1
|
Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023; 13:325. [PMID: 36830694 PMCID: PMC9953750 DOI: 10.3390/biom13020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.
Collapse
Affiliation(s)
| | | | - Stefan Rothenburg
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Shchelkunova GA, Shchelkunov SN. Smallpox, Monkeypox and Other Human Orthopoxvirus Infections. Viruses 2022; 15:103. [PMID: 36680142 PMCID: PMC9865299 DOI: 10.3390/v15010103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Considering that vaccination against smallpox with live vaccinia virus led to serious adverse effects in some cases, the WHO, after declaration of the global eradication of smallpox in 1980, strongly recommended to discontinue the vaccination in all countries. This led to the loss of immunity against not only smallpox but also other zoonotic orthopoxvirus infections in humans over the past years. An increasing number of human infections with zoonotic orthopoxviruses and, first of all, monkeypox, force us to reconsider a possible re-emergence of smallpox or a similar disease as a result of natural evolution of these viruses. The review contains a brief analysis of the results of studies on genomic organization and evolution of human pathogenic orthopoxviruses, development of modern methods for diagnosis, vaccination, and chemotherapy of smallpox, monkeypox, and other zoonotic human orthopoxvirus infections.
Collapse
Affiliation(s)
| | - Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, 630559 Novosibirsk, Russia
| |
Collapse
|
3
|
Paasch U, Eder I, Krüger C, Koch D, Nenoff P. [Bullous, haemorrhagic lesions in a mother and her daughter]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:820-822. [PMID: 35257189 DOI: 10.1007/s00105-022-04968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Uwe Paasch
- Hautärzte Paasch, Lindenstr. 20, 04838, Jesewitz OT Gotha, Deutschland.,Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Leipzig, Philipp-Rosenthal-Str. 23, 04103, Leipzig, Deutschland
| | - Ines Eder
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsklinikum, 04103, Leipzig, Deutschland
| | - Constanze Krüger
- Partnerschaft Prof. Dr. med. Pietro Nenoff und Dr. med. Constanze Krüger, Labor für Medizinische Mikrobiologie, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland
| | - Daniela Koch
- Partnerschaft Prof. Dr. med. Pietro Nenoff und Dr. med. Constanze Krüger, Labor für Medizinische Mikrobiologie, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland
| | - Pietro Nenoff
- Partnerschaft Prof. Dr. med. Pietro Nenoff und Dr. med. Constanze Krüger, Labor für Medizinische Mikrobiologie, Mölbiser Hauptstr. 8, 04571, Rötha/OT Mölbis, Deutschland.
| |
Collapse
|
4
|
Genomic Sequencing and Phylogenomics of Cowpox Virus. Viruses 2022; 14:v14102134. [PMID: 36298689 PMCID: PMC9611595 DOI: 10.3390/v14102134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cowpox virus (CPXV; genus Orthopoxvirus; family Poxviridae) is the causative agent of cowpox, a self-limiting zoonotic infection. CPXV is endemic in Eurasia, and human CPXV infections are associated with exposure to infected animals. In the Fennoscandian region, five CPXVs isolated from cats and humans were collected and used in this study. We report the complete sequence of their genomes, which ranged in size from 220–222 kbp, containing between 215 and 219 open reading frames. The phylogenetic analysis of 87 orthopoxvirus strains, including the Fennoscandian CPXV isolates, confirmed the division of CPXV strains into at least five distinct major clusters (CPXV-like 1, CPXV-like 2, VACV-like, VARV-like and ECTV-Abatino-like) and can be further divided into eighteen sub-species based on the genetic and patristic distances. Bayesian time-scaled evolutionary history of CPXV was reconstructed employing concatenated 62 non-recombinant conserved genes of 55 CPXV. The CPXV evolution rate was calculated to be 1.65 × 10−5 substitution/site/year. Our findings confirmed that CPXV is not a single species but a polyphyletic assemblage of several species and thus, a reclassification is warranted.
