1
|
Xie J, Jiang D. Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Annu Rev Microbiol 2024; 78:595-620. [PMID: 39348839 DOI: 10.1146/annurev-micro-041522-105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| |
Collapse
|
2
|
Aggarwal T, Kondabagil K. Proteome-scale structural prediction of the giant Marseillevirus reveals conserved folds and putative homologs of the hypothetical proteins. Arch Virol 2024; 169:222. [PMID: 39414627 DOI: 10.1007/s00705-024-06155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/18/2024]
Abstract
A significant proportion of the highly divergent and novel proteins of giant viruses are termed "hypothetical" due to the absence of detectable homologous sequences in the existing databases. The quality of genome and proteome annotations often relies on the identification of signature sequences and motifs in order to assign putative functions to the gene products. These annotations serve as the first set of information for researchers to develop workable hypotheses for further experimental research. The structure-function relationship of proteins suggests that proteins with similar functions may also exhibit similar folding patterns. Here, we report the first proteome-wide structure prediction of the giant Marseillevirus. We use AlphaFold-predicted structures and their comparative analysis with the experimental structures in the PDB database to preliminarily annotate the viral proteins. Our work highlights the conservation of structural folds in proteins with highly divergent sequences and reveals potentially paralogous relationships among them. We also provide evidence for gene duplication and fusion as contributing factors to giant viral genome expansion and evolution. With the easily accessible AlphaFold and other advanced bioinformatics tools for high-confidence de novo structure prediction, we propose a combined sequence and predicted-structure-based proteome annotation approach for the initial characterization of novel and complex organisms or viruses.
Collapse
Affiliation(s)
- Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
3
|
Liang JL, Feng SW, Jia P, Lu JL, Yi X, Gao SM, Wu ZH, Liao B, Shu WS, Li JT. Unraveling the habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses across China. MICROBIOME 2024; 12:136. [PMID: 39039586 PMCID: PMC11265010 DOI: 10.1186/s40168-024-01851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/30/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Soil giant viruses are increasingly believed to have profound effects on ecological functioning by infecting diverse eukaryotes. However, their biogeography and ecology remain poorly understood. RESULTS In this study, we analyzed 333 soil metagenomes from 5 habitat types (farmland, forest, grassland, Gobi desert, and mine wasteland) across China and identified 533 distinct giant virus phylotypes affiliated with nine families, thereby greatly expanding the diversity of soil giant viruses. Among the nine families, Pithoviridae were the most diverse. The majority of phylotypes exhibited a heterogeneous distribution among habitat types, with a remarkably high proportion of unique phylotypes in mine wasteland. The abundances of phylotypes were negatively correlated with their environmental ranges. A total of 76 phylotypes recovered in this study were detectable in a published global topsoil metagenome dataset. Among climatic, geographical, edaphic, and biotic characteristics, soil eukaryotes were identified as the most important driver of beta-diversity of giant viral communities across habitat types. Moreover, co-occurrence network analysis revealed some pairings between giant viral phylotypes and eukaryotes (protozoa, fungi, and algae). Analysis of 44 medium- to high-quality giant virus genomes recovered from our metagenomes uncovered not only their highly shared functions but also their novel auxiliary metabolic genes related to carbon, sulfur, and phosphorus cycling. CONCLUSIONS These findings extend our knowledge of diversity, habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses. Video Abstract.
Collapse
Affiliation(s)
- Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bin Liao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
4
|
Burgess AL, Bojko J. Transcriptomic evidence of a fourth mininucleovirus (Mininucleoviridae): A rapidly growing family among the Nucleo-Cytoplasmic Large DNA viruses (NCLDVs). J Invertebr Pathol 2024; 204:108096. [PMID: 38494086 DOI: 10.1016/j.jip.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The Mininucleoviridae are crustacean-infecting viruses thought to drive mortality across aquatic biomes. Three have been characterised from Carcinus maenas, Panulirus argus, and Dikerogammarus haemobaphes. We screened 202 SRA datasets (NCBI) for novel mininucleoviruses from 44 amphipod species. Three metatranscriptome datasets from Gammarus lacustris contained sequences with similarity to Dikerogammarus haemobaphes mininucleovirus. Assembly resulted in 19 transcripts, 16 were putatively polycistronic. The putative Gammarus lacustris mininucleovirus shares 46 homologues with other mininucleoviruses (similarity range: 24.07 - 78.2 %). The transcripts from this putative virus highlight its likely association with the Mininucleoviridae.
Collapse
Affiliation(s)
- Amy L Burgess
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington DL1 1HG, UK.
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
5
|
Perini L, Sipes K, Zervas A, Bellas C, Lutz S, Moniruzzaman M, Mourot R, Benning LG, Tranter M, Anesio AM. Giant viral signatures on the Greenland ice sheet. MICROBIOME 2024; 12:91. [PMID: 38760842 PMCID: PMC11100222 DOI: 10.1186/s40168-024-01796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Dark pigmented snow and glacier ice algae on glaciers and ice sheets contribute to accelerating melt. The biological controls on these algae, particularly the role of viruses, remain poorly understood. Giant viruses, classified under the nucleocytoplasmic large DNA viruses (NCLDV) supergroup (phylum Nucleocytoviricota), are diverse and globally distributed. NCLDVs are known to infect eukaryotic cells in marine and freshwater environments, providing a biological control on the algal population in these ecosystems. However, there is very limited information on the diversity and ecosystem function of NCLDVs in terrestrial icy habitats. RESULTS In this study, we investigate for the first time giant viruses and their host connections on ice and snow habitats, such as cryoconite, dark ice, ice core, red and green snow, and genomic assemblies of five cultivated Chlorophyta snow algae. Giant virus marker genes were present in almost all samples; the highest abundances were recovered from red snow and the snow algae genomic assemblies, followed by green snow and dark ice. The variety of active algae and protists in these GrIS habitats containing NCLDV marker genes suggests that infection can occur on a range of eukaryotic hosts. Metagenomic data from red and green snow contained evidence of giant virus metagenome-assembled genomes from the orders Imitervirales, Asfuvirales, and Algavirales. CONCLUSION Our study highlights NCLDV family signatures in snow and ice samples from the Greenland ice sheet. Giant virus metagenome-assembled genomes (GVMAGs) were found in red snow samples, and related NCLDV marker genes were identified for the first time in snow algal culture genomic assemblies; implying a relationship between the NCLDVs and snow algae. Metatranscriptomic viral genes also aligned with metagenomic sequences, suggesting that NCLDVs are an active component of the microbial community and are potential "top-down" controls of the eukaryotic algal and protistan members. This study reveals the unprecedented presence of a diverse community of NCLDVs in a variety of glacial habitats dominated by algae.
