4-7) ranges, as well as stability under ultraviolet irradiation for 30 min. Application of the phages to prevent, and treat, Psg infection of soybean plants confirms that they are promising as biocontrol agents.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
| | - Anna A. Lukianova
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
| | - Stepan V. Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123098 Moscow, Russia;
| | - Eugene E. Kulikov
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya 7-2, 117312 Moscow, Russia;
| | - Alexander N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
- Agrobiotechnology Department, Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (R.I.T.); (A.A.L.); (A.N.I.)
| |
Collapse
|
7
|
Boyer M, Wisniewski-Dyé F, Combrisson J, Bally R, Duponnois R, Costechareyre D. Nettle manure: an unsuspected source of bacteriophages active against various phytopathogenic bacteria. Arch Virol 2022; 167:1099-1110. [DOI: 10.1007/s00705-022-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
|
8
|
Kazantseva OA, Buzikov RM, Pilipchuk TA, Valentovich LN, Kazantsev AN, Kalamiyets EI, Shadrin AM. The Bacteriophage Pf-10-A Component of the Biopesticide "Multiphage" Used to Control Agricultural Crop Diseases Caused by Pseudomonas syringae. Viruses 2021; 14:42. [PMID: 35062246 PMCID: PMC8779105 DOI: 10.3390/v14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Phytopathogenic pseudomonads are widespread in the world and cause a wide range of plant diseases. In this work, we describe the Pseudomonas phage Pf-10, which is a part of the biopesticide "Multiphage" used for bacterial diseases of agricultural crops caused by Pseudomonas syringae. The Pf-10 chromosome is a dsDNA molecule with two direct terminal repeats (DTRs). The phage genomic DNA is 39,424 bp long with a GC-content of 56.5%. The Pf-10 phage uses a packaging mechanism based on T7-like short DTRs, and the length of each terminal repeat is 257 bp. Electron microscopic analysis has shown that phage Pf-10 has the podovirus morphotype. Phage Pf-10 is highly stable at pH values from 5 to 10 and temperatures from 4 to 60 °C and has a lytic activity against Pseudomonas strains. Phage Pf-10 is characterized by fast adsorption rate (80% of virions attach to the host cells in 10 min), but has a relatively small number of progeny (37 ± 8.5 phage particles per infected cell). According to the phylogenetic analysis, phage Pf-10 can be classified as a new phage species belonging to the genus Pifdecavirus, subfamily Studiervirinae, family Autographiviridae, order Caudovirales.
Collapse
Affiliation(s)
- Olesya A. Kazantseva
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| | - Rustam M. Buzikov
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| | - Tatsiana A. Pilipchuk
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
| | - Leonid N. Valentovich
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
- Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Andrey N. Kazantsev
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Pushchino Radio Astronomy Observatory, 142290 Pushchino, Russia;
| | - Emilia I. Kalamiyets
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
| | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| |
Collapse
|
9
|
Malone LM, Hampton HG, Morgan XC, Fineran PC. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress. Nucleic Acids Res 2021; 50:160-174. [PMID: 34928385 PMCID: PMC8754663 DOI: 10.1093/nar/gkab1210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
During infection, phages manipulate bacteria to redirect metabolism towards viral proliferation. To counteract phages, some bacteria employ CRISPR-Cas systems that provide adaptive immunity. While CRISPR-Cas mechanisms have been studied extensively, their effects on both the phage and the host during phage infection remains poorly understood. Here, we analysed the infection of Serratia by a siphovirus (JS26) and the transcriptomic response with, or without type I-E or I-F CRISPR-Cas immunity. In non-immune Serratia, phage infection altered bacterial metabolism by upregulating anaerobic respiration and amino acid biosynthesis genes, while flagella production was suppressed. Furthermore, phage proliferation required a late-expressed viral Cas4 homologue, which did not influence CRISPR adaptation. While type I-E and I-F immunity provided robust defence against phage infection, phage development still impacted the bacterial host. Moreover, DNA repair and SOS response pathways were upregulated during type I immunity. We also discovered that the type I-F system is controlled by a positive autoregulatory feedback loop that is activated upon phage targeting during type I-F immunity, leading to a controlled anti-phage response. Overall, our results provide new insight into phage-host dynamics and the impact of CRISPR immunity within the infected cell.