Collapse
|
5
|
MacNeill AL. Comparative Pathology of Zoonotic Orthopoxviruses. Pathogens 2022; 11:pathogens11080892. [PMID: 36015017 PMCID: PMC9412692 DOI: 10.3390/pathogens11080892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides a brief history of the impacts that a human-specific Orthopoxvirus (OPXV), Variola virus, had on mankind, recalls how critical vaccination was for the eradication of this disease, and discusses the consequences of discontinuing vaccination against OPXV. One of these consequences is the emergence of zoonotic OPXV diseases, including Monkeypox virus (MPXV). The focus of this manuscript is to compare pathology associated with zoonotic OPXV infection in veterinary species and in humans. Efficient recognition of poxvirus lesions and other, more subtle signs of disease in multiple species is critical to prevent further spread of poxvirus infections. Additionally included are a synopsis of the pathology observed in animal models of MPXV infection, the recent spread of MPXV among humans, and a discussion of the potential for this virus to persist in Europe and the Americas.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Diaz-Cánova D, Moens UL, Brinkmann A, Nitsche A, Okeke MI. Genomic Sequencing and Analysis of a Novel Human Cowpox Virus With Mosaic Sequences From North America and Old World Orthopoxvirus. Front Microbiol 2022; 13:868887. [PMID: 35592007 PMCID: PMC9112427 DOI: 10.3389/fmicb.2022.868887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopoxviruses (OPXVs) not only infect their natural hosts, but some OPXVs can also cause disease in humans. Previously, we partially characterized an OPXV isolated from an 18-year-old male living in Northern Norway. Restriction enzyme analysis and partial genome sequencing characterized this virus as an atypical cowpox virus (CPXV), which we named CPXV-No-H2. In this study, we determined the complete genome sequence of CPXV-No-H2 using Illumina and Nanopore sequencing. Our results showed that the whole CPXV-No-H2 genome is 220,276 base pairs (bp) in length, with inverted terminal repeat regions of approximately 7 kbp, containing 217 predicted genes. Seventeen predicted CPXV-No-H2 proteins were most similar to OPXV proteins from the Old World, including Ectromelia virus (ECTV) and Vaccinia virus, and North America, Alaskapox virus (AKPV). CPXV-No-H2 has a mosaic genome with genes most similar to other OPXV genes, and seven potential recombination events were identified. The phylogenetic analysis showed that CPXV-No-H2 formed a separate clade with the German CPXV isolates CPXV_GerMygEK938_17 and CPXV_Ger2010_MKY, sharing 96.4 and 96.3% nucleotide identity, respectively, and this clade clustered closely with the ECTV-OPXV Abatino clade. CPXV-No-H2 is a mosaic virus that may have arisen out of several recombination events between OPXVs, and its phylogenetic clustering suggests that ECTV-Abatino-like cowpox viruses form a distinct, new clade of cowpox viruses.
Collapse
Affiliation(s)
- Diana Diaz-Cánova
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ugo L Moens
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annika Brinkmann
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Malachy Ifeanyi Okeke
- Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
7
|
Sero-Epidemiological Survey of Orthopoxvirus in Stray Cats and in Different Domestic, Wild and Exotic Animal Species of Central Italy. Viruses 2021; 13:v13102105. [PMID: 34696535 PMCID: PMC8537024 DOI: 10.3390/v13102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Orthpoxvirus infection can spread more easily in a population with a waning immunity with the subsequent emergence/re-emergence of the viruses pertaining to this genus. In the last two decades, several cases of Orthopoxvirus, and in particular Cowpoxvirus infections in humans were reported in different parts of the world, possibly due to the suspension of smallpox vaccinations. To date, in Italy, few investigations were conducted on the presence of these infections, and because of this a serosurvey was carried out to evaluate Cowpoxvirus infection in feline colonies situated in the province of Rome, since these are also susceptible to other zoonotic viruses belonging to Orthopoxvirus, and from which humans may contract the infection. The sample design was set at an expected minimum seroprevalence of 7.5%, a 5% standard error and 95% confidence level. In parallel, a serological investigation was conducted using convenience sampling in domestic, exotic and wild susceptible animals of the Latium and Tuscany Regions, which are areas in the jurisdiction of the Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, coordinating this study. The serological methods employed were indirect immunofluorescence for 36 sera of nonhuman primate and virus neutralization for 1198 sera of different species. All the 1234 sera examined were negative for the presence of antibodies against Cowpoxvirus, indicating its limited circulation in the areas of investigation. The methodology applied for the serosurveillance could be adopted in the case of outbreaks of this infection and for the evaluation of the spread of this infection in the area of interest, to obtain essential information crucial for animal and public health policies according to the One Health concept.