Collapse
Affiliation(s)
- Laura Perini
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark.
| | - Katie Sipes
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | | | - Stefanie Lutz
- Department of Agroecology and Environment, Plant-Soil Interactions, Agroscope, Zurich, Switzerland
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, Potsdam, 14473, Germany
| | - Mohammad Moniruzzaman
- Department of Biological Sciences, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Coral Gables, FL, USA
| | - Rey Mourot
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, Potsdam, 14473, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, 12249, Germany
| | - Liane G Benning
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, Potsdam, 14473, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, 12249, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| |
Collapse
|
6
|
Cho A, Lax G, Livingston SJ, Masukagami Y, Naumova M, Millar O, Husnik F, Keeling PJ. Genomic analyses of Symbiomonas scintillans show no evidence for endosymbiotic bacteria but does reveal the presence of giant viruses. PLoS Genet 2024; 20:e1011218. [PMID: 38557755 PMCID: PMC11008856 DOI: 10.1371/journal.pgen.1011218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 μm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel J. Livingston
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mariia Naumova
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Olivia Millar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Pitot TM, Rapp JZ, Schulz F, Girard C, Roux S, Culley AI. Distinct and rich assemblages of giant viruses in Arctic and Antarctic lakes. ISME COMMUNICATIONS 2024; 4:ycae048. [PMID: 38800130 PMCID: PMC11128243 DOI: 10.1093/ismeco/ycae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
Giant viruses (GVs) are key players in ecosystem functioning, biogeochemistry, and eukaryotic genome evolution. GV diversity and abundance in aquatic systems can exceed that of prokaryotes, but their diversity and ecology in lakes, especially polar ones, remain poorly understood. We conducted a comprehensive survey and meta-analysis of GV diversity across 20 lakes, spanning polar to temperate regions, combining our extensive lake metagenome database from the Canadian Arctic and subarctic with publicly available datasets. Leveraging a novel GV genome identification tool, we identified 3304 GV metagenome-assembled genomes, revealing lakes as untapped GV reservoirs. Phylogenomic analysis highlighted their dispersion across all Nucleocytoviricota orders. Strong GV population endemism emerged between lakes from similar regions and biomes (Antarctic and Arctic), but a polar/temperate barrier in lacustrine GV populations and differences in their gene content could be observed. Our study establishes a robust genomic reference for future investigations into lacustrine GV ecology in fast changing polar environments.
Collapse
Affiliation(s)
- Thomas M Pitot
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- IBIS Institute of Integrative Biology and Systems, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
| | - Josephine Z Rapp
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Department of Biology, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Catherine Girard
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), Chicoutimi, QC G7H 2B1, Canada
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Alexander I Culley
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Center for Northern Studies, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Pacific Biosciences Research Center, 1800 East-West Road, Honolulu, HI 96822, United States
| |
Collapse
|
8
|
Gallot-Lavallée L, Jerlström-Hultqvist J, Zegarra-Vidarte P, Salas-Leiva DE, Stairs CW, Čepička I, Roger AJ, Archibald JM. Massive intein content in Anaeramoeba reveals aspects of intein mobility in eukaryotes. Proc Natl Acad Sci U S A 2023; 120:e2306381120. [PMID: 38019867 PMCID: PMC10710043 DOI: 10.1073/pnas.2306381120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.
Collapse
Affiliation(s)
- Lucie Gallot-Lavallée
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Jon Jerlström-Hultqvist
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Paula Zegarra-Vidarte
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala751 24, Sweden
| | - Dayana E. Salas-Leiva
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Courtney W. Stairs
- Microbiology Group, Department of Biology, Lund University, Lund223 62, Sweden
| | - Ivan Čepička
- Department of Zoology, Charles University, Prague128 00, Czech Republic
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| |
Collapse
|
9
|
Collier JL, Rest JS, Gallot-Lavallée L, Lavington E, Kuo A, Jenkins J, Plott C, Pangilinan J, Daum C, Grigoriev IV, Filloramo GV, Novák Vanclová AMG, Archibald JM. The protist Aurantiochytrium has universal subtelomeric rDNAs and is a host for mirusviruses. Curr Biol 2023; 33:5199-5207.e4. [PMID: 37913769 DOI: 10.1016/j.cub.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.
Collapse
Affiliation(s)
- Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, USA.
| | - Joshua S Rest
- Department of Ecology and Evolution, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, USA.
| | - Lucie Gallot-Lavallée
- Department of Biochemistry & Molecular Biology, Dalhousie University, College Street, Halifax, NS B3H 4R2, Canada
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| | - Jerry Jenkins
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA; HudsonAlpha Institute for Biotechnology, Genome Way Northwest, Huntsville, AL 35806, USA
| | - Chris Plott
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA; HudsonAlpha Institute for Biotechnology, Genome Way Northwest, Huntsville, AL 35806, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, University Avenue, Berkeley, CA 94720, USA
| | - Gina V Filloramo
- Department of Biochemistry & Molecular Biology, Dalhousie University, College Street, Halifax, NS B3H 4R2, Canada
| | | | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
10
|
Gyaltshen Y, Rozenberg A, Paasch A, Burns JA, Warring S, Larson RT, Maurer-Alcalá XX, Dacks J, Narechania A, Kim E. Long-Read-Based Genome Assembly Reveals Numerous Endogenous Viral Elements in the Green Algal Bacterivore Cymbomonas tetramitiformis. Genome Biol Evol 2023; 15:evad194. [PMID: 37883709 PMCID: PMC10675990 DOI: 10.1093/gbe/evad194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The marine tetraflagellate Cymbomonas tetramitiformis has drawn attention as an early diverging green alga that uses a phago-mixotrophic mode of nutrition (i.e., the ability to derive nourishment from both photosynthesis and bacterial prey). The Cymbomonas nuclear genome was sequenced previously, but due to the exclusive use of short-read (Illumina) data, the assembly suffered from missing a large proportion of the genome's repeat regions. For this study, we generated Oxford Nanopore long-read and additional short-read Illumina data and performed a hybrid assembly that significantly improved the total assembly size and contiguity. Numerous endogenous viral elements were identified in the repeat regions of the new assembly. These include the complete genome of a giant Algavirales virus along with many genomes of integrated Polinton-like viruses (PLVs) from two groups: Gezel-like PLVs and a novel group of prasinophyte-specific PLVs. The integrated ∼400 kb genome of the giant Algavirales virus is the first account of the association of the uncultured viral family AG_03 with green algae. The complete PLV genomes from C. tetramitiformis ranged between 15 and 25 kb in length and showed a diverse gene content. In addition, heliorhodopsin gene-containing repeat elements of putative mirusvirus origin were identified. These results illustrate past (and possibly ongoing) multiple alga-virus interactions that accompanied the genome evolution of C. tetramitiformis.
