1
|
Aljohani AK, Maghrabi NA, Alrehili OM, Alharbi AS, Alsihli RS, Alharthe AM, Albladi RS, Alosaimi KA, Albadrani BM, Miski SF, Elbadawy HM, Alrehaili BD, Abdelkarem FA, Hussein MF. Ajwa date extract ( Phoenix dactylifera L.): Phytochemical analysis, antiviral activity against herpes simplex virus-I and coxsackie B4 virus, and in silico study. Saudi Med J 2025; 46:26-35. [PMID: 39779363 PMCID: PMC11717108 DOI: 10.15537/smj.2025.46.1.20240780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES To investigate the phytochemical composition of Ajwa date extract and evaluate its antiviral activity and mechanism of action. METHODS High perfomance liquid chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry were used to analyze the phytochemical profile of Ajwa date extract. The antiviral activity was assessed using the MTT colorimetric assay against herpes simplex virus type I (HSV-I) and coxsackievirus B4 (CVB-4). Assessment of the mechanism of action against HSV-I was carried out using 3 protocols. Molecular docking and quantum chemical calculations were carried out to predict the binding affinities of the identified compounds to viral glycoprotein D. RESULTS A total of 17 metabolites belonging to different classes of metabolites, mainly flavonoids, phenolic acid derivatives, fatty acids, and sugar derivatives. Ajwa extract exhibited antiviral activity against HSV-I with an IC: 50 of 113.99±4.67 μg/mL, whereas it showed limited activity against CVB-4. The antiviral activity of Ajwa extract was mainly attributed to its cell protectant activity by preventing adherence of viral to host cell with an IC: 50 equal to 57.82±1.37μg/mL. Molecular docking studies indicated that chlorogenic acid had the strongest binding affinity to viral glycoprotein D, which suggests its potential role in inhibiting viral entry into host cells. CONCLUSION The Ajwa date extract demonstrated promising antiviral activity, especially against HSV-I. Integrating in vitro and in silico analyses provided valuable insights into the mechanisms of action.
Collapse
Affiliation(s)
- Ahmad K. Aljohani
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Nader A. Maghrabi
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Osama M. Alrehili
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Abdulaziz S. Alharbi
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Rawad S. Alsihli
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Abdulrahman M. Alharthe
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Rayan S. Albladi
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Khalid A. Alosaimi
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Bader M. Albadrani
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Samar F. Miski
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Hossein M. Elbadawy
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Bandar D. Alrehaili
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Fahd A. Abdelkarem
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| | - Modather F. Hussein
- From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
2
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
3
|
Vergez I, Nekoua MP, Arbrandt G, Westman J, Alidjinou EK, Hober D. Macrophages can transmit coxsackievirus B4 to pancreatic cells and can impair these cells. J Med Virol 2024; 96:e70009. [PMID: 39422382 DOI: 10.1002/jmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Macrophages are suspected to be involved in the pathogenesis of type 1 diabetes. The role of macrophages in the transmission of coxsackievirus B4 (CVB4) to pancreatic cells and in the alteration of these cells was investigated. Human monocytes isolated from peripheral blood were differentiated into macrophages with M-CSF (M-CSF macrophages) or GM-CSF (GM-CSF macrophages). M-CSF macrophages were inoculated with CVB4. M-CSF and GM-CSF macrophages were activated with lipopolysaccharide and interferon (IFN)-γ. Human pancreatic beta cells 1.1B4 were inoculated with CVB4 derived from M-CSF macrophages or were cocultured with CVB4-infected M-CSF macrophages. The antiviral activity of synthetic molecules in macrophage cultures was evaluated. Activated macrophages were cocultured with CVB4-persistently infected 1.1B4 cells, and the specific lysis of these cells was determined. Our study shows that CVB4 can infect M-CSF macrophages, leading to the release of interleukin-6 and tumor necrosis factor-α and later IFN-α. M-CSF macrophage-derived CVB4 can infect 1.1B4 cells, which were then altered; however, when these cells were cultured in medium containing agarose, cell layers were not altered. Fluoxetine and CUR-N373 can inhibit CVB4 replication in macrophage cultures. Supernatants of activated M-CSF and GM-CSF macrophage cultures induced lysis of CVB4-persistently infected 1.1B4 cells. The cytolytic activity of activated GM-CSF macrophages was higher towards CVB4-persistently infected 1.1B4 cells than mock-infected 1.1B4 cells. In conclusion, macrophages may play a role in CVB4 infection of pancreatic cells, and are capable of inducing lysis of infected pancreatic cells.