Collapse
|
8
|
Outbreak of a Systemic Form of Camelpox in a Dromedary Herd ( Camelus dromedarius) in the United Arab Emirates. Viruses 2021; 13:v13101940. [PMID: 34696370 PMCID: PMC8541543 DOI: 10.3390/v13101940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Camelpox virus (CMLV) is the causative agent of camelpox, which frequently occurs in the Old World camelids-rearing countries except for Australia. It has also been described in experimentally inoculated New World camelids. Camelpox outbreaks are often experienced shortly after the rainy season, which occurs twice a year on the Arabian Peninsula because of the increased density of the insect population, particularly mosquitos. A systemic form of camelpox outbreak in seven dromedary camels was diagnosed by histology, virus isolation, and PCR. A phylogenetic analysis using full length CMLV genomes of the isolated CMLV strains showed a single phylogenetic unit without any distinctive differences between them. The United Arab Emirates (UAE) isolate sequences showed phylogenetical relatedness with CMLV isolates from Israel with only minor sequence differences. Although the sequences of viruses from both countries were closely related, the disease manifestation was vastly different. Our study shows that the virulence is not only determined by genetic features of CMLV alone but may also depend on other factors such as unknown aspects of the host (e.g., age, overall fitness), management, and the environment.
Collapse
|
9
|
FREQUENT LEPTOSPIRA SPP. DETECTION BUT ABSENCE OF TULA ORTHOHANTAVIRUS IN MICROTUS SPP. VOLES, NORTHWESTERN SPAIN. J Wildl Dis 2021; 57:733-742. [PMID: 34320644 DOI: 10.7589/jwd-d-20-00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/09/2021] [Indexed: 11/20/2022]
Abstract
The common vole (Microtus arvalis) is a major agricultural pest in Europe and is a reservoir for several zoonotic agents, such as Leptospira spp. and Tula orthohantavirus (TULV). However, little is known about the occurrence of those pathogens in voles from Spain, where the species has largely expanded its distribution range in the past decades, causing agricultural pests and zoonotic diseases. For a molecular survey, 580 common voles and six Lusitanian pine voles (Microtus lusitanicus) were collected in 26 localities from four provinces of northwestern Spain. We assessed the presence of Leptospira spp. DNA in kidney tissue by PCR targeting the lipL32 gene, detecting a prevalence of 7.9% (95% confidence interval, 5.9-10.4) for common voles and of 33.3% (95% confidence interval, 4.3-77.7) for Lusitanian pine voles. We identified Leptospira kirschneri in 24 animals and Leptospira borgpetersenii in two animals, using secY gene-specific PCR. We analyzed environmental and demographic factors (such as age class, weight, and sex) and population dynamics data for their potential effect on the Leptospira spp. prevalence in those voles. The Leptospira spp. DNA detection rate in common voles increased significantly with maximum air temperature, vole weight, and amount of accumulated rainfall during the 90 d before capture and within the peak phase of the population cycle. We assessed the presence of TULV in lung tissue of 389 voles by reverse-transcription PCR, with no positive results. The absence of TULV might be explained by the evolutionary isolation of the common vole in Spain. The detection of two Leptospira genomospecies underlines the necessity for further typing efforts to understand the epidemiology of leptospiral infection in the common vole and the potential risk for human health in Spain.