Collapse
Affiliation(s)
- Yangtsho Gyaltshen
- Division of Invertebrate Zoology and Institute of Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Andrey Rozenberg
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Amber Paasch
- Division of Invertebrate Zoology and Institute of Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - John A Burns
- Division of Invertebrate Zoology and Institute of Comparative Genomics, American Museum of Natural History, New York, New York, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Sally Warring
- Division of Invertebrate Zoology and Institute of Comparative Genomics, American Museum of Natural History, New York, New York, USA
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Raegan T Larson
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Xyrus X Maurer-Alcalá
- Division of Invertebrate Zoology and Institute of Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Joel Dacks
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Apurva Narechania
- Division of Invertebrate Zoology and Institute of Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Institute of Comparative Genomics, American Museum of Natural History, New York, New York, USA
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
11
|
Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, Boissin E, Wincker P, Poulain J, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Zoccola D, Correa AMS, Vega Thurber RL. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol 2023; 6:566. [PMID: 37264063 DOI: 10.1038/s42003-023-04917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
| | | | | | | | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | | | | |
Collapse
|
12
|
Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids. ISME COMMUNICATIONS 2023; 3:10. [PMID: 36732595 PMCID: PMC9894930 DOI: 10.1038/s43705-022-00210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
The oceanic igneous crust is a vast reservoir for microbial life, dominated by diverse and active bacteria, archaea, and fungi. Archaeal and bacterial viruses were previously detected in oceanic crustal fluids at the Juan de Fuca Ridge (JdFR). Here we report the discovery of two eukaryotic Nucleocytoviricota genomes from the same crustal fluids by sorting and sequencing single virions. Both genomes have a tRNATyr gene with an intron (20 bps) at the canonical position between nucleotide 37 and 38, a common feature in eukaryotic and archaeal tRNA genes with short introns (<100 bps), and fungal genes acquired through horizontal gene transfer (HGT) events. The dominance of Ascomycota fungi as the main eukaryotes in crustal fluids and the evidence for HGT point to these fungi as the putative hosts, making these the first putative fungi-Nucleocytoviricota specific association. Our study suggests active host-viral dynamics for the only eukaryotic group found in the subsurface oceanic crust and raises important questions about the impact of viral infection on the productivity and biogeochemical cycling in this ecosystem.
Collapse
|
13
|
Aylward FO, Moniruzzaman M. Viral Complexity. Biomolecules 2022; 12:1061. [PMID: 36008955 PMCID: PMC9405923 DOI: 10.3390/biom12081061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Although traditionally viewed as streamlined and simple, discoveries over the last century have revealed that viruses can exhibit surprisingly complex physical structures, genomic organization, ecological interactions, and evolutionary histories. Viruses can have physical dimensions and genome lengths that exceed many cellular lineages, and their infection strategies can involve a remarkable level of physiological remodeling of their host cells. Virus-virus communication and widespread forms of hyperparasitism have been shown to be common in the virosphere, demonstrating that dynamic ecological interactions often shape their success. And the evolutionary histories of viruses are often fraught with complexities, with chimeric genomes including genes derived from numerous distinct sources or evolved de novo. Here we will discuss many aspects of this viral complexity, with particular emphasis on large DNA viruses, and provide an outlook for future research.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mohammad Moniruzzaman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL 33149, USA;
| |
Collapse
|
14
|
Schulz F, Abergel C, Woyke T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol 2022; 20:721-736. [PMID: 35902763 DOI: 10.1038/s41579-022-00754-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet's biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chantal Abergel
- Aix Marseille University, CNRS, IGS UMR7256, IMM FR3479, IM2B, IO, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,University of California Merced, Merced, CA, USA.
| |
Collapse
|
15
|
Chase EE, Desnues C, Blanc G. Integrated Viral Elements Suggest the Dual Lifestyle of Tetraselmis Spp. Polinton-Like Viruses. Virus Evol 2022; 8:veac068. [PMID: 35949392 PMCID: PMC9356565 DOI: 10.1093/ve/veac068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, we aimed at exploring horizontal gene transfer between viruses and Chlorodendraceae green algae (Chlorophyta) using available genomic and transcriptomic sequences for twenty algal strains. We identified a significant number of genes sharing a higher sequence similarity with viral homologues, thus signalling their possible involvement in horizontal gene transfers with viruses. Further characterization showed that many of these genes were clustered in DNA regions of several tens to hundreds of kilobases in size, originally belonging to viruses related to known Tetraselmis spp. viruses (TetV and TsV). In contrast, the remaining candidate HGT genes were randomly dispersed in the algal genomes, were more frequently transcribed, and belonged to large multigene families. The presence of homologues in Viridiplantae suggested that the latter were more likely of algal rather than viral origin. We found a remarkable diversity in polinton-like virus (PLV) elements inserted in Tetraselmis genomes, all of which were most similar to the Tetraselmis striata virus (TsV). The genes of PLV elements are transcriptionally inactive with the notable exception of the homologue of the TVSG_00024 gene of TsV whose function is unknown. We suggest that this gene may be involved in a sentinel process to trigger virus reactivation and excision in response to an environmental stimulus. Altogether, these results provide evidence that TsV-related viruses have a dual lifestyle, alternating between a free viral phase (i.e. virion) and a phase integrated into host genomes.
Collapse
Affiliation(s)
- Emily E Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, Campus de Luminy , 163 Avenue de Luminy, 13009 Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection , 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Christelle Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, Campus de Luminy , 163 Avenue de Luminy, 13009 Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection , 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Guillaume Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, Campus de Luminy , 163 Avenue de Luminy, 13009 Marseille, France
| |
Collapse
|
16
|
Talbert PB, Armache KJ, Henikoff S. Viral histones: pickpocket's prize or primordial progenitor? Epigenetics Chromatin 2022; 15:21. [PMID: 35624484 PMCID: PMC9145170 DOI: 10.1186/s13072-022-00454-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The common histones H2A, H2B, H3, and H4 are the characteristic components of eukaryotic nucleosomes, which function to wrap DNA and compact the genome as well as to regulate access to DNA for transcription and replication in all eukaryotes. In the past two decades, histones have also been found to be encoded in some DNA viruses, where their functions and properties are largely unknown, though recently histones from two related viruses have been shown to form nucleosome-like structures in vitro. Viral histones can be highly similar to eukaryotic histones in primary sequence, suggesting they have been recently picked up from eukaryotic hosts, or they can be radically divergent in primary sequence and may occur as conjoined histone doublets, triplets, or quadruplets, suggesting ancient origins prior to the divergence of modern eukaryotes. Here, we review what is known of viral histones and discuss their possible origins and functions. We consider how the viral life cycle may affect their properties and histories, and reflect on the possible roles of viruses in the origin of the nucleus of modern eukaryotic cells.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Ave, New York, NY, 10016, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
17
|
Sun TW, Ku C. Unraveling gene content variation across eukaryotic giant viruses based on network analyses and host associations. Virus Evol 2021; 7:veab081. [PMID: 34754514 PMCID: PMC8570155 DOI: 10.1093/ve/veab081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs, phylum Nucleocytoviricota) infect vertebrates, invertebrates, algae, amoebae, and other unicellular organisms across supergroups of eukaryotes and in various ecosystems. The expanding collection of their genome sequences has revolutionized our view of virus genome size and coding capacity. Phylogenetic trees based on a few core genes are commonly used as a model to understand their evolution. However, the tree topology can differ between analyses, and the vast majority of encoded genes might not share a common evolutionary history. To explore the whole-genome variation and evolution of NCLDVs, we dissected their gene contents using clustering, network, and comparative analyses. Our updated core-gene tree served as a framework to classify NCLDVs into families and intrafamilial lineages, but networks of individual genomes and family pangenomes showed patterns of gene sharing that contradict with the tree topology, in particular at higher taxonomic levels. Clustering of NCLDV genomes revealed variable granularity and degrees of gene sharing within each family, which cannot be inferred from the tree. At the level of NCLDV families, a correlation exists between gene content variation, but not core-gene sequence divergence, and host supergroup diversity. In addition, there is significantly higher gene sharing between divergent viruses that infect similar host types. The identified shared genes would be a useful resource for further functional analyses of NCLDV–host interactions. Overall this study provides a comprehensive view of gene repertoire variation in NCLDVs at different taxonomic levels, as well as a novel approach to studying the extremely diverse giant virus genomes.