Collapse
Affiliation(s)
- Inès Vergez
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | | | | | | | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
4
|
Shin HH, Jeon ES, Lim BK. Macrophage-Specific Coxsackievirus and Adenovirus Receptor Deletion Enhances Macrophage M1 Polarity in CVB3-Induced Myocarditis. Int J Mol Sci 2023; 24:ijms24065309. [PMID: 36982385 PMCID: PMC10049483 DOI: 10.3390/ijms24065309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) is very well known as an epithelial tight junction and cardiac intercalated disc protein; it mediates attachment and infection via the coxsackievirus B3 (CVB3) and type 5 adenovirus. Macrophages play important roles in early immunity during viral infections. However, the role of CAR in macrophages is not well studied in relation to CVB3 infection. In this study, the function of CAR was observed in the Raw264.7 mouse macrophage cell line. CAR expression was stimulated by treatment with lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α). In thioglycollate-induced peritonitis, the peritoneal macrophage was activated and CAR expression was increased. The macrophage-specific CAR conditional knockout mice (KO) were generated from lysozyme Cre mice. The expression of inflammatory cytokine (IL-1β and TNF-α) was attenuated in the KO mice’s peritoneal macrophage after LPS treatment. In addition, the virus was not replicated in CAR-deleted macrophages. The organ virus replication was not significantly different in both wild-type (WT) and KO mice at days three and seven post-infection (p.i). However, the inflammatory M1 polarity genes (IL-1β, IL-6, TNF-α and MCP-1) were significantly increased, with increased rates of myocarditis in the heart of KO mice compared to those of WT mice. In contrast, type1 interferon (IFN-α and β) was significantly decreased in the heart of KO mice. Serum chemokine CXCL-11 was increased in the KO mice at day three p.i. compared to the WT mice. The attenuation of IFN-α and β in macrophage CAR deletion induced higher levels of CXCL-11 and more increased CD4 and CD8 T cells in KO mice hearts compared to those of WT mice at day seven p.i. These results demonstrate that macrophage-specific CAR deletion increased the macrophage M1 polarity and myocarditis in CVB3 infection. In addition, chemokine CXCL-11 expression was increased, and stimulated CD4 and CD8 T cell activity. Macrophage CAR may be important for the regulation of innate-immunity-induced local inflammation in CVB3 infection.
Collapse
Affiliation(s)
- Ha-Hyeon Shin
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Republic of Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon Dong, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Republic of Korea
- Correspondence: ; Tel.: +82-43-830-8605
| |
Collapse
|
5
|
Valta M, Yoshihara M, Einarsdottir E, Pahkuri S, Ezer S, Katayama S, Knip M, Veijola R, Toppari J, Ilonen J, Kere J, Lempainen J. Viral infection-related gene upregulation in monocytes in children with signs of β-cell autoimmunity. Pediatr Diabetes 2022; 23:703-713. [PMID: 35419920 PMCID: PMC9545759 DOI: 10.1111/pedi.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The pathogenesis of type 1 diabetes (T1D) is associated with genetic predisposition and immunological changes during presymptomatic disease. Differences in immune cell subset numbers and phenotypes between T1D patients and healthy controls have been described; however, the role and function of these changes in the pathogenesis is still unclear. Here we aimed to analyze the transcriptomic landscapes of peripheral blood mononuclear cells (PBMCs) during presymptomatic disease. METHODS Transcriptomic differences in PBMCs were compared between cases positive for islet autoantibodies and autoantibody negative controls (9 case-control pairs) and further in monocytes and lymphocytes separately in autoantibody positive subjects and control subjects (25 case-control pairs). RESULTS No significant differential expression was found in either data set. However, when gene set enrichment analysis was performed, the gene sets "defence response to virus" (FDR <0.001, ranking 2), "response to virus" (FDR <0.001, ranking 3) and "response to type I interferon" (FDR = 0.002, ranking 12) were enriched in the upregulated genes among PBMCs in cases. Upon further analysis, this was also seen in monocytes in cases (FDR = 0.01, ranking 2; FDR = 0.04, ranking 3 and FDR = 0.02, ranking 1, respectively) but not in lymphocytes. CONCLUSION Gene set enrichment analysis of children with T1D-associated autoimmunity revealed changes in pathways relevant for virus infection in PBMCs, particularly in monocytes. Virus infections have been repeatedly implicated in the pathogenesis of T1D. These results support the viral hypothesis by suggesting altered immune activation of viral immune pathways in monocytes during diabetes.
