1
|
Laredo-Tiscareño SV, Garza-Hernandez JA, Tangudu CS, Dankaona W, Rodríguez-Alarcón CA, Adame-Gallegos JR, De Luna Santillana EJ, Huerta H, Gonzalez-Peña R, Rivera-Martínez A, Rubio-Tabares E, Beristain-Ruiz DM, Blitvich BJ. Discovery of Novel Viruses in Culicoides Biting Midges in Chihuahua, Mexico. Viruses 2024; 16:1160. [PMID: 39066322 PMCID: PMC11281482 DOI: 10.3390/v16071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Biting midges (Culicoides) are vectors of many pathogens of medical and veterinary importance, but their viromes are poorly characterized compared to certain other hematophagous arthropods, e.g., mosquitoes and ticks. The goal of this study was to use metagenomics to identify viruses in Culicoides from Mexico. A total of 457 adult midges were collected in Chihuahua, northern Mexico, in 2020 and 2021, and all were identified as female Culicoides reevesi. The midges were sorted into five pools and homogenized. An aliquot of each homogenate was subjected to polyethylene glycol precipitation to enrich for virions, then total RNA was extracted and analyzed by unbiased high-throughput sequencing. We identified six novel viruses that are characteristic of viruses from five families (Nodaviridae, Partitiviridae, Solemoviridae, Tombusviridae, and Totiviridae) and one novel virus that is too divergent from all classified viruses to be assigned to an established family. The newly discovered viruses are phylogenetically distinct from their closest known relatives, and their minimal infection rates in female C. reevesi range from 0.22 to 1.09. No previously known viruses were detected, presumably because viral metagenomics had never before been used to study Culicoides from the Western Hemisphere. To conclude, we discovered multiple novel viruses in C. reevesi from Mexico, expanding our knowledge of arthropod viral diversity and evolution.
Collapse
Affiliation(s)
- S. Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
| | - Javier A. Garza-Hernandez
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
| | - Chandra S. Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
| | - Wichan Dankaona
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Carlos A. Rodríguez-Alarcón
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico; (C.A.R.-A.); (D.M.B.-R.)
| | | | - Erick J. De Luna Santillana
- Laboratorio Medicina de la Conservación, Centro de Biotecnología Genómica del Instituto Politécnico Nacional, Reynosa, Tamaulipas 88700, México;
| | - Herón Huerta
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México 01480, Mexico;
| | - Rodolfo Gonzalez-Peña
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatan 97225, Mexico
| | - Alejandra Rivera-Martínez
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
| | - Ezequiel Rubio-Tabares
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico; (C.A.R.-A.); (D.M.B.-R.)
| | - Diana M. Beristain-Ruiz
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico; (C.A.R.-A.); (D.M.B.-R.)
| | - Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
| |
Collapse
|
2
|
Klukowski N, Eden P, Uddin MJ, Sarker S. Virome of Australia's most endangered parrot in captivity evidenced of harboring hitherto unknown viruses. Microbiol Spectr 2024; 12:e0305223. [PMID: 38047696 PMCID: PMC10783009 DOI: 10.1128/spectrum.03052-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE The impact of circulating viruses on the critically endangered, orange-bellied parrot (OBP) population can be devastating. The OBP already faces numerous threats to its survival in the wild, including habitat loss, predation, and small population impacts. Conservation of the wild OBP population is heavily reliant on supplementation using OBPs from a managed captive breeding program. These birds may act as a source for introduction of a novel disease agent to the wild population that may affect survival and reproduction. It is, therefore, essential to monitor and assess the health of OBPs and take appropriate measures to prevent and control the spread of viral infections. This requires knowledge of the existing virome to identify novel and emerging viruses and support development of appropriate measures to manage associated risk. By monitoring and protecting these animals from emerging viral diseases, we can help ensure their ongoing survival and preserve the biodiversity of our planet.
Collapse
Affiliation(s)
- Natalie Klukowski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Paul Eden
- Wildlife Conservation and Science, Zoos Victoria, Werribee, Victoria, Australia
| | - Muhammad Jasim Uddin
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Kampen H, Werner D. Biting Midges (Diptera: Ceratopogonidae) as Vectors of Viruses. Microorganisms 2023; 11:2706. [PMID: 38004718 PMCID: PMC10673010 DOI: 10.3390/microorganisms11112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Biting midges of the genus Culicoides occur almost globally and can regionally and seasonally reach high abundances. Most species are hematophagous, feeding on all groups of vertebrates, including humans. In addition to being nuisance pests, they are able to transmit disease agents, with some viruses causing high morbidity and/or mortality in ruminants, horses and humans. Despite their impact on animal husbandry, public health and tourism, knowledge on the biology and ecology of culicoid biting midges and their interactions with ingested pathogens or symbiotic microorganisms is limited. Research is challenging due to unknown larval habitats, the insects' tiny size, the inability to establish and breed most species in the laboratory and the laborious maintenance of colonies of the few species that can be reared in the laboratory. Consequently, the natural transmission of pathogens has experimentally been demonstrated for few species while, for others, only indirect evidence of vector potential exists. Most experimental data are available for Culicoides sonorensis and C. nubeculosus, the only species kept in western-world insectaries. This contribution gives an overview on important biting midge vectors, transmitted viruses, culicoid-borne viral diseases and their epidemiologies and summarizes the little knowledge on interactions between biting midges, their microflora and culicoid-borne arboviruses.
Collapse
Affiliation(s)
- Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, 15374 Muencheberg, Germany;
| |
Collapse
|
4
|
Li C, Wang W, Zhang X, Xiao P, Li Z, Wang P, Shi N, Zhou H, Lu H, Gao X, Zhang H, Jin N. Metavirome Analysis and Identification of Midge-Borne Viruses from Yunnan Province, China, in 2021. Viruses 2023; 15:1817. [PMID: 37766224 PMCID: PMC10535587 DOI: 10.3390/v15091817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/μL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.
Collapse
Affiliation(s)
- Chenghui Li
- College of Agriculture, Yanbian University, Yanji 133002, China; (C.L.); (X.G.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.W.); (P.X.)
| | - Xuancheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Pengpeng Xiao
- Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.W.); (P.X.)
| | - Zhuoxin Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Ning Shi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Puer 665000, China;
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Xu Gao
- College of Agriculture, Yanbian University, Yanji 133002, China; (C.L.); (X.G.)