Collapse
Affiliation(s)
- Tsu-Wang Sun
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. THE ISME JOURNAL 2021; 15:3129-3147. [PMID: 33972727 PMCID: PMC8528832 DOI: 10.1038/s41396-021-00989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI (B. prasinos) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters.
Collapse
|
19
|
Mönttinen HAM, Bicep C, Williams TA, Hirt RP. The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large. Microb Genom 2021; 7. [PMID: 34542398 PMCID: PMC8715426 DOI: 10.1099/mgen.0.000649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, Helsinki 00014, Finland
| | - Cedric Bicep
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France
| | - Tom A Williams
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave., Bristol, BS8 1TH, UK
| | - Robert P Hirt
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
20
|
Barreat JGN, Katzourakis A. Paleovirology of the DNA viruses of eukaryotes. Trends Microbiol 2021; 30:281-292. [PMID: 34483047 DOI: 10.1016/j.tim.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Paleovirology is the study of ancient viruses and how they have coevolved with their hosts. An increasingly detailed understanding of the diversity, origins, and evolution of the DNA viruses of eukaryotes has been obtained through the lens of paleovirology in recent years. Members of multiple viral families have been found integrated in the genomes of eukaryotes, providing a rich fossil record to study. These elements have extended our knowledge of exogenous viral diversity, host ranges, and the timing of viral evolution, and are revealing the existence of entire new families of eukaryotic integrating dsDNA viruses and transposons. Future work in paleovirology will continue to provide insights into antiviral immunity, viral diversity, and potential applications, and reveal other secrets of the viral world.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK.
| |
Collapse
|
21
|
Tian Y, De Jesús Andino F, Khwatenge CN, Li J, Robert J, Sang Y. Virus-Targeted Transcriptomic Analyses Implicate Ranaviral Interaction with Host Interferon Response in Frog Virus 3-Infected Frog Tissues. Viruses 2021; 13:v13071325. [PMID: 34372531 PMCID: PMC8309979 DOI: 10.3390/v13071325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Ranaviruses (Iridoviridae), including Frog Virus 3 (FV3), are large dsDNA viruses that cause devastating infections globally in amphibians, fish, and reptiles, and contribute to catastrophic amphibian declines. FV3’s large genome (~105 kb) contains at least 98 putative open reading frames (ORFs) as annotated in its reference genome. Previous studies have classified these coding genes into temporal classes as immediate early, delayed early, and late viral transcripts based on their sequential expression during FV3 infection. To establish a high-throughput characterization of ranaviral gene expression at the genome scale, we performed a whole transcriptomic analysis (RNA-Seq) using total RNA samples containing both viral and cellular transcripts from FV3-infected Xenopus laevis adult tissues using two FV3 strains, a wild type (FV3-WT) and an ORF64R-deleted recombinant (FV3-∆64R). In samples from the infected intestine, liver, spleen, lung, and especially kidney, an FV3-targeted transcriptomic analysis mapped reads spanning the full-genome coverage at ~10× depth on both positive and negative strands. By contrast, reads were only mapped to partial genomic regions in samples from the infected thymus, skin, and muscle. Extensive analyses validated the expression of almost all of the 98 annotated ORFs and profiled their differential expression in a tissue-, virus-, and temporal class-dependent manner. Further studies identified several putative ORFs that encode hypothetical proteins containing viral mimicking conserved domains found in host interferon (IFN) regulatory factors (IRFs) and IFN receptors. This study provides the first comprehensive genome-wide viral transcriptome profiling during infection and across multiple amphibian host tissues that will serve as an instrumental reference. Our findings imply that Ranaviruses like FV3 have acquired previously unknown molecular mimics, interfering with host IFN signaling during evolution.
Collapse
Affiliation(s)
- Yun Tian
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Collins N. Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
| | - Jiuyi Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Correspondence: (J.R.); (Y.S.); Tel.: +1-585-275-1722 (J.R.); +615-963-5183 (Y.S.)
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
- Correspondence: (J.R.); (Y.S.); Tel.: +1-585-275-1722 (J.R.); +615-963-5183 (Y.S.)
| |
Collapse
|
22
|
Hannat S, Pontarotti P, Colson P, Kuhn ML, Galiana E, La Scola B, Aherfi S, Panabières F. Diverse Trajectories Drive the Expression of a Giant Virus in the Oomycete Plant Pathogen Phytophthora parasitica. Front Microbiol 2021; 12:662762. [PMID: 34140938 PMCID: PMC8204020 DOI: 10.3389/fmicb.2021.662762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Giant viruses of amoebas, recently classified in the class Megaviricetes, are a group of viruses that can infect major eukaryotic lineages. We previously identified a set of giant virus sequences in the genome of Phytophthora parasitica, an oomycete and a devastating major plant pathogen. How viral insertions shape the structure and evolution of the invaded genomes is unclear, but it is known that the unprecedented functional potential of giant viruses is the result of an intense genetic interplay with their hosts. We previously identified a set of giant virus sequences in the genome of P. parasitica, an oomycete and a devastating major plant pathogen. Here, we show that viral pieces are found in a 550-kb locus and are organized in three main clusters. Viral sequences, namely RNA polymerases I and II and a major capsid protein, were identified, along with orphan sequences, as a hallmark of giant viruses insertions. Mining of public databases and phylogenetic reconstructions suggest an ancient association of oomycetes and giant viruses of amoeba, including faustoviruses, African swine fever virus (ASFV) and pandoraviruses, and that a single viral insertion occurred early in the evolutionary history of oomycetes prior to the Phytophthora–Pythium radiation, estimated at ∼80 million years ago. Functional annotation reveals that the viral insertions are located in a gene sparse region of the Phytophthora genome, characterized by a plethora of transposable elements (TEs), effectors and other genes potentially involved in virulence. Transcription of viral genes was investigated through analysis of RNA-Seq data and qPCR experiments. We show that most viral genes are not expressed, and that a variety of mechanisms, including deletions, TEs insertions and RNA interference may contribute to transcriptional repression. However, a gene coding a truncated copy of RNA polymerase II along a set of neighboring sequences have been shown to be expressed in a wide range of physiological conditions, including responses to stress. These results, which describe for the first time the endogenization of a giant virus in an oomycete, contribute to challenge our view of Phytophthora evolution.