Collapse
Affiliation(s)
- Milla Valta
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Masahito Yoshihara
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene TechnologyKTH‐Royal Institute of TechnologySolnaSweden
| | - Sirpa Pahkuri
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Sini Ezer
- Stem Cells and Metabolism Research ProgramUniversity of Helsinki, and Folkhälsan Research CenterHelsinkiFinland
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden,Stem Cells and Metabolism Research ProgramUniversity of Helsinki, and Folkhälsan Research CenterHelsinkiFinland
| | - Mikael Knip
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland,Research Program for Clinical and Molecular MetabolismFaculty of Medicine, University of HelsinkiHelsinkiFinland,Folkhälsan Research CenterHelsinkiFinland,Department of PediatricsTampere University HospitalTampereFinland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, MRC OuluOulu University Hospital and University of OuluOuluFinland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and PharmacologyUniversity of TurkuTurkuFinland,Department of PediatricsUniversity of Turku and Turku University HospitalTurkuFinland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Juha Kere
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden,Stem Cells and Metabolism Research ProgramUniversity of Helsinki, and Folkhälsan Research CenterHelsinkiFinland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland,Department of PediatricsUniversity of Turku and Turku University HospitalTurkuFinland,Clinical MicrobiologyTurku University HospitalTurkuFinland
| |
Collapse
|
6
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2022; 18:503-516. [PMID: 35650334 PMCID: PMC9157043 DOI: 10.1038/s41574-022-00688-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Enteroviruses are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals, thereby resulting in loss of functional insulin-producing β-cells and type 1 diabetes mellitus (T1DM). Although enteroviruses are primarily involved in acute and lytic infections in vitro and in vivo, they can also establish a persistent infection. Prospective epidemiological studies have strongly associated the persistence of enteroviruses, especially coxsackievirus B (CVB), with the appearance of islet autoantibodies and an increased risk of T1DM. CVB can persist in pancreatic ductal and β-cells, which leads to structural or functional alterations of these cells, and to a chronic inflammatory response that promotes recruitment and activation of pre-existing autoreactive T cells and β-cell autoimmune destruction. CVB persistence in other sites, such as the intestine, blood cells and thymus, has been described; these sites could serve as a reservoir for infection or reinfection of the pancreas, and this persistence could have a role in the disturbance of tolerance to β-cells. This Review addresses the involvement of persistent enterovirus infection in triggering islet autoimmunity and T1DM, as well as current strategies to control enterovirus infections for preventing or reducing the risk of T1DM onset.
Collapse
Affiliation(s)
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France.
| |
Collapse
|
7
|
Concomitant pyroptotic and apoptotic cell death triggered in macrophages infected by Zika virus. PLoS One 2022; 17:e0257408. [PMID: 35446851 PMCID: PMC9022797 DOI: 10.1371/journal.pone.0257408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) is a positive-sense RNA flavivirus and can cause serious neurological disorders including microcephaly in infected fetuses. As a mosquito-borne arbovirus, it enters the bloodstream and replicates in various organs. During pregnancy, it can be transmitted from the blood of the viremic mother to the fetus by crossing the placental barrier. Monocytes and macrophages are considered the earliest blood cell types to be infected by ZIKV. As a first line defense, these cells are crucial components in innate immunity and host responses and may impact viral pathogenesis in humans. Previous studies have shown that ZIKV infection can activate inflammasomes and induce proinflammatory cytokines in monocytes. In this report, we showed that ZIKV could infect and induce cell death in human and murine macrophages. In addition to the presence of cleaved caspase-3, indicating that apoptosis was involved, we identified the cleaved caspase-1 and gasdermin D (GSDMD) as well as increased secretion of IL-1β and IL-18. This suggests that the inflammasome was activated and that may lead to pyroptosis in infected macrophages. The pyroptosis was NLRP3-dependent and could be suppressed in the macrophages treated with shRNA to target and knockdown caspase-1. It was also be inhibited by an inhibitor for caspase-1, indicating that the pyroptosis was triggered via a canonical approach. Our findings in this study demonstrate a concomitant occurrence of apoptosis and pyroptosis in ZIKV-infected macrophages, with two mechanisms involved in the cell death, which may have potentially significant impacts on viral pathogenesis in humans.