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Ningyi Jin
- College of Agriculture, Yanbian University, Yanji 133002, China; (C.L.); (X.G.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
- Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.W.); (P.X.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| |
Collapse
|
5
|
Bendl E, Fuchs J, Kochs G. Bourbon virus, a newly discovered zoonotic thogotovirus. J Gen Virol 2023; 104. [PMID: 37643129 DOI: 10.1099/jgv.0.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The recent discovery of Bourbon virus (BRBV) put a new focus on the genus of thogotoviruses as zoonotic, tick-transmitted pathogens within the orthomyxovirus family. Since 2014, BRBV has been linked to several human cases in the Midwest United States with severe acute febrile illness and a history of tick bites. The detection of the virus in the Lone Star tick, Amblyomma americanum, and a high sero-prevalence in wild animals suggest widespread circulation of BRBV. Phylogenetic analysis of the viral RNA genome classified BRBV into the subgroup of Dhori-like thogotoviruses. Strikingly, BRBV is apathogenic in mice, contrasting not only with the fatal disease in affected patients but also with the severe disease in mice caused by other members of the thogotovirus genus. To gain insights into this intriguing discrepancy, we will review the molecular biology and pathology of BRBV and its unique position within the thogotovirus genus. Lastly, we will discuss the zoonotic threat posed by this newly discovered pathogen.
Collapse
Affiliation(s)
- Elias Bendl
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Yang X, Qin S, Liu X, Zhang N, Chen J, Jin M, Liu F, Wang Y, Guo J, Shi H, Wang C, Chen Y. Meta-Viromic Sequencing Reveals Virome Characteristics of Mosquitoes and Culicoides on Zhoushan Island, China. Microbiol Spectr 2023; 11:e0268822. [PMID: 36651764 PMCID: PMC9927462 DOI: 10.1128/spectrum.02688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mosquitoes and biting Culicoides species are arbovirus vectors. Effective virome profile surveillance is essential for the prevention and control of insect-borne diseases. From June to September 2021, we collected eight species of female mosquito and Culicoides on Zhoushan Island, China, and used meta-viromic sequencing to analyze their virome compositions and characteristics. The classified virus reads were distributed in 191 genera in 66 families. The virus sequences in mosquitoes with the largest proportions were Iflaviridae (30.03%), Phasmaviridae (23.09%), Xinmoviridae (21.82%), Flaviviridae (13.44%), and Rhabdoviridae (8.40%). Single-strand RNA+ viruses formed the largest proportions of viruses in all samples. Blood meals indicated that blood-sucking mosquito hosts were mainly chicken, duck, pig, and human, broadly consistent with the habitats where the mosquitoes were collected. Novel viruses of the Orthobunyavirus, Narnavirus, and Iflavirus genera were found in Culicoides by de-novo assembly. The viruses with vertebrate hosts carried by mosquitoes and Culicoides also varied widely. The analysis of unclassified viruses and deep-learning analysis of the "dark matter" in the meta-viromic sequencing data revealed the presence of a large number of unknown viruses. IMPORTANCE The monitoring of the viromes of mosquitoes and Culicoides, widely distributed arbovirus transmission vectors, is crucial to evaluate the risk of infectious disease transmission. In this study, the compositions of the viromes of mosquitoes and Culicoides on Zhoushan Island varied widely and were related mainly to the host species, with different host species having different core viromes. and many unknown sequences in the Culicoides viromes remain to be annotated, suggesting the presence of a large number of unknown viruses.
Collapse
Affiliation(s)
- Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjun Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Unravelling Bile Viromes of Free-Range Laying Chickens Clinically Diagnosed with Spotty Liver Disease: Emergence of Many Novel Chaphamaparvoviruses into Multiple Lineages. Viruses 2022; 14:v14112543. [PMID: 36423151 PMCID: PMC9695665 DOI: 10.3390/v14112543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Spotty liver disease (SLD) causes substantial egg production losses and chicken mortality; therefore, it is a disease that concerns Australian egg farmers. Over the last few decades, much research has been conducted to determine the etiologic agents of SLD and to develop potential therapeutics; however, SLD still remains a major issue for the chicken industries globally and remained without the elucidation of potentially multiple pathogens involved. To help fill this gap, this study was aimed at understanding the viral diversity of bile samples from which the SLD-causing bacterium, Campylobacter hepaticus, has been isolated and characterised. The collected samples were processed and sequenced using high-throughput next-generation sequencing. Remarkably, this study found 15 galliform chaphamaparvoviruses (GaChPVs), of which 14 are novel under the genus Chaphamaparvovirus. Among them, nine were complete genomes that showed between 41.7% and 78.3% genome-wide pairwise similarities to one another. Subsequent phylogenetic analysis using the NS1 gene exhibited a multiple incursion of chaphamaparvovirus lineages, including a novel lineage of unknown ancestral history in free-range laying chickens in Australia. This is the first evidence of circulating many parvoviruses in chickens in Australia, which has increased our knowledge of the pathogen diversity that may have an association with SLD in chickens.
Collapse
|
8
|
Colmant AMG, Charrel RN, Coutard B. Jingmenviruses: Ubiquitous, understudied, segmented flavi-like viruses. Front Microbiol 2022; 13:997058. [PMID: 36299728 PMCID: PMC9589506 DOI: 10.3389/fmicb.2022.997058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Jingmenviruses are a group of viruses identified recently, in 2014, and currently classified by the International Committee on Taxonomy of Viruses as unclassified Flaviviridae. These viruses closely related to flaviviruses are unique due to the segmented nature of their genome. The prototype jingmenvirus, Jingmen tick virus (JMTV), was discovered in Rhipicephalus microplus ticks collected from China in 2010. Jingmenviruses genomes are composed of four to five segments, encoding for up to seven structural proteins and two non-structural proteins, both of which display strong similarities with flaviviral non-structural proteins (NS2B/NS3 and NS5). Jingmenviruses are currently separated into two phylogenetic clades. One clade includes tick- and vertebrate-associated jingmenviruses, which have been detected in ticks and mosquitoes, as well as in humans, cattle, monkeys, bats, rodents, sheep, and tortoises. In addition to these molecular and serological detections, over a hundred human patients tested positive for jingmenviruses after developing febrile illness and flu-like symptoms in China and Serbia. The second phylogenetic clade includes insect-associated jingmenvirus sequences, which have been detected in a wide range of insect species, as well as in crustaceans, plants, and fungi. In addition to being found in various types of hosts, jingmenviruses are endemic, as they have been detected in a wide range of environments, all over the world. Taken together, all of these elements show that jingmenviruses correspond exactly to the definition of emerging viruses at risk of causing a pandemic, since they are already endemic, have a close association with arthropods, are found in animals in close contact with humans, and have caused sporadic cases of febrile illness in multiple patients. Despite these arguments, the vast majority of published data is from metagenomics studies and many aspects of jingmenvirus replication remain to be elucidated, such as their tropism, cycle of transmission, structure, and mechanisms of replication and restriction or epidemiology. It is therefore crucial to prioritize jingmenvirus research in the years to come, to be prepared for their emergence as human or veterinary pathogens.