Collapse
Affiliation(s)
- Sihem Hannat
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Pierre Pontarotti
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,CNRS SNC5039, Marseille, France
| | - Philippe Colson
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Marie-Line Kuhn
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,MEPHI, Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | | |
Collapse
|
23
|
Quantitative Assessment of Nucleocytoplasmic Large DNA Virus and Host Interactions Predicted by Co-occurrence Analyses. mSphere 2021; 6:6/2/e01298-20. [PMID: 33883262 PMCID: PMC8546719 DOI: 10.1128/msphere.01298-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and abundant in marine environments. However, the knowledge of their hosts is limited because only a few NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine metagenomics census, in silico host prediction approaches are expected to fill the gap and further expand our knowledge of virus-host relationships for unknown NCLDVs. In this study, we built co-occurrence networks of NCLDVs and eukaryotic taxa to predict virus-host interactions using Tara Oceans sequencing data. Using the positive likelihood ratio to assess the performance of host prediction for NCLDVs, we benchmarked several co-occurrence approaches and demonstrated an increase in the odds ratio of predicting true positive relationships 4-fold compared to random host predictions. To further refine host predictions from high-dimensional co-occurrence networks, we developed a phylogeny-informed filtering method, Taxon Interaction Mapper, and showed it further improved the prediction performance by 12-fold. Finally, we inferred virophage-NCLDV networks to corroborate that co-occurrence approaches are effective for predicting interacting partners of NCLDVs in marine environments.IMPORTANCE NCLDVs can infect a wide range of eukaryotes, although their life cycle is less dependent on hosts compared to other viruses. However, our understanding of NCLDV-host systems is highly limited because few of these viruses have been isolated so far. Co-occurrence information has been assumed to be useful to predict virus-host interactions. In this study, we quantitatively show the effectiveness of co-occurrence inference for NCLDV host prediction. We also improve the prediction performance with a phylogeny-guided method, which leads to a concise list of candidate host lineages for three NCLDV families. Our results underpin the usage of co-occurrence approaches for the metagenomic exploration of the ecology of this diverse group of viruses.
Collapse
|
24
|
Aylward FO, Moniruzzaman M. ViralRecall-A Flexible Command-Line Tool for the Detection of Giant Virus Signatures in 'Omic Data. Viruses 2021; 13:v13020150. [PMID: 33498458 PMCID: PMC7909515 DOI: 10.3390/v13020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 01/06/2023] Open
Abstract
Giant viruses are widespread in the biosphere and play important roles in biogeochemical cycling and host genome evolution. Also known as nucleo-cytoplasmic large DNA viruses (NCLDVs), these eukaryotic viruses harbor the largest and most complex viral genomes known. Studies have shown that NCLDVs are frequently abundant in metagenomic datasets, and that sequences derived from these viruses can also be found endogenized in diverse eukaryotic genomes. The accurate detection of sequences derived from NCLDVs is therefore of great importance, but this task is challenging owing to both the high level of sequence divergence between NCLDV families and the extraordinarily high diversity of genes encoded in their genomes, including some encoding for metabolic or translation-related functions that are typically found only in cellular lineages. Here, we present ViralRecall, a bioinformatic tool for the identification of NCLDV signatures in ‘omic data. This tool leverages a library of giant virus orthologous groups (GVOGs) to identify sequences that bear signatures of NCLDVs. We demonstrate that this tool can effectively identify NCLDV sequences with high sensitivity and specificity. Moreover, we show that it can be useful both for removing contaminating sequences in metagenome-assembled viral genomes as well as the identification of eukaryotic genomic loci that derived from NCLDV. ViralRecall is written in Python 3.5 and is freely available on GitHub: https://github.com/faylward/viralrecall.
Collapse
|
25
|
Viruses in Extreme Environments, Current Overview, and Biotechnological Potential. Viruses 2021; 13:v13010081. [PMID: 33430116 PMCID: PMC7826561 DOI: 10.3390/v13010081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.
Collapse
|
26
|
Sun TW, Yang CL, Kao TT, Wang TH, Lai MW, Ku C. Host Range and Coding Potential of Eukaryotic Giant Viruses. Viruses 2020; 12:E1337. [PMID: 33233432 PMCID: PMC7700475 DOI: 10.3390/v12111337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions. Evolutionary genomics can illuminate how current and past hosts shape viral gene repertoires, although it becomes more obscure with divergent sequences and deep phylogenies. Continued works to characterize giant viruses from marine and other environments will further contribute to our understanding of their host range, coding potential, and virus-host coevolution.
Collapse
Affiliation(s)
- Tsu-Wang Sun
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Tong Kao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Haw Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Ming-Wei Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
27
|
Moniruzzaman M, Weinheimer AR, Martinez-Gutierrez CA, Aylward FO. Widespread endogenization of giant viruses shapes genomes of green algae. Nature 2020; 588:141-145. [PMID: 33208937 DOI: 10.1038/s41586-020-2924-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Endogenous viral elements (EVEs)-viruses that have integrated their genomes into those of their hosts-are prevalent in eukaryotes and have an important role in genome evolution1,2. The vast majority of EVEs that have been identified to date are small genomic regions comprising a few genes2, but recent evidence suggests that some large double-stranded DNA viruses may also endogenize into the genome of the host1. Nucleocytoplasmic large DNA viruses (NCLDVs) have recently become of great interest owing to their large genomes and complex evolutionary origins3-6, but it is not yet known whether they are a prominent component of eukaryotic EVEs. Here we report the widespread endogenization of NCLDVs in diverse green algae; these giant EVEs reached sizes greater than 1 million base pairs and contained as many as around 10% of the total open reading frames in some genomes, substantially increasing the scale of known viral genes in eukaryotic genomes. These endogenized elements often shared genes with host genomic loci and contained numerous spliceosomal introns and large duplications, suggesting tight assimilation into host genomes. NCLDVs contain large and mosaic genomes with genes derived from multiple sources, and their endogenization represents an underappreciated conduit of new genetic material into eukaryotic lineages that can substantially impact genome composition.
Collapse
Affiliation(s)
| | | | | | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
28
|
Schulz F, Andreani J, Francis R, Boudjemaa H, Bou Khalil JY, Lee J, La Scola B, Woyke T. Advantages and Limits of Metagenomic Assembly and Binning of a Giant Virus. mSystems 2020; 5:e00048-20. [PMID: 32576649 PMCID: PMC7311315 DOI: 10.1128/msystems.00048-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
Giant viruses have large genomes, often within the size range of cellular organisms. This distinguishes them from most other viruses and demands additional effort for the successful recovery of their genomes from environmental sequence data. Here, we tested the performance of genome-resolved metagenomics on a recently isolated giant virus, Fadolivirus, by spiking it into an environmental sample from which two other giant viruses were isolated. At high spike-in levels, metagenome assembly and binning led to the successful genomic recovery of Fadolivirus from the sample. A complementary survey of the major capsid protein indicated the presence of other giant viruses in the sample matrix but did not detect the two isolated from this sample. Our results indicate that genome-resolved metagenomics is a valid approach for the recovery of near-complete giant virus genomes given that sufficient clonal particles are present. However, our data also underline that a vast majority of giant viruses remain currently undetected, even in an era of terabase-scale metagenomics.IMPORTANCE The discovery of large and giant nucleocytoplasmic large DNA viruses (NCLDV) with genomes in the megabase range and equipped with a wide variety of features typically associated with cellular organisms was one of the most unexpected, intriguing, and spectacular breakthroughs in virology. Recent studies suggest that these viruses are highly abundant in the oceans, freshwater, and soil, impact the biology and ecology of their eukaryotic hosts, and ultimately affect global nutrient cycles. Genome-resolved metagenomics is becoming an increasingly popular tool to assess the diversity and coding potential of giant viruses, but this approach is currently lacking validation.