Collapse
|
8
|
Lloyd RE, Tamhankar M, Lernmark Å. Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors? Annu Rev Med 2022; 73:483-499. [PMID: 34794324 DOI: 10.1146/annurev-med-042320015952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden;
| |
Collapse
|
9
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden
| |
Collapse
|
10
|
Alhazmi A, Nekoua MP, Michaux H, Sane F, Halouani A, Engelmann I, Alidjinou EK, Martens H, Jaidane H, Geenen V, Hober D. Effect of Coxsackievirus B4 Infection on the Thymus: Elucidating Its Role in the Pathogenesis of Type 1 Diabetes. Microorganisms 2021; 9:microorganisms9061177. [PMID: 34072590 PMCID: PMC8229779 DOI: 10.3390/microorganisms9061177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Hélène Michaux
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Aymen Halouani
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Hela Jaidane
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)3-20-44-66-88
| |
Collapse
|
11
|
Jmii H, Fisson S, Aouni M, Jaidane H. Type B coxsackieviruses and central nervous system disorders: critical review of reported associations. Rev Med Virol 2020; 31:e2191. [PMID: 33159700 DOI: 10.1002/rmv.2191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/07/2022]
Abstract
Type B coxsackieviruses (CV-B) frequently infect the central nervous system (CNS) causing neurological diseases notably meningitis and encephalitis. These infections occur principally among newborns and children. Epidemiological studies of patients with nervous system disorders demonstrate the presence of infectious virus, its components, or anti-CV-B antibodies. Some experimental studies conducted in vitro and in vivo support the potential association between CV-B and idiopathic neurodegenerative diseases such as amyotrophic lateral sclerosis and psychiatric illness such as schizophrenia. However, mechanisms explaining how CV-B infections may contribute to the genesis of CNS disorders remain unclear. The proposed mechanisms focus on the immune response following the viral infection as a contributor to pathogenesis. This review describes these epidemiological and experimental studies, the modes of transmission of CV-B with an emphasis on congenital transmission, the routes used by CV-B to reach the brain parenchyma, and plausible mechanisms by which CV-B may induce CNS diseases, with a focus on potential immunopathogenesis.
Collapse
Affiliation(s)
- Habib Jmii
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sylvain Fisson
- Généthon, Inserm UMR_S951, Univ Evry, University Paris Saclay, Evry, France
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hela Jaidane
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
12
|
Dechaumes A, Bertin A, Sane F, Levet S, Varghese J, Charvet B, Gmyr V, Kerr-Conte J, Pierquin J, Arunkumar G, Pattou F, Perron H, Hober D. Coxsackievirus-B4 Infection Can Induce the Expression of Human Endogenous Retrovirus W in Primary Cells. Microorganisms 2020; 8:E1335. [PMID: 32883004 PMCID: PMC7563422 DOI: 10.3390/microorganisms8091335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Human Endogenous Retrovirus W Envelope (HERV-W ENV) mRNA or protein can be found in peripheral blood mononuclear cells (PBMCs) and exocrine pancreas of patients with type 1 diabetes (T1D). Further, previous observations have shown an association between enteroviral infection and development of T1D; specifically, coxsackievirus-B (CV-B) has been detected in the blood and pancreas of patients with T1D. Notably, viruses can activate HERV-W expression. Hence, we evaluated the effect of CV-B4 infection on HERV-W ENV mRNA expression. Primary human pancreatic ductal cells were obtained from five brain-dead donors. In the pancreatic cells of three donors, the HERV-W ENV mRNA level measured using RT-qPCR was upregulated upon CV-B4 infection. The HERV-W ENV protein was detected in the infected cells using the immunoblot assay. In human PBMCs inoculated with CV-B4 or when CV-B4 was incubated with an enhancing serum, the HERV-W ENV mRNA level was higher than the background RNA level. In monocyte-derived macrophages obtained from 5 of 13 donors, the HERV-W ENV mRNA level was higher in cultures inoculated with CV-B4 than in the control. Therefore, CV-B4 can upregulate or induce the transcription of a certain HERV-W ENV copy (or copies) in primary cell cultures, such as monocytes, macrophages, and pancreatic cells.