Collapse
|
9
|
Pathogen Spillover to an Invasive Tick Species: First Detection of Bourbon Virus in Haemaphysalis longicornis in the United States. Pathogens 2022; 11:pathogens11040454. [PMID: 35456129 PMCID: PMC9030182 DOI: 10.3390/pathogens11040454] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Haemaphysalis longicornis (Neumann, 1901) (Acari: Ixodidae), the Asian longhorned tick, is an invasive tick species present in the USA since at least 2017 and has been detected in one-third of Virginia counties. While this species is associated with the transmission of multiple pathogens in its native geographical range of eastern Asia, little is known about its ability to acquire and transmit pathogens in the USA, specifically those that are transmissible to humans, although from an animal health perspective, it has already been shown to vector Theileria orientalis Ikeda strains. Emerging tick-borne viruses such as Bourbon virus (genus: Thogotovirus) are of concern, as these newly discovered pathogenic agents have caused fatal clinical cases, and little is known about their distribution or enzootic maintenance. This study examined H. longicornis collected within Virginia (from ten counties) for Bourbon and Heartland viruses using PCR methods. All ticks tested negative for Heartland virus via qRT-PCR (S segment target). Bourbon-virus-positive samples were confirmed on two different gene targets and with Sanger sequencing of the PB2 (segment 1) gene. Bourbon virus RNA was detected in one nymphal stage H. longicornis from Patrick County, one nymph from Staunton City, and one larval pool and one adult female tick from Wythe County, Virginia. An additional 100 Amblyomma americanum (Linnaeus 1758; lone star tick) collected at the same Patrick County site revealed one positive nymphal pool, suggesting that Bourbon virus may have spilled over from the native vector, potentially by co-feeding on a shared Bourbon-virus-infected vertebrate host. Blood tested from local harvested deer revealed a 11.1% antibody seroprevalence against Bourbon virus, exposure which further corroborates that this tick-borne virus is circulating in the southwest Virginia region. Through these results, it can be concluded that H. longicornis can carry Bourbon virus and that pathogen spillover may occur from native to invasive tick species.
Collapse
|
10
|
Konstantinidis K, Bampali M, de Courcy Williams M, Dovrolis N, Gatzidou E, Papazilakis P, Nearchou A, Veletza S, Karakasiliotis I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front Microbiol 2022; 13:802577. [PMID: 35330767 PMCID: PMC8940260 DOI: 10.3389/fmicb.2022.802577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.
Collapse
Affiliation(s)
| | - Maria Bampali
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolas Dovrolis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Gatzidou
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Stavroula Veletza
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
11
|
Tran NTB, Shimoda H, Ishijima K, Yonemitsu K, Minami S, Kuroda Y, Tatemoto K, Mendoza MV, Kuwata R, Takano A, Muto M, Sawabe K, Isawa H, Hayasaka D, Maeda K. Zoonotic Infection with Oz Virus, a Novel Thogotovirus. Emerg Infect Dis 2022; 28:436-439. [PMID: 35075999 PMCID: PMC8798690 DOI: 10.3201/eid2802.211270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oz virus is a novel thogotovirus isolated from ticks that causes lethal infection in mice. We conducted serosurveillance of Oz virus infection among humans and wild mammals in Japan using virus-neutralization tests and ELISAs. Results showed that Oz virus may be naturally infecting humans and other mammalian hosts.
Collapse
|
12
|
Metagenomic detection and characterisation of multiple viruses in apparently healthy Australian Neophema birds. Sci Rep 2021; 11:20915. [PMID: 34686748 PMCID: PMC8536680 DOI: 10.1038/s41598-021-00440-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Emerging viral pathogens are a significant concern, with potential consequences for human, animal and environmental health. Over the past several decades, many novel viruses have been found in animals, including birds, and often pose a significant threat to vulnerable species. However, despite enormous interest in virus research, little is known about virus communities (viromes) in Australian Neophema birds. Therefore, this study was designed to characterise the viromes of Neophema birds and track the evolutionary relationships of recently emerging psittacine siadenovirus F (PsSiAdV-F) circulating in the critically endangered, orange-bellied parrot (OBP, Neophema chrysogaster), using a viral metagenomic approach. This study identified 16 viruses belonging to the families Adenoviridae, Circoviridae, Endornaviridae, Picobirnaviridae and Picornaviridae. In addition, this study demonstrated a potential evolutionary relationship of a PsSiAdV-F sequenced previously from the critically endangered OBP. Strikingly, five adenoviral contigs identified in this study show the highest identities with human adenovirus 2 and human mastadenovirus C. This highlights an important and unexpected aspects of the avian virome and warrants further studies dedicated to this subject. Finally, the findings of this study emphasise the importance of testing birds used for trade or in experimental settings for potential pathogens to prevent the spread of infections.
Collapse
|
13
|
François S, Antoine-Lorquin A, Kulikowski M, Frayssinet M, Filloux D, Fernandez E, Roumagnac P, Froissart R, Ogliastro M. Characterisation of the Viral Community Associated with the Alfalfa Weevil ( Hypera postica) and Its Host Plant, Alfalfa ( Medicago sativa). Viruses 2021; 13:791. [PMID: 33925168 PMCID: PMC8145008 DOI: 10.3390/v13050791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.
Collapse
Affiliation(s)
- Sarah François
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, South Park Road, Oxford OX1 3SY, UK
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Aymeric Antoine-Lorquin
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Maximilien Kulikowski
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Marie Frayssinet
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Rémy Froissart
- MIVEGEC Infectious and Vector Diseases: Ecology, Genetics, Evolution and Control, University of Montpellier, CNRS, IRD, 34394 Montpellier, France;
| | - Mylène Ogliastro
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| |
Collapse
|
14
|
Nebbak A, Monteil-Bouchard S, Berenger JM, Almeras L, Parola P, Desnues C. Virome Diversity among Mosquito Populations in a Sub-Urban Region of Marseille, France. Viruses 2021; 13:v13050768. [PMID: 33925487 PMCID: PMC8145591 DOI: 10.3390/v13050768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/28/2022] Open
Abstract
Some mosquito species have significant public health importance given their ability to transmit major diseases to humans and animals, making them the deadliest animals in the world. Among these, the Aedes (Ae.) genus is a vector of several viruses such as Dengue, Chikungunya, and Zika viruses that can cause serious pathologies in humans. Since 2004, Ae. albopictus has been encountered in the South of France, and autochthonous cases of Dengue, Chikungunya, and Zika diseases have recently been reported, further highlighting the need for a comprehensive survey of the mosquitoes and their associated viruses in this area. Using high throughput sequencing (HTS) techniques, we report an analysis of the DNA and RNA viral communities of three mosquito species Ae. albopictus, Culex (Cx.) pipiens, and Culiseta (Cs.) longiareolata vectors of human infectious diseases in a small sub-urban city in the South of France. Results revealed the presence of a significant diversity of viruses known to infect bacteria, plants, insects, and mammals. Several novel viruses were detected, including novel members of the Rhabdoviridae, Totiviridae, Iflaviviridae, Circoviridae, and Sobemoviridae families. No sequence related to major zoonotic viruses transmitted by mosquitoes was detected. The use of HTS on arthropod vector populations is a promising strategy for monitoring the emergence and circulation of zoonoses and epizooties. This study is a contribution to the knowledge of the mosquito microbiome.