Collapse
Affiliation(s)
| | - Julien Andreani
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rania Francis
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Hadjer Boudjemaa
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
- Department of Biology, Hassiba Ben Bouali University Chlef, Chlef, Algeria
| | | | - Janey Lee
- DOE Joint Genome Institute, Berkeley, California, USA
| | - Bernard La Scola
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
| |
Collapse
|
29
|
Comparative Genomics Unveils Regionalized Evolution of the Faustovirus Genomes. Viruses 2020; 12:v12050577. [PMID: 32456325 PMCID: PMC7290515 DOI: 10.3390/v12050577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
Faustovirus is a recently discovered genus of large DNA virus infecting the amoeba Vermamoeba vermiformis, which is phylogenetically related to Asfarviridae. To better understand the diversity and evolution of this viral group, we sequenced six novel Faustovirus strains, mined published metagenomic datasets and performed a comparative genomic analysis. Genomic sequences revealed three consistent phylogenetic groups, within which genetic diversity was moderate. The comparison of the major capsid protein (MCP) genes unveiled between 13 and 18 type-I introns that likely evolved through a still-active birth and death process mediated by intron-encoded homing endonucleases that began before the Faustovirus radiation. Genome-wide alignments indicated that despite genomes retaining high levels of gene collinearity, the central region containing the MCP gene together with the extremities of the chromosomes evolved at a faster rate due to increased indel accumulation and local rearrangements. The fluctuation of the nucleotide composition along the Faustovirus (FV) genomes is mostly imprinted by the consistent nucleotide bias of coding sequences and provided no evidence for a single DNA replication origin like in circular bacterial genomes.
Collapse
|
30
|
Yau S, Krasovec M, Benites LF, Rombauts S, Groussin M, Vancaester E, Aury JM, Derelle E, Desdevises Y, Escande ML, Grimsley N, Guy J, Moreau H, Sanchez-Brosseau S, van de Peer Y, Vandepoele K, Gourbiere S, Piganeau G. Virus-host coexistence in phytoplankton through the genomic lens. SCIENCE ADVANCES 2020; 6:eaay2587. [PMID: 32270031 PMCID: PMC7112755 DOI: 10.1126/sciadv.aay2587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 05/02/2023]
Abstract
Virus-microbe interactions in the ocean are commonly described by "boom and bust" dynamics, whereby a numerically dominant microorganism is lysed and replaced by a virus-resistant one. Here, we isolated a microalga strain and its infective dsDNA virus whose dynamics are characterized instead by parallel growth of both the microalga and the virus. Experimental evolution of clonal lines revealed that this viral production originates from the lysis of a minority of virus-susceptible cells, which are regenerated from resistant cells. Whole-genome sequencing demonstrated that this resistant-susceptible switch involved a large deletion on one chromosome. Mathematical modeling explained how the switch maintains stable microalga-virus population dynamics consistent with their observed growth pattern. Comparative genomics confirmed an ancient origin of this "accordion" chromosome despite a lack of sequence conservation. Together, our results show how dynamic genomic rearrangements may account for a previously overlooked coexistence mechanism in microalgae-virus interactions.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Corresponding author. (G.P.); (S.Y.)
| | - Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - L. Felipe Benites
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Stephane Rombauts
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square NE47-378, Cambridge, MA 02139, USA
| | - Emmelien Vancaester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Evelyne Derelle
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Julie Guy
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Yves van de Peer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sebastien Gourbiere
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, UMR 5096, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Corresponding author. (G.P.); (S.Y.)
| |
Collapse
|
31
|
Ribeiro CL, Conde D, Balmant KM, Dervinis C, Johnson MG, McGrath AP, Szewczyk P, Unda F, Finegan CA, Schmidt HW, Miles B, Drost DR, Novaes E, Gonzalez-Benecke CA, Peter GF, Burleigh JG, Martin TA, Mansfield SD, Chang G, Wickett NJ, Kirst M. The uncharacterized gene EVE contributes to vessel element dimensions in Populus. Proc Natl Acad Sci U S A 2020; 117:5059-5066. [PMID: 32041869 PMCID: PMC7060721 DOI: 10.1073/pnas.1912434117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.
Collapse
Affiliation(s)
- Cíntia L Ribeiro
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | - Daniel Conde
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | - Kelly M Balmant
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | | | - Aaron P McGrath
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093
| | - Paul Szewczyk
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christina A Finegan
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611
| | - Henry W Schmidt
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | - Brianna Miles
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | - Derek R Drost
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611
| | - Evandro Novaes
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | | | - Gary F Peter
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
- Genetics Institute, University of Florida, Gainesville, FL 32611
| | - J Gordon Burleigh
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Timothy A Martin
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Norman J Wickett
- Plant Science and Conservation, Chicago Botanic Garden, Glencoe, IL 60622
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60208
| | - Matias Kirst
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611;
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
- Genetics Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
32
|
Gong Z, Zhang Y, Han GZ. Molecular fossils reveal ancient associations of dsDNA viruses with several phyla of fungi. Virus Evol 2020; 6:veaa008. [PMID: 32071765 PMCID: PMC7017919 DOI: 10.1093/ve/veaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Little is known about the infections of double-stranded DNA (dsDNA) viruses in fungi. Here, we use a paleovirological method to systematically identify the footprints of past dsDNA virus infections within the fungal genomes. We uncover two distinct groups of endogenous nucleocytoplasmic large DNA viruses (NCLDVs) in at least seven fungal phyla (accounting for about a third of known fungal phyla), revealing an unprecedented diversity of dsDNA viruses in fungi. Interestingly, one fungal dsDNA virus lineage infecting six fungal phyla is closely related to the giant virus Pithovirus, suggesting giant virus relatives might widely infect fungi. Co-speciation analyses indicate fungal NCLDVs mainly evolved through cross-species transmission. Taken together, our findings provide novel insights into the diversity and evolution of NCLDVs in fungi.