Collapse
Affiliation(s)
- Arthur Dechaumes
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Antoine Bertin
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Sandrine Levet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Jennifer Varghese
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
- Manipal Institute of Virology, Manipal Academy of Higher Education, Karnataka 576104, India;
| | - Benjamin Charvet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Valéry Gmyr
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Julie Kerr-Conte
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Justine Pierquin
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | | | - François Pattou
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Hervé Perron
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
- Geneuro SA, 1228 Geneva, Switzerland
- Faculté de Médecine Laënnec, Université de Lyon, 69008 Lyon, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| |
Collapse
|
13
|
Enteroviral Pathogenesis of Type 1 Diabetes: The Role of Natural Killer Cells. Microorganisms 2020; 8:microorganisms8070989. [PMID: 32630332 PMCID: PMC7409131 DOI: 10.3390/microorganisms8070989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses, especially group B coxsackieviruses (CV-B), have been associated with the development of chronic diseases such as type 1 diabetes (T1D). The pathological mechanisms that trigger virus-induced autoimmunity against islet antigens in T1D are not fully elucidated. Animal and human studies suggest that NK cells response to CV-B infection play a crucial role in the enteroviral pathogenesis of T1D. Indeed, CV-B-infected cells can escape from cytotoxic T cells recognition and destruction by inhibition of cell surface expression of HLA class I antigen through non-structural viral proteins, but they can nevertheless be killed by NK cells. Cytolytic activity of NK cells towards pancreatic beta cells persistently-infected with CV-B has been reported and defective viral clearance by NK cells of patients with T1D has been suggested as a mechanism leading to persistence of CV-B and triggering autoimmunity reported in these patients. The knowledge about host antiviral defense against CV-B infection is not only crucial to understand the susceptibility to virus-induced T1D but could also contribute to the design of new preventive or therapeutic approaches for individuals at risk for T1D or newly diagnosed patients.
Collapse
|
14
|
Nekoua MP, Bertin A, Sane F, Alidjinou EK, Lobert D, Trauet J, Hober C, Engelmann I, Moutairou K, Yessoufou A, Hober D. Pancreatic beta cells persistently infected with coxsackievirus B4 are targets of NK cell-mediated cytolytic activity. Cell Mol Life Sci 2020; 77:179-194. [PMID: 31172216 PMCID: PMC11104831 DOI: 10.1007/s00018-019-03168-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
It has been suggested that the persistence of coxsackieviruses-B (CV-B) in pancreatic beta cells plays a role in the pathogenesis of type 1 diabetes (T1D). Yet, immunological effectors, especially natural killer (NK) cells, are supposed to clear virus-infected cells. Therefore, an evaluation of the response of NK cells to pancreatic beta cells persistently infected with CV-B4 was conducted. A persistent CV-B4 infection was established in 1.1B4 pancreatic beta cells. Infectious particles were found in supernatants throughout the culture period. The proportion of cells containing viral protein VP1 was low (< 5%), although a large proportion of cells harbored viral RNA (around 50%), whilst cell viability was preserved. HLA class I cell surface expression was downregulated in persistently infected cultures, but HLA class I mRNA levels were unchanged in comparison with mock-infected cells. The cytolytic activities of IL-2-activated non-adherent peripheral blood mononuclear cells (PBMCs) and of NK cells were higher towards persistently infected cells than towards mock-infected cells, as assessed by an LDH release assay. Impaired cytolytic activity of IL-2-activated non-adherent PBMCs from patients with T1D towards infected beta cells was observed. In conclusion, pancreatic beta cells persistently infected with CV-B4 can be lysed by NK cells, implying that impaired cytolytic activity of these effector cells may play a role in the persistence of CV-B in the host and thus in the viral pathogenesis of T1D.
Collapse
Affiliation(s)
- Magloire Pandoua Nekoua
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526, Cotonou, Benin
| | - Antoine Bertin
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Famara Sane
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Enagnon Kazali Alidjinou
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Delphine Lobert
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Jacques Trauet
- Université de Lille, INSERM U995, LIRIC-Lille, CHU de Lille, Institut d'Immunologie, 59000, Lille, France
| | - Christine Hober
- Polyclinique, Service de Médecine Programmée, 62000, Henin-Beaumont, France
| | - Ilka Engelmann
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Kabirou Moutairou
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526, Cotonou, Benin
| | - Akadiri Yessoufou
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526, Cotonou, Benin
| | - Didier Hober
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France.