Collapse
Affiliation(s)
- Amira Nebbak
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail RP 42004, Tipaza, Algeria
| | - Sonia Monteil-Bouchard
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jean-Michel Berenger
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Lionel Almeras
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Christelle Desnues
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
- Correspondence:
| |
Collapse
|
15
|
He X, Yin Q, Zhou L, Meng L, Hu W, Li F, Li Y, Han K, Zhang S, Fu S, Zhang X, Wang J, Xu S, Zhang Y, He Y, Dong M, Shen X, Zhang Z, Nie K, Liang G, Ma X, Wang H. Metagenomic sequencing reveals viral abundance and diversity in mosquitoes from the Shaanxi-Gansu-Ningxia region, China. PLoS Negl Trop Dis 2021; 15:e0009381. [PMID: 33901182 PMCID: PMC8101993 DOI: 10.1371/journal.pntd.0009381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/06/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mosquitoes host and transmit numerous arthropod-borne viruses (arboviruses) that cause disease in both humans and animals. Effective surveillance of virome profiles in mosquitoes is vital to the prevention and control of mosquito-borne diseases in northwestern China, where epidemics occur frequently. METHODS Mosquitoes were collected in the Shaanxi-Gansu-Ningxia region (Shaanxi Province, Gansu Province, and Ningxia Hui Autonomous Region) of China from June to August 2019. Morphological methods were used for taxonomic identification of mosquito species. High-throughput sequencing and metagenomic analysis were used to characterize mosquito viromes. RESULTS A total of 22,959 mosquitoes were collected, including Culex pipiens (45.7%), Culex tritaeniorhynchus (40.6%), Anopheles sinensis (8.4%), Aedes (5.2%), and Armigeres subalbatus (0.1%). In total, 3,014,183 (0.95% of clean reads) viral sequences were identified and assigned to 116 viral species (including pathogens such as Japanese encephalitis virus and Getah virus) in 31 viral families, including Flaviviridae, Togaviridae, Phasmaviridae, Phenuiviridae, and some unclassified viruses. Mosquitoes collected in July (86 species in 26 families) showed greater viral diversity than those from June and August. Culex pipiens (69 species in 25 families) and Culex tritaeniorhynchus (73 species in 24 families) carried more viral species than Anopheles sinensis (50 species in 19 families) or Aedes (38 species in 20 families) mosquitoes. CONCLUSION Viral diversity and abundance were affected by mosquito species and collection time. The present study elucidates the virome compositions of various mosquito species in northwestern China, improving the understanding of virus transmission dynamics for comparison with those of disease outbreaks.
Collapse
Affiliation(s)
- Xiaozhou He
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qikai Yin
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Liwei Zhou
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, People’s Republic of China
| | - Lei Meng
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People’s Republic of China
| | - Weijun Hu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, People’s Republic of China
| | - Fan Li
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yang Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Kun Han
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, People’s Republic of China
| | - Shaobai Zhang
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, People’s Republic of China
| | - Shihong Fu
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiaoshu Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People’s Republic of China
| | - Ji Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Songtao Xu
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yi Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ying He
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Maoxing Dong
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People’s Republic of China
| | - Xinxin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zheng Zhang
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, People’s Republic of China
| | - Kai Nie
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guodong Liang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xuejun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- * E-mail: (XJM); (HYW)
| | - Huanyu Wang
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- * E-mail: (XJM); (HYW)
| |
Collapse
|
16
|
Kobayashi D, Watanabe M, Faizah AN, Amoa-Bosompem M, Higa Y, Tsuda Y, Sawabe K, Isawa H. Discovery of a Novel Flavivirus (Flaviviridae) From the Horse Fly, Tabanus rufidens (Diptera: Tabanidae): The Possible Coevolutionary Relationships Between the Classical Insect-Specific Flaviviruses and Host Dipteran Insects. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:880-890. [PMID: 33710314 DOI: 10.1093/jme/tjaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/12/2023]
Abstract
Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Research Promotion, Japan Agency for Medical Research and Development, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
17
|
Geoghegan JL, Di Giallonardo F, Wille M, Ortiz-Baez AS, Costa VA, Ghaly T, Mifsud JCO, Turnbull OMH, Bellwood DR, Williamson JE, Holmes EC. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol 2021; 7:veab005. [PMID: 33623709 PMCID: PMC7887440 DOI: 10.1093/ve/veab005] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Revealing the determinants of virome composition is central to placing disease emergence in a broader evolutionary context. Fish are the most species-rich group of vertebrates and so provide an ideal model system to study the factors that shape virome compositions and their evolution. We characterized the viromes of nineteen wild-caught species of marine fish using total RNA sequencing (meta-transcriptomics) combined with analyses of sequence and protein structural homology to identify divergent viruses that often evade characterization. From this, we identified twenty-five new vertebrate-associated viruses and a further twenty-two viruses likely associated with fish diet or their microbiomes. The vertebrate-associated viruses identified here included the first fish virus in the Matonaviridae (single-strand, negative-sense RNA virus). Other viruses fell within the Astroviridae, Picornaviridae, Arenaviridae, Reoviridae, Hepadnaviridae, Paramyxoviridae, Rhabdoviridae, Hantaviridae, Filoviridae, and Flaviviridae, and were sometimes phylogenetically distinct from known fish viruses. We also show how key metrics of virome composition-viral richness, abundance, and diversity-can be analysed along with host ecological and biological factors as a means to understand virus ecology. Accordingly, these data suggest that that the vertebrate-associated viromes of the fish sampled here are predominantly shaped by the phylogenetic history (i.e. taxonomic order) of their hosts, along with several biological factors including water temperature, habitat depth, community diversity and swimming behaviour. No such correlations were found for viruses associated with porifera, molluscs, arthropods, fungi, and algae, that are unlikely to replicate in fish hosts. Overall, these data indicate that fish harbour particularly large and complex viromes and the vast majority of fish viromes are undescribed.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Environmental Science and Research, Wellington 5018, New Zealand
| | | | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ayda Susana Ortiz-Baez
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vincenzo A Costa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Timothy Ghaly
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathon C O Mifsud
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Olivia M H Turnbull
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Liu L, Shen Q, Li N, He Y, Han N, Wang X, Meng J, Peng Y, Pan M, Jin Y, Jiang T, Tan W, Wang J, Wu A. Comparative viromes of Culicoides and mosquitoes reveal their consistency and diversity in viral profiles. Brief Bioinform 2020; 22:6032619. [PMID: 33313676 DOI: 10.1093/bib/bbaa323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
The genus Culicoides includes biting midges, some of which are vectors for viruses that cause diseases in humans and animals. Knowledge of the roles of Culicoides in viral ecology is inadequate. We collected ~300 000 samples of Culicoides and mosquitoes in 15 representative regions within Yunnan, China. Using mosquitoes as reference vectors, we designed a comparative virome strategy to study the viral composition, diversity, hosts and spatiotemporal distribution of Culicoides. A map of viromes in Culicoides and mosquitoes in Yunan province, China, was constructed. At the same locations, Culicoides and mosquitoes usually share a similar viral diversity. At least 10 important pathogenic viruses were detected from Culicoides. Many novel viruses were discovered, including 21 segmented viruses of Flaviviridae, 180 viruses of Monjiviricetes and 130 viruses of Bunyavirales. The findings demonstrate that Culicoides is an important part of viral ecology and should be studied and monitored for potentially emerging viruses.