Collapse
|
10
|
Tellis AN, Rowe SM, Coilparampil R, Jenkins C, Dart A, Zadoks RN, Regnerus CD, Bosward KL. Evaluation of three immunological assays to mitigate the risk of transboundary spread of Coxiella burnetii by alpacas. Transbound Emerg Dis 2021; 69:793-804. [PMID: 33655708 DOI: 10.1111/tbed.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022]
Abstract
Coxiella burnetii causes coxiellosis in animals and Q fever in humans, a potentially debilitating zoonotic disease commonly transmitted through domestic ruminants. To prevent transboundary spread of C. burnetii, animals may be tested prior to export. In alpacas, this process is complicated by the lack of scientific evidence for C. burnetii infection in the species, and the unique composition of camelid antibodies, which may cause false-positive results in assays developed for ruminants. We evaluated a complement fixation test (CFT; currently recommended for alpacas in New Zealand), an enzyme-linked immunosorbent assay (ELISA) and an immunofluorescence assay (IFA). Positive analytical control samples were generated through vaccination of alpacas with a human Q fever vaccine, whereas negative analytical control samples were sourced from New Zealand (deemed free of C. burnetii). Immunological assays were conducted on 131 alpaca sera submitted for export testing. Test characteristics (sensitivity, specificity, positive and negative predictive values) for CFT, ELISA and IFA were determined using Bayesian latent class analysis. Due to anticomplementary activity, 37 (28.2%) of the CFT results were inconclusive, making CFT unsuitable for routine use. Of the remaining 94 samples, 10.6%, 0% and 7.4% were positive for C. burnetii antibodies based on CFT, ELISA and IFA, respectively, yielding estimated sensitivities of 58%, 26% and 78%, and estimated specificities of 95%, 98% and 95%, with the estimates for sensitivity being imprecise, as evidenced by wide 95% credible intervals. Positive predictive values were similar across assays, albeit very low at the estimated seroprevalence of 5%. Our results indicate that, of the tests available, IFA appears to be the most appropriate for use in alpacas. Higher sensitivity of antibody detection, use of antigen detection assays and availability of samples from individuals with evidence of infection could provide additional insight into the risk of transboundary spread of C. burnetii by alpacas.
Collapse
Affiliation(s)
- Anastasia N Tellis
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Sam M Rowe
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Ronald Coilparampil
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Andrew Dart
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | | | - Katrina L Bosward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
11
|
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020; 12:E1257. [PMID: 33167496 PMCID: PMC7694534 DOI: 10.3390/v12111257] [Citation(s) in RCA: 370] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers' monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UIT)—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Godwin Nchinda
- Laboratory of Vaccinology and Immunology, The Chantal Biya International Reference Center for Research on the Prevention and Management HIV/AIDS (CIRCB), P.O Box 3077 Yaoundé-Messa, Cameroon;
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, P.O Box 420110 Awka, Nigeria
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| |
Collapse
|
12
|
Fischer S, Franke A, Imholt C, Gethmann J, Spierling NG, Jacob J, Beer M, Hoffmann D, Ulrich RG. Patchy Occurrence of Cowpox Virus in Voles from Germany. Vector Borne Zoonotic Dis 2020; 20:471-475. [PMID: 32013767 DOI: 10.1089/vbz.2019.2530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cowpox virus (CPXV), genus Orthopoxvirus, family Poxviridae, is a zoonotic pathogen in Eurasian wild rodents. High seroprevalences have been reported previously for vole and murine species in Europe. In contrast, viral DNA was only rarely detected, and very few reservoir-derived CPXV isolates exist. In this study, CPXV DNA and CPXV-reactive antibodies were monitored in wild small mammals for 5 years in four German federal states. Screening of liver tissues of 3966 animals by CPXV real-time PCR (qPCR) revealed five voles of two species positive for CPXV DNA. Two positive bank voles (Myodes glareolus) and two positive common voles (Microtus arvalis) originated from two plots in Baden-Wuerttemberg. One positive bank vole originated from Mecklenburg-Western Pomerania. None of the small mammals from Thuringia and North Rhine-Westphalia was positive in the qPCR. CPXV antigen-based indirect immunofluorescence assays of 654 highly diluted chest cavity fluid samples detected two bank voles and two common voles from the same sites in Baden-Wuerttemberg to be highly seroreactive. Five animals were CPXV DNA positive, and four other animals were orthopoxvirus seropositive. Our study indicates both a very low prevalence and a patchy occurrence of CPXV in common and bank voles and absence in other rodent and shrew species in Germany. The multiple detection of infected voles at one site in Baden-Wuerttemberg and continued detection in a region of Mecklenburg-Western Pomerania classify these regions as potential endemic foci.