Collapse
Affiliation(s)
- Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
10
|
Martino G, Holtappels D, Vallino M, Chiapello M, Turina M, Lavigne R, Wagemans J, Ciuffo M. Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting Pseudomonas syringae pv. actinidiae and P. syringae pv. phaseolicola from Northern Italy. Viruses 2021; 13:2083. [PMID: 34696512 PMCID: PMC8537276 DOI: 10.3390/v13102083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial kiwifruit vine disease (Pseudomonas syringae pv. actinidiae, Psa) and halo blight of bean (P. syringae pv. phaseolicola, Pph) are routinely treated with copper, leading to environmental pollution and bacterial copper resistance. An alternative sustainable control method could be based on bacteriophages, as phage biocontrol offers high specificity and does not result in the spread of toxic residues into the environment or the food chain. In this research, specific phages suitable for phage-based biocontrol strategies effective against Psa and Pph were isolated and characterized. In total, sixteen lytic Pph phage isolates and seven lytic Psa phage isolates were isolated from soil in Piedmont and Veneto in northern Italy. Genome characterization of fifteen selected phages revealed that the isolated Pph phages were highly similar and could be considered as isolates of a novel species, whereas the isolated Psa phages grouped into four distinct clades, two of which represent putative novel species. No lysogeny-, virulence- or toxin-related genes were found in four phages, making them suitable for potential biocontrol purposes. A partial biological characterization including a host range analysis was performed on a representative subset of these isolates. This analysis was a prerequisite to assess their efficacy in greenhouse and in field trials, using different delivery strategies.
Collapse
Affiliation(s)
- Gabriele Martino
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Dominique Holtappels
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium; (D.H.); (R.L.); (J.W.)
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium; (D.H.); (R.L.); (J.W.)
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium; (D.H.); (R.L.); (J.W.)
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| |
Collapse
|
11
|
Ni P, Wang L, Deng B, Jiu S, Ma C, Zhang C, Almeida A, Wang D, Xu W, Wang S. Characterization of a Lytic Bacteriophage against Pseudomonas syringae pv. actinidiae and Its Endolysin. Viruses 2021; 13:631. [PMID: 33917076 PMCID: PMC8067700 DOI: 10.3390/v13040631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a phytopathogen that causes canker in kiwifruit. Few conventional control methods are effective against this bacterium. Therefore, alternative approaches, such as phage therapy are warranted. In this study, a lytic bacteriophage (PN09) of Psa was isolated from surface water collected from a river in Hangzhou, China in 2019. Morphologically, PN09 was classified into the Myoviridae family, and could lyse all 29 Psa biovar 3 strains. The optimal temperature and pH ranges for PN09 activity were determined as 25 to 35 ∘C and 6.0 to 9.0, respectively. The complete genome of PN09 was found to be composed of a linear 99,229 bp double-stranded DNA genome with a GC content of 48.16%. The PN09 endolysin (LysPN09) was expressed in vitro and characterized. LysPN09 was predicted to belong to the Muraidase superfamily domain and showed lytic activity against the outer-membrane-permeabilized Psa strains. The lytic activity of LysPN09 was optimal over temperature and pH ranges of 25 to 40 ∘C and 6.0 to 8.0, respectively. When recombinant endolysin LysPN09 was combined with EDTA, Psa strains were effectively damaged. All these characteristics demonstrate that the phage PN09 and its endolysin, LysPN09, are potential candidates for biocontrol of Psa in the kiwifruit industry.
Collapse
Affiliation(s)
- Peien Ni
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Lei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Bohan Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Songtao Jiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Chao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dapeng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Wenping Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| | - Shiping Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (P.N.); (L.W.); (B.D.); (S.J.); (C.M.); (C.Z.); (D.W.); (S.W.)