Collapse
Affiliation(s)
- Lin Liu
- Suzhou Institute of Systems Medicine
| | - Qin Shen
- Suzhou Institute of Systems Medicine
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory,Yunnan Animal Science and Veterinary Institute
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory,Yunnan Animal Science and Veterinary Institute
| | - Na Han
- Suzhou Institute of Systems Medicine
| | | | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory,Yunnan Animal Science and Veterinary Institute
| | | | - Mei Pan
- lab masters in the high-throughput sequencing platform of the Suzhou Institute of Systems Medicine
| | - Yuting Jin
- lab masters in the high-throughput sequencing platform of the Suzhou Institute of Systems Medicine
| | | | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC
| | | | - Aiping Wu
- Suzhou Institute of Systems Medicine
| |
Collapse
|
19
|
Stanojević M, Li K, Stamenković G, Ilić B, Paunović M, Pešić B, Maslovara IĐ, Šiljić M, Ćirković V, Zhang Y. Depicting the RNA Virome of Hematophagous Arthropods from Belgrade, Serbia. Viruses 2020; 12:v12090975. [PMID: 32887342 PMCID: PMC7552015 DOI: 10.3390/v12090975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/21/2023] Open
Abstract
Hematophagous arthropods are important vectors for zoonotic pathogens. To date, a huge number of viruses have been identified in these arthropods, with a considerable proportion of them being human pathogens. However, the viromes of hematophagous arthropods are still largely unresearched. In this study, a number of arthropods were collected from Belgrade, Serbia including mosquitoes, ticks and bedbugs. The viromes of these arthropods were identified and characterized using Illumina MiSeq sequencing. In total, 21 viruses belonging to 11 families were characterized, with 11 of them representing novel species. These results may contribute to our knowledge of RNA viruses in arthropods and the discovery of novel human pathogens.
Collapse
Affiliation(s)
- Maja Stanojević
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (M.Š.); (V.C.)
| | - Kun Li
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing 102206, China;
| | - Gorana Stamenković
- Department for Genetic Research, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojan Ilić
- Department of Animal Development, Faculty of Biology, Institute of Zoology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Paunović
- Natural History Museum in Belgrade, 11000 Belgrade, Serbia;
| | - Branislav Pešić
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia; (B.P.); (I.Đ.M.)
| | - Ivana Đurić Maslovara
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia; (B.P.); (I.Đ.M.)
| | - Marina Šiljić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (M.Š.); (V.C.)
| | - Valentina Ćirković
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (M.Š.); (V.C.)
| | - Yongzhen Zhang
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing 102206, China;
- Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai 200432, China
- Correspondence:
| |
Collapse
|
20
|
Temmam S, Chrétien D, Bigot T, Dufour E, Petres S, Desquesnes M, Devillers E, Dumarest M, Yousfi L, Jittapalapong S, Karnchanabanthoeng A, Chaisiri K, Gagnieur L, Cosson JF, Vayssier-Taussat M, Morand S, Moutailler S, Eloit M. Monitoring Silent Spillovers Before Emergence: A Pilot Study at the Tick/Human Interface in Thailand. Front Microbiol 2019; 10:2315. [PMID: 31681195 PMCID: PMC6812269 DOI: 10.3389/fmicb.2019.02315] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023] Open
Abstract
Emerging zoonoses caused by previously unknown agents are one of the most important challenges for human health because of their inherent inability to be predictable, conversely to emergences caused by previously known agents that could be targeted by routine surveillance programs. Emerging zoonotic infections either originate from increasing contacts between wildlife and human populations, or from the geographical expansion of hematophagous arthropods that act as vectors, this latter being more capable to impact large-scale human populations. While characterizing the viral communities from candidate vectors in high-risk geographical areas is a necessary initial step, the need to identify which viruses are able to spill over and those restricted to their hosts has recently emerged. We hypothesized that currently unknown tick-borne arboviruses could silently circulate in specific biotopes where mammals are highly exposed to tick bites, and implemented a strategy that combined high-throughput sequencing with broad-range serological techniques to both identify novel arboviruses and tick-specific viruses in a ticks/mammals interface in Thailand. The virome of Thai ticks belonging to the Rhipicephalus, Amblyomma, Dermacentor, Hyalomma, and Haemaphysalis genera identified numerous viruses, among which several viruses could be candidates for future emergence as regards to their phylogenetic relatedness with known tick-borne arboviruses. Luciferase immunoprecipitation system targeting external viral proteins of viruses identified among the Orthomyxoviridae, Phenuiviridae, Flaviviridae, Rhabdoviridae, and Chuviridae families was used to screen human and cattle Thai populations highly exposed to tick bites. Although no positive serum was detected for any of the six viruses selected, suggesting that these viruses are not infecting these vertebrates, or at very low prevalence (upper estimate 0.017% and 0.047% in humans and cattle, respectively), the virome of Thai ticks presents an extremely rich viral diversity, among which novel tick-borne arboviruses are probably hidden and could pose a public health concern if they emerge. The strategy developed in this pilot study, starting from the inventory of viral communities of hematophagous arthropods to end by the identification of viruses able (or likely unable) to infect vertebrates, is the first step in the prediction of putative new emergences and could easily be transposed to other reservoirs/vectors/susceptible hosts interfaces.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Delphine Chrétien
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Thomas Bigot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
- Institut Pasteur – Bioinformatics and Biostatistics Hub – Computational Biology Department, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Evelyne Dufour
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform – C2RT, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform – C2RT, Paris, France
| | - Marc Desquesnes
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR InterTryp, Bangkok, Thailand
- InterTryp, Institut de Recherche pour le Développement (IRD), CIRAD, University of Montpellier, Montpellier, France
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Léna Yousfi
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | | | | | - Léa Gagnieur
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS, CC065, Université Montpellier, Montpellier, France
- CIRAD ASTRE, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
21
|
Rolland C, Andreani J, Louazani AC, Aherfi S, Francis R, Rodrigues R, Silva LS, Sahmi D, Mougari S, Chelkha N, Bekliz M, Silva L, Assis F, Dornas F, Khalil JYB, Pagnier I, Desnues C, Levasseur A, Colson P, Abrahão J, La Scola B. Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere. Viruses 2019; 11:E312. [PMID: 30935049 PMCID: PMC6520786 DOI: 10.3390/v11040312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The history of giant viruses began in 2003 with the identification of Acanthamoeba polyphaga mimivirus. Since then, giant viruses of amoeba enlightened an unknown part of the viral world, and every discovery and characterization of a new giant virus modifies our perception of the virosphere. This notably includes their exceptional virion sizes from 200 nm to 2 µm and their genomic complexity with length, number of genes, and functions such as translational components never seen before. Even more surprising, Mimivirus possesses a unique mobilome composed of virophages, transpovirons, and a defense system against virophages named Mimivirus virophage resistance element (MIMIVIRE). From the discovery and isolation of new giant viruses to their possible roles in humans, this review shows the active contribution of the University Hospital Institute (IHU) Mediterranee Infection to the growing knowledge of the giant viruses' field.