Collapse
Affiliation(s)
- Stefan Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Annika Franke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christian Imholt
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Vertebrate Research, Münster, Germany
| | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nastasja G Spierling
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jens Jacob
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Vertebrate Research, Münster, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Prkno A, Hoffmann D, Kaiser M, Goerigk D, Pfeffer M, Winter K, Vahlenkamp TW, Beer M, Starke A. Field Trial Vaccination against Cowpox in Two Alpaca Herds. Viruses 2020; 12:v12020234. [PMID: 32093320 PMCID: PMC7077317 DOI: 10.3390/v12020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
In Europe, cowpox virus (CPXV) infection in South American camelids occurs as a so-called spill-over infection. Although infected animals generally have a mild form of the disease and survive, cases of fatal generalised CPXV infection have also been described. Prevention by prophylactic vaccination is the only way to protect animals from disease. In the present study, modified vaccinia virus Ankara (MVA) vaccine, which has been successfully used in many animal species, was used in a prime-boost vaccination regimen in two alpaca herds with a history of CPXV infection. The focus of the study was the prevention of further clinical cases, and to determine the safety and immunogenicity of the MVA vaccine in alpacas. The MVA vaccine was well tolerated and safe in the 94 animals vaccinated. An indirect immunofluorescence assay (IFA) using MVA as an antigen showed that the seroprevalence of antibody after booster vaccination was 81.3% in herd I and 91.7% in herd II. Detectable antibody titres declined to 15.6% in herd I and 45.8% in herd II over a 12-month period after booster vaccination. Animals could be divided into four groups based on individual antibody titres determined over one year: Group 1 consisted of 19.3% of animals that were seropositive until the end of the trial period; Group 2 consisted of 58.0% of animals that were seropositive after booster vaccination, but seronegative one year later; Group 3 consisted of 14.7% of animals that were not seropositive at any time point; and Group 4 consisted of 7.9% of animals that were seropositive after initial immunisation, seronegative six months later, but seropositive or intermediate in IFA one year after immunisation, likely because of natural exposure. In new-born crias born to MVA-vaccinated mares, specific maternal antibodies were detected in 50.0% of animals up to 14 weeks of age. Our results confirm that MVA vaccination is a feasible tool for the prevention of CPXV disease in alpacas. Long-term studies are needed to verify future vaccination regimen in CPXV affected herds.