| |
Collapse
|
12
|
Pereira C, Costa P, Pinheiro L, Balcão VM, Almeida A. Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. PLANTA 2021; 253:49. [PMID: 33502587 DOI: 10.1007/s00425-020-03549-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Phage-based biocontrol strategies can be an effective alternative to control Psa-induced bacterial canker of kiwifruit. The global production of kiwifruit has been seriously affected by Pseudomonas syringae pv. actinidiae (Psa) over the last decade. Psa damages both Actinidia chinensis var. deliciosa (green kiwifruit) but specially the susceptible Actinidia chinensis var. chinensis (gold kiwifruit), resulting in severe economic losses. Treatments for Psa infections currently available are scarce, involving frequent spraying of the kiwifruit plant orchards with copper products. However, copper products should be avoided since they are highly toxic and lead to the development of bacterial resistance to this metal. Antibiotics are also used in some countries, but bacterial resistance to antibiotics is a serious worldwide problem. Therefore, it is essential to develop new approaches for sustainable agriculture production, avoiding the emergence of resistant Psa bacterial strains. Attempts to develop and establish highly accurate approaches to combat and prevent the occurrence of bacterial canker in kiwifruit plants are currently under study, using specific viruses of bacteria (bacteriophages, or phages) to eliminate the Psa. This review discusses the characteristics of Psa-induced kiwifruit canker, Psa transmission pathways, prevention and control, phage-based biocontrol strategies as a new approach to control Psa in kiwifruit orchards and its advantages over other therapies, together with potential ways to bypass phage inactivation by abiotic factors.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Costa
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Larindja Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP, CEP 18023-000, Brazil.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Jayaraman J, Jones WT, Harvey D, Hemara LM, McCann HC, Yoon M, Warring SL, Fineran PC, Mesarich CH, Templeton MD. Variation at the common polysaccharide antigen locus drives lipopolysaccharide diversity within the Pseudomonas syringae species complex. Environ Microbiol 2020; 22:5356-5372. [PMID: 32985740 PMCID: PMC7820976 DOI: 10.1111/1462-2920.15250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
The common polysaccharide antigen (CPA) of the lipopolysaccharide (LPS) from Pseudomonas syringae is highly variable, but the genetic basis for this is poorly understood. We have characterized the CPA locus from P. syringae pv. actinidiae (Psa). This locus has genes for l- and d-rhamnose biosynthesis and an operon coding for ABC transporter subunits, a bifunctional glycosyltransferase and an o-methyltransferase. This operon is predicted to have a role in the transport, elongation and termination of the CPA oligosaccharide and is referred to as the TET operon. Two alleles of the TET operon were present in different biovars (BV) of Psa and lineages of the closely related pathovar P. syringae pv. actinidifoliorum. This allelic variation was reflected in the electrophoretic properties of purified LPS from the different isolates. Gene knockout of the TET operon allele from BV1 and replacement with that from BV3, demonstrated the link between the genetic locus and the biochemical properties of the LPS molecules in Psa. Sequence analysis of the TET operon from a range of P. syringae and P. viridiflava isolates displayed a phylogenetic history incongruent with core gene phylogeny but correlates with previously reported tailocin sensitivity, suggesting a functional relationship between LPS structure and tailocin susceptibility.
Collapse
Affiliation(s)
- Jay Jayaraman
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bioprotection Centre for Research ExcellenceNew Zealand
| | - William T. Jones
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Dawn Harvey
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Lauren M. Hemara
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bioprotection Centre for Research ExcellenceNew Zealand
- School of Biological SciencesUniversity of AucklandNew Zealand
| | - Honour C. McCann
- Institute of Advanced StudiesMassey UniversityAucklandNew Zealand
| | - Minsoo Yoon
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Bioprotection Centre for Research ExcellenceNew Zealand
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Carl H. Mesarich
- Bioprotection Centre for Research ExcellenceNew Zealand
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Matthew D. Templeton
- Bioprotection TechnologiesThe New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
- Bioprotection Centre for Research ExcellenceNew Zealand
- School of Biological SciencesUniversity of AucklandNew Zealand
| |
Collapse
|
14
|
Characterization of Bacteriophages against Pseudomonas Syringae pv. Actinidiae with Potential Use as Natural Antimicrobials in Kiwifruit Plants. Microorganisms 2020; 8:microorganisms8070974. [PMID: 32610695 PMCID: PMC7409275 DOI: 10.3390/microorganisms8070974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of a bacterial canker in kiwifruit plants and has caused economic losses worldwide. Currently, the primary strategies to control this pathogen include the use of copper-based compounds and even antibiotics. However, the emergence of isolates of Psa that are resistant to these agrochemicals has raised the need for new alternatives to control this pathogen. Bacteriophages have been proposed as an alternative to control bacterial infections in agriculture, including Psa. Here, we show the isolation and characterization of 13 phages with the potential to control Psa infections in kiwifruit plants. The phages were characterized according to their host range and restriction fragment length polymorphism (RFLP) pattern. Four phages were selected according to their lytic effect on the bacteria and their tolerance to different environmental conditions of pH (4–7), temperature (4–37 °C), and solar radiation exposure (30 and 60 min). The selected phages (CHF1, CHF7, CHF19, and CHF21) were sequenced, revealing a high identity with the podophage of Psa phiPSA2. In vitro assays with kiwifruit leaf samples demonstrated that the mixture of phages reduced the Psa bacterial load within three hours post-application and was able to reduce the damage index in 50% of cases. Similarly, assays with kiwifruit plants maintained in greenhouse conditions showed that these phages were able to reduce the Psa bacterial load in more than 50% of cases and produced a significant decrease in the damage index of treated plants after 30 days. Finally, none of the selected phages were able to infect the other bacteria present in the natural microbiota of kiwifruit plants. These results show that bacteriophages are an attractive alternative to control Psa infections in kiwifruit plants.