Collapse
Affiliation(s)
- Clara Rolland
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Amina Cherif Louazani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Sarah Aherfi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rania Francis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rodrigo Rodrigues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Ludmila Santos Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Dehia Sahmi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Said Mougari
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Nisrine Chelkha
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Meriem Bekliz
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Lorena Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Felipe Assis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Fábio Dornas
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | | | - Isabelle Pagnier
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Christelle Desnues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Anthony Levasseur
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Philippe Colson
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Jônatas Abrahão
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
22
|
Detection of RNA-Dependent RNA Polymerase of Hubei Reo-Like Virus 7 by Next-Generation Sequencing in Aedes aegypti and Culex quinquefasciatus Mosquitoes from Brazil. Viruses 2019; 11:v11020147. [PMID: 30744159 PMCID: PMC6410231 DOI: 10.3390/v11020147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 01/24/2023] Open
Abstract
Advancements in next-generation sequencing and bioinformatics have expanded our knowledge of the diversity of viruses (pathogens and non-pathogens) harbored by mosquitoes. Hubei reo-like virus 7 (HRLV 7) was recently detected by the virome analysis of fecal samples from migratory birds in Australia. We now report the detection of RNA-dependent RNA polymerase sequences of HRLV 7 in pools of Aedes aegypti and Culex quinquefasciatus mosquitoes species from the Brazilian Amazon forest. Phylogenetic inferences indicated that all HRLV 7 strains fall within the same independent clade. In addition, HRLV 7 shared a close ancestral lineage with the Dinovernavirus genus of the Reoviridae family. Our findings indicate that HRLV 7 is present in two species of mosquitoes.
Collapse
|
23
|
New Viruses from the Ectoparasite Mite Varroa destructor Infesting Apis mellifera and Apis cerana. Viruses 2019; 11:v11020094. [PMID: 30678330 PMCID: PMC6409542 DOI: 10.3390/v11020094] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
Varroa destructor is an ectoparasitic mite of Asian or Eastern honeybees Apis cerana(A. cerana) which has become a serious threat to European subspecies of Western honeybees Apis mellifera (A. mellifera) within the last century. V.destructor and its vectored honeybee viruses became serious threats for colony survival. This is a short period for pathogen- and host-populations to adapt. To look for possible variation in the composition of viral populations we performed RNA metagenomic analysis of the Western honeybee subspecies A. m. ligustica, A. m.syriaca, A. m. intermissa, and A. cerana and their respective V. destructor mites. The analysis revealed two novel viruses: Varroa orthomyxovirus-1 (VOV-1) in A. mellifera and V. destructor and a Hubei like-virga virus-14 homolog in V. destructor. VOV-1 was more prevalent in V. destructor than in A. mellifera and we found evidence for viral replication in both hosts. Interestingly, we found differences in viral loads of A. cerana and their V. destructor, A. m. intermissa, and its V. destructor showed partial similarity, while A. m.ligustica and A. m.syriaca and their varroa where very similar. Deformed wing virus exhibited 82.20%, 99.20%, 97.90%, and 0.76% of total viral reads in A. m. ligustica, A. m. syriaca, A. m. intermissa, and A. cerana, respectively. This is the first report of a complete segmented-single-stranded negative-sense RNA virus genome in honeybees and V. destructor mites.
Collapse
|
24
|
Correlative light electron microscopy of giant viruses with the SECOM system. New Microbes New Infect 2018; 26:110-113. [PMID: 30364595 PMCID: PMC6197374 DOI: 10.1016/j.nmni.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022] Open
Abstract
Bright-field transmission electron microscopy (TEM), TEM-negative staining technique, resin-embedding and ultramicrotomy, scanning TEM, scanning electron microscopy, atomic force microscopy and cryoelectron microscopy are imaging techniques used for describing giant viruses, their cycle and ultrastructure. Here we used the SECOM system, an integrated correlative light and electron microscopy using light and electronic imaging without sample transfer, to study cells infected with giant viruses, as shown by Tupanvirus, the ultrastructure of which was successfully observed. An improvement of the SECOM system with an eye to its use in fundamental and clinical research could be considered in the field of microbiology.
Collapse
|
25
|
Savage HM, Burkhalter KL, Godsey MS, Panella NA, Ashley DC, Nicholson WL, Lambert AJ. Bourbon Virus in Field-Collected Ticks, Missouri, USA. Emerg Infect Dis 2018; 23:2017-2022. [PMID: 29148395 PMCID: PMC5708220 DOI: 10.3201/eid2312.170532] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bourbon virus (BRBV) was first isolated in 2014 from a resident of Bourbon County, Kansas, USA, who died of the infection. In 2015, an ill Payne County, Oklahoma, resident tested positive for antibodies to BRBV, before fully recovering. We retrospectively tested for BRBV in 39,096 ticks from northwestern Missouri, located 240 km from Bourbon County, Kansas. We detected BRBV in 3 pools of Amblyomma americanum (L.) ticks: 1 pool of male adults and 2 pools of nymphs. Detection of BRBV in A. americanum, a species that is aggressive, feeds on humans, and is abundant in Kansas and Oklahoma, supports the premise that A. americanum is a vector of BRBV to humans. BRBV has not been detected in nonhuman vertebrates, and its natural history remains largely unknown.