Collapse
Affiliation(s)
- Almut Prkno
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
- Correspondence: ; Tel.: +49-341-9738331
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Matthias Kaiser
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
| | - Daniela Goerigk
- Veterinary practice Dr. Daniela Goerigk, Naundorfer Str. 9, 04668 Schkortitz, Germany;
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Centre for Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany;
| | - Karsten Winter
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany;
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Alexander Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
| |
Collapse
|
14
|
Weber S, Jeske K, Ulrich RG, Imholt C, Jacob J, Beer M, Hoffmann D. In Vivo Characterization of a Bank Vole-Derived Cowpox Virus Isolate in Natural Hosts and the Rat Model. Viruses 2020; 12:v12020237. [PMID: 32093366 PMCID: PMC7077282 DOI: 10.3390/v12020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/04/2022] Open
Abstract
Cowpox virus (CPXV) belongs to the genus Orthopoxvirus in the Poxviridae family and is endemic in western Eurasia. Based on seroprevalence studies in different voles from continental Europe and UK, voles are suspected to be the major reservoir host. Recently, a CPXV was isolated from a bank vole (Myodes glareolus) in Germany that showed a high genetic similarity to another isolate originating from a Cotton-top tamarin (Saguinus oedipus). Here we characterize this first bank vole-derived CPXV isolate in comparison to the related tamarin-derived isolate. Both isolates grouped genetically within the provisionally called CPXV-like 3 clade. Previous phylogenetic analysis indicated that CPXV is polyphyletic and CPXV-like 3 clade represents probably a different species if categorized by the rules used for other orthopoxviruses. Experimental infection studies with bank voles, common voles (Microtusarvalis) and Wistar rats showed very clear differences. The bank vole isolate was avirulent in both common voles and Wistar rats with seroconversion seen only in the rats. In contrast, inoculated bank voles exhibited viral shedding and seroconversion for both tested CPXV isolates. In addition, bank voles infected with the tamarin-derived isolate experienced a marked weight loss. Our findings allow for the conclusion that CPXV isolates might differ in their replication capacity in different vole species and rats depending on their original host. Moreover, the results indicate host-specific differences concerning CPXV-specific virulence. Further experiments are needed to identify individual virulence and host factors involved in the susceptibility and outcome of CPXV-infections in the different reservoir hosts.
Collapse
Affiliation(s)
- Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
| | - Kathrin Jeske
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Christian Imholt
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| |
Collapse
|
15
|
Isolation and Characterization of Akhmeta Virus from Wild-Caught Rodents ( Apodemus spp.) in Georgia. J Virol 2019; 93:JVI.00966-19. [PMID: 31554682 PMCID: PMC6880181 DOI: 10.1128/jvi.00966-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species. In 2013, a novel orthopoxvirus was detected in skin lesions of two cattle herders from the Kakheti region of Georgia (country); this virus was named Akhmeta virus. Subsequent investigation of these cases revealed that small mammals in the area had serological evidence of orthopoxvirus infections, suggesting their involvement in the maintenance of these viruses in nature. In October 2015, we began a longitudinal study assessing the natural history of orthopoxviruses in Georgia. As part of this effort, we trapped small mammals near Akhmeta (n = 176) and Gudauri (n = 110). Here, we describe the isolation and molecular characterization of Akhmeta virus from lesion material and pooled heart and lung samples collected from five wood mice (Apodemus uralensis and Apodemus flavicollis) in these two locations. The genomes of Akhmeta virus obtained from rodents group into 2 clades: one clade represented by viruses isolated from A. uralensis samples, and one clade represented by viruses isolated from A. flavicollis samples. These genomes also display several presumptive recombination events for which gene truncation and identity have been examined. IMPORTANCE Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species.
Collapse
|
16
|
Jeske K, Weber S, Pfaff F, Imholt C, Jacob J, Beer M, Ulrich RG, Hoffmann D. Molecular Detection and Characterization of the First Cowpox Virus Isolate Derived from a Bank Vole. Viruses 2019; 11:v11111075. [PMID: 31752129 PMCID: PMC6893522 DOI: 10.3390/v11111075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that infects a wide range of mammals. CPXV-specific DNA and antibodies were detected in different vole species, such as common voles (Microtus arvalis) and bank voles (Myodes glareolus). Therefore, voles are the putative main reservoir host of CPXV. However, CPXV was up to now only isolated from common voles. Here we report the detection and isolation of a bank vole-derived CPXV strain (GerMygEK 938/17) resulting from a large-scale screening of bank voles collected in Thuringia, Germany, during 2017 and 2018. Phylogenetic analysis using the complete viral genome sequence indicated a high similarity of the novel strain to CPXV clade 3 and to OPV “Abatino” but also to Ectromeliavirus (ECTV) strains. Phenotypic characterization of CPXV GerMygEK 938/17 using inoculation of embryonated chicken eggs displayed hemorrhagic pock lesions on the chorioallantoic membrane that are typical for CPXV but not for ECTV. CPXV GerMygEK 938/17 replicated in vole-derived kidney cell lines but at lower level than on Vero76 cell line. In conclusion, the first bank vole-derived CPXV isolate provides new insights into the genetic variability of CPXV in the putative reservoir host and is a valuable tool for further studies about CPXV-host interaction and molecular evolution of OPV.