Collapse
Affiliation(s)
- Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
33
|
Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, McMahon KD, Konstantinidis KT, Eloe-Fadrosh EA, Kyrpides NC, Woyke T. Giant virus diversity and host interactions through global metagenomics. Nature 2020; 578:432-436. [PMID: 31968354 PMCID: PMC7162819 DOI: 10.1038/s41586-020-1957-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Our current knowledge about nucleocytoplasmic large DNA viruses (NCLDVs) is largely derived from viral isolates that are co-cultivated with protists and algae. Here we reconstructed 2,074 NCLDV genomes from sampling sites across the globe by building on the rapidly increasing amount of publicly available metagenome data. This led to an 11-fold increase in phylogenetic diversity and a parallel 10-fold expansion in functional diversity. Analysis of 58,023 major capsid proteins from large and giant viruses using metagenomic data revealed the global distribution patterns and cosmopolitan nature of these viruses. The discovered viral genomes encoded a wide range of proteins with putative roles in photosynthesis and diverse substrate transport processes, indicating that host reprogramming is probably a common strategy in the NCLDVs. Furthermore, inferences of horizontal gene transfer connected viral lineages to diverse eukaryotic hosts. We anticipate that the global diversity of NCLDVs that we describe here will establish giant viruses-which are associated with most major eukaryotic lineages-as important players in ecosystems across Earth's biomes.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sean Jungbluth
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Walsh
- Groupe de recherche interuniversitaire en limnologie, Department of Biology, Concordia University, Montréal, Québec, Canada
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
34
|
Needham DM, Poirier C, Hehenberger E, Jiménez V, Swalwell JE, Santoro AE, Worden AZ. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190086. [PMID: 31587639 PMCID: PMC6792449 DOI: 10.1098/rstb.2019.0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Giant viruses have remarkable genomic repertoires-blurring the line with cellular life-and act as top-down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four 'PacV' partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10-5), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence-absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David M. Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Elisabeth Hehenberger
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Valeria Jiménez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Jarred E. Swalwell
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| |
Collapse
|
35
|
|
36
|
Armaleo D, Müller O, Lutzoni F, Andrésson ÓS, Blanc G, Bode HB, Collart FR, Dal Grande F, Dietrich F, Grigoriev IV, Joneson S, Kuo A, Larsen PE, Logsdon JM, Lopez D, Martin F, May SP, McDonald TR, Merchant SS, Miao V, Morin E, Oono R, Pellegrini M, Rubinstein N, Sanchez-Puerta MV, Savelkoul E, Schmitt I, Slot JC, Soanes D, Szövényi P, Talbot NJ, Veneault-Fourrey C, Xavier BB. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 2019; 20:605. [PMID: 31337355 PMCID: PMC6652019 DOI: 10.1186/s12864-019-5629-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. RESULTS A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. CONCLUSIONS The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.
Collapse
Affiliation(s)
| | - Olaf Müller
- Department of Biology, Duke University, Durham, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | | | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Guillaume Blanc
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften & Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank R. Collart
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
| | - Fred Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
| | - Suzanne Joneson
- Department of Biology, Duke University, Durham, USA
- College of General Studies, University of Wisconsin - Milwaukee at Waukesha, Waukesha, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
| | - Peter E. Larsen
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | | | | | - Francis Martin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Susan P. May
- Department of Biology, Duke University, Durham, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, USA
| | - Tami R. McDonald
- Department of Biology, Duke University, Durham, USA
- Department of Biology, St. Catherine University, St. Paul, USA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, USA
| | - Vivian Miao
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Emmanuelle Morin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California - Santa Barbara, Santa Barbara, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, and DOE Institute for Genomics and Proteomics, University of California, Los Angeles, USA
| | - Nimrod Rubinstein
- National Evolutionary Synthesis Center, Durham, USA
- Calico Life Sciences LLC, South San Francisco, USA
| | | | | | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Fachbereich Biowissenschaften, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason C. Slot
- College of Food, Agricultural, and Environmental Sciences, Department of Plant Pathology, The Ohio State University, Columbus, USA
| | - Darren Soanes
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Claire Veneault-Fourrey
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
- Université de Lorraine, INRA, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Vandoeuvre les Nancy Cedex, France
| | - Basil B. Xavier
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
37
|
Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water. J Virol 2019; 93:JVI.02130-18. [PMID: 30728258 PMCID: PMC6450098 DOI: 10.1128/jvi.02130-18] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries of new large DNA viruses reveal high diversity in their morphologies, genetic repertoires, and replication strategies. Here, we report the novel features of medusavirus, a large DNA virus newly isolated from hot spring water in Japan. Medusavirus, with a diameter of 260 nm, shows a T=277 icosahedral capsid with unique spherical-headed spikes on its surface. It has a 381-kb genome encoding 461 putative proteins, 86 of which have their closest homologs in Acanthamoeba, whereas 279 (61%) are orphan genes. The virus lacks the genes encoding DNA topoisomerase II and RNA polymerase, showing that DNA replication takes place in the host nucleus, whereas the progeny virions are assembled in the cytoplasm. Furthermore, the medusavirus genome harbored genes for all five types of histones (H1, H2A, H2B, H3, and H4) and one DNA polymerase, which are phylogenetically placed at the root of the eukaryotic clades. In contrast, the host amoeba encoded many medusavirus homologs, including the major capsid protein. These facts strongly suggested that amoebae are indeed the most promising natural hosts of medusavirus, and that lateral gene transfers have taken place repeatedly and bidirectionally between the virus and its host since the early stage of their coevolution. Medusavirus reflects the traces of direct evolutionary interactions between the virus and eukaryotic hosts, which may be caused by sharing the DNA replication compartment and by evolutionarily long lasting virus-host relationships. Based on its unique morphological characteristics and phylogenomic relationships with other known large DNA viruses, we propose that medusavirus represents a new family, Medusaviridae IMPORTANCE We have isolated a new nucleocytoplasmic large DNA virus (NCLDV) from hot spring water in Japan, named medusavirus. This new NCLDV is phylogenetically placed at the root of the eukaryotic clades based on the phylogenies of several key genes, including that encoding DNA polymerase, and its genome surprisingly encodes the full set of histone homologs. Furthermore, its laboratory host, Acanthamoeba castellanii, encodes many medusavirus homologs in its genome, including the major capsid protein, suggesting that the amoeba is the genuine natural host from ancient times of this newly described virus and that lateral gene transfers have repeatedly occurred between the virus and amoeba. These results suggest that medusavirus is a unique NCLDV preserving ancient footprints of evolutionary interactions with its hosts, thus providing clues to elucidate the evolution of NCLDVs, eukaryotes, and virus-host interaction. Based on the dissimilarities with other known NCLDVs, we propose that medusavirus represents a new viral family, Medusaviridae.
Collapse
|
38
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
39
|
Filée J. Giant viruses and their mobile genetic elements: the molecular symbiosis hypothesis. Curr Opin Virol 2018; 33:81-88. [DOI: 10.1016/j.coviro.2018.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
|
40
|
Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018; 10:v10090487. [PMID: 30208617 PMCID: PMC6165237 DOI: 10.3390/v10090487] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.