Collapse
|
26
|
Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds. Sci Rep 2018; 8:8686. [PMID: 29875375 PMCID: PMC5989203 DOI: 10.1038/s41598-018-26851-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
We present an optimised metagenomics method for detection and characterisation of all virus types including single and double stranded DNA/RNA and enveloped and non-enveloped viruses. Initial evaluation included both spiked and non-spiked bird faecal samples as well as non-spiked human faecal samples. From the non-spiked bird samples (Australian Muscovy duck and Pacific black ducks) we detected 21 viruses, and we also present a summary of a few viruses detected in human faecal samples. We then present a detailed analysis of selected virus sequences in the avian samples that were somewhat similar to known viruses, and had good quality (Q20 or higher) and quantity of next-generation sequencing reads, and was of interest from a virological point of view, for example, avian coronavirus and avian paramyxovirus 6. Some of these viruses were closely related to known viruses while others were more distantly related with 70% or less identity to currently known/sequenced viruses. Besides detecting viruses, the technique also allowed the characterisation of host mitochondrial DNA present and thus identifying host species, while ribosomal RNA sequences provided insight into the "ribosomal activity microbiome"; of gut parasites; and of food eaten such as plants or insects, which we correlated to non-avian host associated viruses.
Collapse
|
27
|
Roberts JMK, Anderson DL, Durr PA. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. J Gen Virol 2018; 99:818-826. [PMID: 29749926 DOI: 10.1099/jgv.0.001073] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The viral landscape of the honey bee (Apismellifera) has changed as a consequence of the global spread of the parasitic mite Varroa destructor and accompanying virulent strains of the iflavirus deformed wing virus (DWV), which the mite vectors. The presence of DWV in honey bee populations is known to influence the occurrence of other viruses, suggesting that the current known virome of A. mellifera may be undercharacterized. Here we tested this hypothesis by examining the honey bee virome in Australia, which is uniquely free of parasitic mites or DWV. Using a high-throughput sequencing (HTS) approach, we examined the RNA virome from nine pools of A. mellifera across Australia. In addition to previously reported honey bee viruses, several other insect viruses were detected, including strains related to aphid lethal paralysis virus (ALPV) and Rhopalosiphum padi virus (RhPV), which have recently been identified as infecting honey bees in the USA, as well as several other viruses recently found in Drosophila spp. A further 42 putative novel insect virus genomes spanning the order Picornavirales were assembled, which significantly increases the known viral diversity in A. mellifera. Among these novel genomes, we identified several that were similar (but different) to key A. mellifera viruses, such as DWV, that warrant further investigation. We propose that A. mellifera may be preferentially infected with viruses of the order Picornavirales and that a diverse population of these viruses may be representative of a Varroa-free landscape.
Collapse
Affiliation(s)
- John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Denis L Anderson
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
- ADFCA, Research and Development Division, Al Ain, UAE
| | - Peter A Durr
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, 3219, Australia
| |
Collapse
|
28
|
Abstract
Oropouche fever is an emerging zoonotic disease caused by Oropouche virus (OROV), an arthropod transmitted Orthobunyavirus circulating in South and Central America. During the last 60 years, more than 30 epidemics and over half a million clinical cases attributed to OROV infection have been reported in Brazil, Peru, Panama, Trinidad and Tobago. OROV fever is considered the second most frequent arboviral febrile disease in Brazil after dengue fever. OROV is transmitted through both urban and sylvatic transmission cycles, with the primary vector in the urban cycle being the anthropophilic biting midge Culicoides paraensis. Currently, there is no evidence of direct human-to-human OROV transmission. OROV fever is usually either undiagnosed due to its mild, self-limited manifestations or misdiagnosed because its clinical characteristics are similar to dengue, chikungunya, Zika and yellow fever, including malaria as well. At present, there is no specific antiviral treatment, and in the absence of a vaccine for effective prophylaxis of human populations in endemic areas, the disease prevention relies solely on vector control strategies and personal protection measures. OROV fever is considered to have the potential to spread across the American continent and under favorable climatic conditions may expand its geographic distribution to other continents. In view of OROV's emergence, increased interest for formerly neglected tropical diseases and within the One Health concept, the existing knowledge and gaps of knowledge on OROV fever are reviewed.
Collapse
|
29
|
Ejiri H, Lim CK, Isawa H, Fujita R, Murota K, Sato T, Kobayashi D, Kan M, Hattori M, Kimura T, Yamaguchi Y, Takayama-Ito M, Horiya M, Posadas-Herrera G, Minami S, Kuwata R, Shimoda H, Maeda K, Katayama Y, Mizutani T, Saijo M, Kaku K, Shinomiya H, Sawabe K. Characterization of a novel thogotovirus isolated from Amblyomma testudinarium ticks in Ehime, Japan: A significant phylogenetic relationship to Bourbon virus. Virus Res 2018; 249:57-65. [PMID: 29548745 DOI: 10.1016/j.virusres.2018.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
The genus Thogotovirus, as represented by Thogoto virus and Dhori virus, comprises a group of arthropod-borne viruses, most members of which are transmitted by ticks. Here we report the genetic and biological characterization of a new thogotovirus, designated Oz virus (OZV), isolated from the hard tick Amblyomma testudinarium in Ehime, Japan. OZV efficiently replicated and induced a cytopathic effect in Vero cells, from which enveloped pleomorphic virus particles were formed by budding. OZV could also replicate in BHK-21 and DH82 cells and caused high mortality in suckling mice after intracerebral inoculation. Phylogenetic analyses of six viral proteins indicated that OZV is clustered with Dhori and related viruses, and is most closely related in glycoprotein (GP) and matrix protein (M) sequences to Bourbon virus, a human-pathogenic thogotovirus discovered recently in the United States. Our findings emphasize the need for understanding the geographic distribution and ecology of OZV and related viruses and for reevaluation of the medical and public health importance of thogotoviruses.