Collapse
Affiliation(s)
- Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Imholt
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
17
|
|
18
|
Gruber CEM, Giombini E, Selleri M, Tausch SH, Andrusch A, Tyshaieva A, Cardeti G, Lorenzetti R, De Marco L, Carletti F, Nitsche A, Capobianchi MR, Ippolito G, Autorino GL, Castilletti C. Whole Genome Characterization of Orthopoxvirus (OPV) Abatino, a Zoonotic Virus Representing a Putative Novel Clade of Old World Orthopoxviruses. Viruses 2018; 10:v10100546. [PMID: 30301229 PMCID: PMC6212904 DOI: 10.3390/v10100546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Orthopoxviruses (OPVs) are diffused over the complete Eurasian continent, but previously described strains are mostly from northern Europe, and few infections have been reported from Italy. Here we present the extended genomic characterization of OPV Abatino, a novel OPV isolated in Italy from an infected Tonkean macaque, with zoonotic potential. Phylogenetic analysis based on 102 conserved OPV genes (core gene set) showed that OPV Abatino is most closely related to the Ectromelia virus species (ECTV), although placed on a separate branch of the phylogenetic tree, bringing substantial support to the hypothesis that this strain may be part of a novel OPV clade. Extending the analysis to the entire set of genes (coding sequences, CDS) further substantiated this hypothesis. In fact the genome of OPV Abatino included more CDS than ECTV; most of the extra genes (mainly located in the terminal genome regions), showed the highest similarity with cowpox virus (CPXV); however vaccinia virus (VACV) and monkeypox virus (MPXV) were the closest OPV for certain CDS. These findings suggest that OPV Abatino could be the result of complex evolutionary events, diverging from any other previously described OPV, and may indicate that previously reported cases in Italy could represent the tip of the iceberg yet to be explored.
Collapse
Affiliation(s)
- Cesare E M Gruber
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, via Portuense 292, 00149 Rome, Italy.
| | - Emanuela Giombini
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, via Portuense 292, 00149 Rome, Italy.
| | - Marina Selleri
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, via Portuense 292, 00149 Rome, Italy.
| | - Simon H Tausch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Seestraße 10, 13353 Berlin, Germany.
| | - Andreas Andrusch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Seestraße 10, 13353 Berlin, Germany.
| | - Alona Tyshaieva
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Seestraße 10, 13353 Berlin, Germany.
| | - Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, via Appia Nuova 1411, 00178 Rome, Italy.
| | - Raniero Lorenzetti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, via Appia Nuova 1411, 00178 Rome, Italy.
| | - Lorenzo De Marco
- Parco Faunistico Piano dell'Abatino, via Capo Farfa 50, 02030 Poggio San Lorenzo, Italy.
| | - Fabrizio Carletti
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, via Portuense 292, 00149 Rome, Italy.
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Seestraße 10, 13353 Berlin, Germany.
| | - Maria R Capobianchi
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, via Portuense 292, 00149 Rome, Italy.
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, via Portuense 292, 00149 Rome, Italy.
| | - Gian Luca Autorino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, via Appia Nuova 1411, 00178 Rome, Italy.
| | - Concetta Castilletti
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, via Portuense 292, 00149 Rome, Italy.
| |
Collapse
|