Collapse
|
15
|
Pinheiro LAM, Pereira C, Frazão C, Balcão VM, Almeida A. Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study. Microorganisms 2019; 7:E286. [PMID: 31450735 PMCID: PMC6780397 DOI: 10.3390/microorganisms7090286] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas syringae is a plant-associated bacterial species that has been divided into more than 60 pathovars, with the Pseudomonas syringae pv. syringae being the main causative agent of diseases in a wide variety of fruit trees. The most common treatments for biocontrol of P. syringae pv. syringae infections has involved copper derivatives and/or antibiotics. However, these treatments should be avoided due to their high toxicity to the environment and promotion of bacterial resistance. Therefore, it is essential to search for new approaches for controlling P. syringae pv. syringae. Phage therapy can be a useful alternative tool to the conventional treatments to control P. syringae pv. syringae infections in plants. In the present study, the efficacy of bacteriophage (or phage) φ6 (a commercially available phage) was evaluated in the control of P. syringae pv. syringae. As the plants are exposed to the natural variability of physical and chemical parameters, the influence of pH, temperature, solar radiation and UV-B irradiation on phage φ6 viability was also evaluated in order to develop an effective phage therapy protocol. The host range analysis revealed that the phage, besides its host (P. syringae pv. syringae), also infects the Pseudomonas syringae pv. actinidiae CRA-FRU 12.54 and P. syringae pv. actinidiae CRA-FRU 14.10 strains, not infecting strains from the other tested species. Both multiplicities of infection (MOIs) tested, 1 and 100, were effective to inactivate the bacterium, but the MOI 1 (maximum reduction of 3.9 log CFU/mL) was more effective than MOI 100 (maximum reduction of 2.6 log CFU/mL). The viability of phage φ6 was mostly affected by exposure to UV-B irradiation (decrease of 7.3 log PFU/mL after 8 h), exposure to solar radiation (maximum reduction of 2.1 PFU/mL after 6 h), and high temperatures (decrease of 8.5 PFU/mL after 6 days at 37 °C, but a decrease of only 2.0 log PFU/mL after 67 days at 15 °C and 25 °C). The host range, high bacterial control and low rates of development of phage-resistant bacterial clones (1.20 × 10-3) suggest that this phage can be used to control P. syringae pv. syringae infections in plants, but also to control infections by P. syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit. Although the stability of phage φ6 was affected by UV-B and solar radiation, this can be overcome by the application of phage suspensions at the end of the day or at night.
Collapse
Affiliation(s)
- Larindja A M Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carolina Frazão
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Wojtus JK, Frampton RA, Warring S, Hendrickson H, Fineran PC. Genome Sequence of a Jumbo Bacteriophage That Infects the Kiwifruit Phytopathogen Pseudomonas syringae pv. actinidiae. Microbiol Resour Announc 2019; 8:e00224-19. [PMID: 31147429 PMCID: PMC6544186 DOI: 10.1128/mra.00224-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Bacteriophage ϕPsa21 is a potential biocontrol agent that infects the kiwifruit phytopathogen Pseudomonas syringae pv. actinidiae. ϕPsa21 is a "jumbo" phage with a genome of ∼305 kb. Here, we present the genome sequence of ϕPsa21 and discuss potential genes indicative of the formation of nucleoid structures during viral replication.
Collapse
Affiliation(s)
- Joanna K Wojtus
- Massey Phage Whānau, School of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebekah A Frampton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Suzanne Warring
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Heather Hendrickson
- Massey Phage Whānau, School of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Fineran PC. Resistance is not futile: bacterial 'innate' and CRISPR-Cas 'adaptive' immune systems. MICROBIOLOGY-SGM 2019; 165:834-841. [PMID: 30958259 DOI: 10.1099/mic.0.000802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria are under a constant pressure from their viruses (phages) and other mobile genetic elements. They protect themselves through a range of defence strategies, which can be broadly classified as 'innate' and 'adaptive'. The bacterial innate immune systems include defences provided by restriction modification and abortive infection, among others. Bacterial adaptive immunity is elicited by a diverse range of CRISPR-Cas systems. Here, I discuss our research on both innate and adaptive phage resistance mechanisms and some of the evasion strategies employed by phages.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
Duckweed (Lemna minor) and Alfalfa (Medicago sativa) as Bacterial Infection Model Systems. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1898:191-198. [PMID: 30570734 DOI: 10.1007/978-1-4939-8940-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alternative animal host models of bacterial infection have been developed which reproduce some of the disease conditions observed in higher animals. Analogously, plants are useful for modeling bacterial pathogenesis, in some cases revealing broadly conserved infection mechanisms. Similar to animals, plants have been shown to possess innate immune systems that respond to invading viruses, bacteria, and fungi. Plant infection models often yield results faster, are more convenient, and less expensive than many animal infection models. Here, we describe the use of two different plant-based infection models for the discovery of virulence genes and factors involved in bacterial pathogenesis.