- Laboratoire de Virologie EA3610, Centre Paul Boulanger, Hôpital A Calmette, CHRU, Boulevard du Professeur Jules Leclercq, 59037, Lille Cedex, France.
| |
Collapse
|
15
|
Abstract
PURPOSE OF THE REVIEW The aim of this review is to discuss recent data pointing at an involvement of human endogenous retroviruses (HERVs) in type 1 diabetes (T1D) onset and progression. RECENT FINDINGS The envelope protein of HERV-W family, named HERV-W-Env, was detected in pancreata from T1D patients and was shown to display pro-inflammatory properties and direct toxicity toward pancreatic beta cells. The etiopathogenesis of T1D remains elusive, even if conventional environmental viral infections have been recurrently involved. Nonetheless, a new category of pathogens may provide the missing link between genetic susceptibility and environmental factors long thought to contribute to T1D onset. A number of studies have now shown that HERV sequences, which are normally inactivated or repressed in the human genome, could be activated by environmental viruses. Thus, if similarly activated by viruses associated with T1D, disregarded HERV genes may underlie T1D genetic susceptibility. Moreover, once expressed, HERV elements may display broad pathogenic properties, which identify them as potential new therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Levet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - B. Charvet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - A. Bertin
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - A. Deschaumes
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - H. Perron
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
- Laboratoire des déficits immunitaires, University of Lyon, Lyon, France
- Plan-les-Ouates, GeNeuro SA, Geneva, Switzerland
| | - D. Hober
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| |
Collapse
|
16
|
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:635-650. [PMID: 31534209 DOI: 10.1038/s41574-019-0254-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the destruction of pancreatic β-cells that is mediated by the immune system. Multiple genetic and environmental factors found in variable combinations in individual patients are involved in the development of T1DM. Genetic risk is defined by the presence of particular allele combinations, which in the major susceptibility locus (the HLA region) affect T cell recognition and tolerance to foreign and autologous molecules. Multiple other loci also regulate and affect features of specific immune responses and modify the vulnerability of β-cells to inflammatory mediators. Compared with the genetic factors, environmental factors that affect the development of T1DM are less well characterized but contact with particular microorganisms is emerging as an important factor. Certain infections might affect immune regulation, and the role of commensal microorganisms, such as the gut microbiota, are important in the education of the developing immune system. Some evidence also suggests that nutritional factors are important. Multiple islet-specific autoantibodies are found in the circulation from a few weeks to up to 20 years before the onset of clinical disease and this prediabetic phase provides a potential opportunity to manipulate the islet-specific immune response to prevent or postpone β-cell loss. The latest developments in understanding the heterogeneity of T1DM and characterization of major disease subtypes might help in the development of preventive treatments.
Collapse
Affiliation(s)
- Jorma Ilonen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Johanna Lempainen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
17
|
Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and Macrophages as Viral Targets and Reservoirs. Int J Mol Sci 2018; 19:E2821. [PMID: 30231586 PMCID: PMC6163364 DOI: 10.3390/ijms19092821] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cell biology to utilize monocytes/macrophages as vessels for dissemination, long-term persistence within tissues and virus replication. Viruses enter cells through endocytosis, phagocytosis, macropinocytosis or membrane fusion. These processes play important roles in the mechanisms contributing to the pathogenesis of these agents and in establishing viral genome persistence and latency. Upon viral infection, monocytes respond with an elevated expression of proinflammatory signalling molecules and antiviral responses, as is shown in the case of the influenza, Chikungunya, human herpes and Zika viruses. Human immunodeficiency virus initiates acute inflammation on site during the early stages of infection but there is a shift of M1 to M2 at the later stages of infection. Cytomegalovirus creates a balance between pro- and anti-inflammatory processes by inducing a specific phenotype within the M1/M2 continuum. Despite facilitating inflammation, infected macrophages generally display abolished apoptosis and restricted cytopathic effect, which sustains the virus production. The majority of viruses discussed in this review employ monocytes/macrophages as a repository but certain viruses use these cells for productive replication. This review focuses on viral adaptations to enter monocytes/macrophages, immune escape, reprogramming of infected cells and the response of the host cells.
Collapse
Affiliation(s)
- Ekaterina Nikitina
- Department of Episomal-Persistent DNA in Cancer- and Chronic Diseases, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
| | - Irina Larionova
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Evgeniy Choinzonov
- Head and Neck Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Julia Kzhyshkowska
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Heidelberg, Germany.
| |
Collapse
|
18
|
Benkahla M, Elmastour F, Sane F, Vreulx AC, Engelmann I, Desailloud R, Jaidane H, Alidjinou E, Hober D. Coxsackievirus-B4E2 can infect monocytes and macrophages in vitro and in vivo. Virology 2018; 522:271-280. [DOI: 10.1016/j.virol.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
|