Collapse
|
41
|
Chelkha N, Levasseur A, Pontarotti P, Raoult D, Scola BL, Colson P. A Phylogenomic Study of Acanthamoeba polyphaga Draft Genome Sequences Suggests Genetic Exchanges With Giant Viruses. Front Microbiol 2018; 9:2098. [PMID: 30237791 PMCID: PMC6135880 DOI: 10.3389/fmicb.2018.02098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
Acanthamoeba are ubiquitous phagocytes predominant in soil and water which can ingest many microbes. Giant viruses of amoebae are listed among the Acanthamoeba-resisting microorganisms. Their sympatric lifestyle within amoebae is suspected to promote lateral nucleotide sequence transfers. Some Acanthamoeba species have shown differences in their susceptibility to giant viruses. Until recently, only the genome of a single Acanthamoeba castellanii Neff was available. We analyzed the draft genome sequences of Acanthamoeba polyphaga through several approaches, including comparative genomics, phylogeny, and sequence networks, with the aim of detecting putative nucleotide sequence exchanges with giant viruses. We identified a putative sequence trafficking between this Acanthamoeba species and giant viruses, with 366 genes best matching with viral genes. Among viruses, Pandoraviruses provided the greatest number of best hits with 117 (32%) for A. polyphaga. Then, genes from mimiviruses, Mollivirus sibericum, marseilleviruses, and Pithovirus sibericum were best hits in 67 (18%), 35 (9%), 24 (7%), and 2 (0.5%) cases, respectively. Phylogenetic reconstructions showed in a few cases that the most parsimonious evolutionary scenarios were a transfer of gene sequences from giant viruses to A. polyphaga. Nevertheless, in most cases, phylogenies were inconclusive regarding the sense of the sequence flow. The number and nature of putative nucleotide sequence transfers between A. polyphaga, and A. castellanii ATCC 50370 on the one hand, and pandoraviruses, mimiviruses and marseilleviruses on the other hand were analyzed. The results showed a lower number of differences within the same giant viral family compared to between different giant virus families. The evolution of 10 scaffolds that were identified among the 14 Acanthamoeba sp. draft genome sequences and that harbored ≥ 3 genes best matching with viruses showed a conservation of these scaffolds and their 46 viral genes in A. polyphaga, A. castellanii ATCC 50370 and A. pearcei. In contrast, the number of conserved genes decreased for other Acanthamoeba species, and none of these 46 genes were present in three of them. Overall, this work opens up several potential avenues for future studies on the interactions between Acanthamoeba species and giant viruses.
Collapse
Affiliation(s)
- Nisrine Chelkha
- Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes, Evolution, Phylogeny and Infection, and Institut Hospitalo-Universitaire - Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Anthony Levasseur
- Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes, Evolution, Phylogeny and Infection, and Institut Hospitalo-Universitaire - Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Pierre Pontarotti
- Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes, Evolution, Phylogeny and Infection, and Institut Hospitalo-Universitaire - Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes, Evolution, Phylogeny and Infection, and Institut Hospitalo-Universitaire - Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Bernard La Scola
- Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes, Evolution, Phylogeny and Infection, and Institut Hospitalo-Universitaire - Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Philippe Colson
- Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes, Evolution, Phylogeny and Infection, and Institut Hospitalo-Universitaire - Méditerranée Infection, Aix-Marseille Université, Marseille, France
| |
Collapse
|
42
|
McKeown DA, Schroeder JL, Stevens K, Peters AF, Sáez CA, Park J, Rothman MD, Bolton JJ, Brown MT, Schroeder DC. Phaeoviral Infections Are Present in Macrocystis, Ecklonia and Undaria (Laminariales) and Are Influenced by Wave Exposure in Ectocarpales. Viruses 2018; 10:E410. [PMID: 30081590 PMCID: PMC6116031 DOI: 10.3390/v10080410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023] Open
Abstract
Two sister orders of the brown macroalgae (class Phaeophyceae), the morphologically complex Laminariales (commonly referred to as kelp) and the morphologically simple Ectocarpales are natural hosts for the dsDNA phaeoviruses (family Phycodnaviridae) that persist as proviruses in the genomes of their hosts. We have previously shown that the major capsid protein (MCP) and DNA polymerase concatenated gene phylogeny splits phaeoviruses into two subgroups, A and B (both infecting Ectocarpales), while MCP-based phylogeny suggests that the kelp phaeoviruses form a distinct third subgroup C. Here we used MCP to better understand the host range of phaeoviruses by screening a further 96 and 909 samples representing 11 and 3 species of kelp and Ectocarpales, respectively. Sporophyte kelp samples were collected from their various natural coastal habitats spanning five continents: Africa, Asia, Australia, Europe, and South America. Our phylogenetic analyses showed that while most of the kelp phaeoviruses, including one from Macrocystispyrifera, belonged to the previously designated subgroup C, new lineages of Phaeovirus in 3 kelp species, Ecklonia maxima, Ecklonia radiata, Undaria pinnatifida, grouped instead with subgroup A. In addition, we observed a prevalence of 26% and 63% in kelp and Ectocarpales, respectively. Although not common, multiple phaeoviral infections per individual were observed, with the Ectocarpales having both intra- and inter-subgroup phaeoviral infections. Only intra-subgroup phaeoviral infections were observed in kelp. Furthermore, prevalence of phaeoviral infections within the Ectocarpales is also linked to their exposure to waves. We conclude that phaeoviral infection is a widely occurring phenomenon in both lineages, and that phaeoviruses have diversified with their hosts at least since the divergence of the Laminariales and Ectocarpales.
Collapse
Affiliation(s)
- Dean A McKeown
- Marine Biological Association of the UK, Citadel Hill, Plymouth, Devon PL1 2PB, UK.
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK.
| | - Joanna L Schroeder
- Marine Biological Association of the UK, Citadel Hill, Plymouth, Devon PL1 2PB, UK.
| | - Kim Stevens
- Marine Biological Association of the UK, Citadel Hill, Plymouth, Devon PL1 2PB, UK.
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK.
| | - Akira F Peters
- Bezhin Rosko, 40 Rue des Pêcheurs, F-29250 Santec, France.
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centre of Advanced Studies, University of Playa Ancha, Viña del Mar 581782, Chile.
| | - Jihae Park
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, Korea.
| | - Mark D Rothman
- Department of Agriculture, Forestry and Fisheries, Private bag X2, Vlaeberg 8018, South Africa.
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Cape Town 7701, South Africa.
| | - John J Bolton
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Cape Town 7701, South Africa.
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK.
| | - Declan C Schroeder
- Marine Biological Association of the UK, Citadel Hill, Plymouth, Devon PL1 2PB, UK.
- School of Biological Sciences, University of Reading, Reading RG6 6LA, UK.
- Veterinary Population Medicine, 225 Veterinary Medical Center, 1365 Gortner Avenue, St Paul, MN 55108, USA.
| |
Collapse
|
43
|
Leger MM, Eme L, Stairs CW, Roger AJ. Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). Bioessays 2018; 40:e1700242. [DOI: 10.1002/bies.201700242] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/06/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-UPF); Pg. Marítim de la Barceloneta, Barcelona ES 08003 Spain
| | - Laura Eme
- Department of Cell and Molecular Biology; Science for Life Laboratory; Uppsala University; Box 596, Uppsala SE 751 25 Sweden
| | - Courtney W. Stairs
- Department of Cell and Molecular Biology; Science for Life Laboratory; Uppsala University; Box 596, Uppsala SE 751 25 Sweden
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics; Department of Biochemistry and Molecular Biology; Dalhousie University; P.O. Box 15000, Halifax CAN B3H 4R2 Nova Scotia Canada
| |
Collapse
|