Collapse
|
19
|
Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem Soc Trans 2018; 46:1605-1613. [DOI: 10.1042/bst20180178] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Meeting global food demands for a growing human population with finite natural resources is a major challenge. Aquaculture and agriculture are critical to satisfy food requirements, yet suffer significant losses from bacterial diseases. Therefore, there is an urgent need to develop novel antimicrobial strategies, which is heightened by increasing antibiotic resistance. Bacteriophages (phages) are viruses that specifically infect bacteria, and phage-derived therapies are promising treatments in the fight against bacterial diseases. Here, we describe multiple ways that phages and phage-based technologies can be used as antimicrobials. Antimicrobial activity can be achieved through lysis of targeted bacteria by virulent phages or lytic enzymes. Alternatively, phages can be engineered for the delivery of lethal genes and other cargoes to kill bacteria and to manipulate the bacterial response to conventional antibiotics. We also briefly highlight research exploring phages as potential biocontrol agents with examples from agriculture and aquaculture.
Collapse
|
20
|
Xu H, Bao X, Wang Y, Xu Y, Deng B, Lu Y, Hou J. Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virol J 2018; 15:49. [PMID: 29558962 PMCID: PMC5859711 DOI: 10.1186/s12985-018-0955-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/04/2018] [Indexed: 02/17/2023] Open
Abstract
Background DNA delivery with bacteriophage by surface-displayed mammalian cell penetrating peptides has been reported. Although, various phages have been used to facilitate DNA transfer by surface displaying the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide), no similar study has been conducted using T7 phage. Methods In this study, we engineeredT7 phage as a DNA targeting delivery vector to facilitate cellular internalization. We constructed recombinant T7 phages that displayed Tat peptide on their surface and carried eukaryotic expression box (EEB) as a part of their genomes (T7-EEB-Tat). Results We demonstrated that T7 phage harboring foreign gene insertion had packaged into infective progeny phage particles. Moreover, when mammalian cells that were briefly exposed to T7-EEB-Tat, expressed a significant higher level of the marker gene with the control cells infected with the wide type phage without displaying Tat peptides. Conclusion These data suggested that the potential of T7 phage as an effective delivery vector for DNA vaccine transfer.
Collapse
Affiliation(s)
- Hai Xu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu Province, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu province, 225009, China
| | - Xi Bao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu Province, 210014, China
| | - Yiwei Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu Province, 210014, China
| | - Yue Xu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu Province, 210014, China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu Province, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu province, 225009, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu Province, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu province, 225009, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu Province, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu province, 225009, China.
| |
Collapse
|
21
|
Flores V, Sepúlveda-Robles O, Cazares A, Kameyama L, Guarneros G. Comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25 reveals a novel siphovirus group related to phages infecting hosts of different taxonomic classes. Arch Virol 2017; 162:2345-2355. [PMID: 28462462 DOI: 10.1007/s00705-017-3366-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/12/2017] [Indexed: 12/20/2022]
Abstract
Bacteriophages (phages) are estimated to be the most abundant and diverse entities in the biosphere harboring vast amounts of novel genetic information. Despite the genetic diversity observed, many phages share common features, such as virion morphology, genome size and organization, and can readily be associated with clearly defined phage groups. However, other phages display unique genomes or, alternatively, mosaic genomes composed of regions that share homology with those of phages of diverse origins; thus, their relationships cannot be easily assessed. In this work, we present a functional and comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25, a virulent member of the Siphoviridae family. The genomes of PaMx25 and a highly homologous phage NP1, bore sequence homology and synteny with the genomes of phages that infect hosts different than Pseudomonas. In order to understand the relationship of the PaMx25 genome with that of other phages, we employed several computational approaches. We found that PaMx25 and NP1 effectively bridged several phage groups. It is expected that as more phage genomes become available, more gaps will be filled, blurring the boundaries that currently separate phage groups.
Collapse
Affiliation(s)
- Víctor Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Omar Sepúlveda-Robles
- Catedrático CONACyT - Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Adrián Cazares
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Kameyama
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
22
|
Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes. Sci Rep 2016; 6:28338. [PMID: 27320081 PMCID: PMC4913238 DOI: 10.1038/srep28338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/01/2016] [Indexed: 01/21/2023] Open
Abstract
Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes.
Collapse
|