Collapse
Affiliation(s)
- Hiroko Ejiri
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Ryosuke Fujita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Katsunori Murota
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Tomomi Sato
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Miki Kan
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Masashi Hattori
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Toshiya Kimura
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Yukie Yamaguchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Madoka Horiya
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Guillermo Posadas-Herrera
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shohei Minami
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Koki Kaku
- Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroto Shinomiya
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
30
|
de Lara Pinto AZ, Santos de Carvalho M, de Melo FL, Ribeiro ALM, Morais Ribeiro B, Dezengrini Slhessarenko R. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil. PLoS One 2017; 12:e0187429. [PMID: 29117239 PMCID: PMC5678729 DOI: 10.1371/journal.pone.0187429] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Viruses may represent the most diverse microorganisms on Earth. Novel viruses and variants continue to emerge. Mosquitoes are the most dangerous animals to humankind. This study aimed at identifying viral RNA diversity in salivary glands of mosquitoes captured in a sylvatic area of Cerrado at the Chapada dos Guimarães National Park, Mato Grosso, Brazil. In total, 66 Culicinae mosquitoes belonging to 16 species comprised 9 pools, subjected to viral RNA extraction, double-strand cDNA synthesis, random amplification and high-throughput sequencing, revealing the presence of seven insect-specific viruses, six of which represent new species of Rhabdoviridae (Lobeira virus), Chuviridae (Cumbaru and Croada viruses), Totiviridae (Murici virus) and Partitiviridae (Araticum and Angico viruses). In addition, two mosquito pools presented Kaiowa virus sequences that had already been reported in South Pantanal, Brazil. These findings amplify the understanding of viral diversity in wild-type Culicinae. Insect-specific viruses may present a broader diversity than previously imagined and future studies may address their possible role in mosquito vector competence.
Collapse
Affiliation(s)
- Andressa Zelenski de Lara Pinto
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Michellen Santos de Carvalho
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Fernando Lucas de Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Ana Lúcia Maria Ribeiro
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
- * E-mail:
| |
Collapse
|
31
|
Roberts JMK, Anderson DL, Durr PA. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci Rep 2017; 7:6925. [PMID: 28761114 PMCID: PMC5537221 DOI: 10.1038/s41598-017-07290-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/27/2017] [Indexed: 01/28/2023] Open
Abstract
Honeybee (Apis mellifera) health is threatened globally by the complex interaction of multiple stressors, including the parasitic mite Varroa destructor and a number of pathogenic viruses. Australia provides a unique opportunity to study this pathogenic viral landscape in the absence of V. destructor. We analysed 1,240A. mellifera colonies across Australia by reverse transcription-polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS). Five viruses were prevalent: black queen cell virus (BQCV), sacbrood virus (SBV), Israeli acute paralysis virus (IAPV) and the Lake Sinai viruses (LSV1 and LSV2), of which the latter three were detected for the first time in Australia. We also showed several viruses were absent in our sampling, including deformed wing virus (DWV) and slow bee paralysis virus (SBPV). Our findings highlight that viruses can be highly prevalent in A. mellifera populations independently of V. destructor. Placing these results in an international context, our results support the hypothesis that the co-pathogenic interaction of V. destructor and DWV is a key driver of increased colony losses, but additional stressors such as pesticides, poor nutrition, etc. may enable more severe and frequent colony losses to occur.
Collapse
Affiliation(s)
- John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Denis L Anderson
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
- ADFCA, Research and Development Division, Al Ain, UAE
| | - Peter A Durr
- CSIRO-Australian Animal Health Laboratory, Geelong, Victoria, 3219, Australia
| |
Collapse
|
32
|
Contreras-Gutiérrez MA, Nunes MRT, Guzman H, Uribe S, Suaza Vasco JD, Cardoso JF, Popov VL, Widen SG, Wood TG, Vasilakis N, Tesh RB. Sinu virus, a novel and divergent orthomyxovirus related to members of the genus Thogotovirus isolated from mosquitoes in Colombia. Virology 2017; 501:166-175. [PMID: 27936462 PMCID: PMC5201441 DOI: 10.1016/j.virol.2016.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
Abstract
The genome and structural organization of a novel insect-specific orthomyxovirus, designated Sinu virus, is described. Sinu virus (SINUV) was isolated in cultures of C6/36 cells from a pool of mosquitoes collected in northwestern Colombia. The virus has six negative-sense ssRNA segments. Genetic analysis of each segment demonstrated the presence of six distinct ORFs encoding the following genes: PB2 (Segment 1), PB1, (Segment 2), PA protein (Segment 3), envelope GP gene (Segment 4), the NP (Segment 5), and M-like gene (Segment 6). Phylogenetically, SINUV appears to be most closed related to viruses in the genus Thogotovirus.
Collapse
Affiliation(s)
- María Angélica Contreras-Gutiérrez
- Programa de Estudio y Control de Enfermedades Tropicales - PECET - SIUSde de Investigación Universitaria - Universidad de Antioquia, Medellín, Colombia; Grupo de Investigación en Sistemática Molecular-GSM, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
| | - Marcio R T Nunes
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para, Brazil
| | - Hilda Guzman
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sandra Uribe
- Grupo de Investigación en Sistemática Molecular-GSM, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
| | - Juan David Suaza Vasco
- Programa de Estudio y Control de Enfermedades Tropicales - PECET - SIUSde de Investigación Universitaria - Universidad de Antioquia, Medellín, Colombia; Grupo de Investigación en Sistemática Molecular-GSM, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia
| | - Jedson F Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para, Brazil
| | - Vsevolod L Popov
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Robert B Tesh
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
33
|
Viral Metagenomics on Blood-Feeding Arthropods as a Tool for Human Disease Surveillance. Int J Mol Sci 2016; 17:ijms17101743. [PMID: 27775568 PMCID: PMC5085771 DOI: 10.3390/ijms17101743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/17/2022] Open
Abstract
Surveillance and monitoring of viral pathogens circulating in humans and wildlife, together with the identification of emerging infectious diseases (EIDs), are critical for the prediction of future disease outbreaks and epidemics at an early stage. It is advisable to sample a broad range of vertebrates and invertebrates at different temporospatial levels on a regular basis to detect possible candidate viruses at their natural source. However, virus surveillance systems can be expensive, costly in terms of finances and resources and inadequate for sampling sufficient numbers of different host species over space and time. Recent publications have presented the concept of a new virus surveillance system, coining the terms "flying biological syringes", "xenosurveillance" and "vector-enabled metagenomics". According to these novel and promising surveillance approaches, viral metagenomics on engorged mosquitoes might reflect the viral diversity of numerous mammals, birds and humans, combined in the mosquitoes' blood meal during feeding on the host. In this review article, we summarize the literature on vector-enabled metagenomics (VEM) techniques and its application in disease surveillance in humans. Furthermore, we highlight the combination of VEM and "invertebrate-derived DNA" (iDNA) analysis to identify the host DNA within the mosquito midgut.
Collapse
|