1
|
Prabhakar AT, Morgan IM. A new role for human papillomavirus 16 E2: Mitotic activation of the DNA damage response to promote viral genome segregation. Tumour Virus Res 2024; 18:200291. [PMID: 39245413 PMCID: PMC11416546 DOI: 10.1016/j.tvr.2024.200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Human papillomaviruses (HPV) are causative agents in around 5% of all human cancers. To identify and develop new targeted HPV therapeutics we must enhance our understanding of the viral life cycle and how it interacts with the host. The HPV E2 protein dimerizes and binds to 12bp target sequences in the viral genome and segregates the viral genome during mitosis. In this function, E2 binds to the viral genome and the host chromatin simultaneously, ensuring viral genomes reside in daughter nuclei following cell division. We have demonstrated that a mitotic interaction between E2 and the DNA damage response (DDR) protein TOPBP1 is required for E2 segregation function. In non-infected cells, following DNA damage, TOPBP1 is recruited to the mitotic host genome via interaction with MDC1 and this interaction protects DNA integrity during mitosis. Recently we demonstrated that the E2-TOPBP1 interaction activates the DNA damage response (DDR) during mitosis independently from external stimuli, promoting TOPBP1 interaction with mitotic chromatin and therefore segregation of the viral genome. Therefore, the virus has hijacked an existing host mechanism in order to segregate the viral genome. This intricate E2 function will be described and discussed.
Collapse
Affiliation(s)
- Apurva T Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA.
| | - Iain M Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, 23298, USA; VCU Massey Cancer Center, Richmond, VA, 23298, USA.
| |
Collapse
|
2
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A peptide derived from sorting nexin 1 inhibits HPV16 entry, retrograde trafficking, and L2 membrane spanning. Tumour Virus Res 2024; 18:200287. [PMID: 38909779 PMCID: PMC11255958 DOI: 10.1016/j.tvr.2024.200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024] Open
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1-mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Zachary L Williamson
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | | | | | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA; Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A Peptide Derived from Sorting Nexin 1 Inhibits HPV16 Entry, Retrograde Trafficking, and L2 Membrane Spanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595865. [PMID: 38826391 PMCID: PMC11142256 DOI: 10.1101/2024.05.25.595865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
| | - Zachary L Williamson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| | - Matthew A Christofferson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
| | - Advait Jeevanandam
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| |
Collapse
|
4
|
Oh C, Buckley PM, Choi J, Hierro A, DiMaio D. Sequence-independent activity of a predicted long disordered segment of the human papillomavirus type 16 L2 capsid protein during virus entry. Proc Natl Acad Sci U S A 2023; 120:e2307721120. [PMID: 37819982 PMCID: PMC10589650 DOI: 10.1073/pnas.2307721120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
The activity of proteins is thought to be invariably determined by their amino acid sequence or composition, but we show that a long segment of a viral protein can support infection independent of its sequence or composition. During virus entry, the papillomavirus L2 capsid protein protrudes through the endosome membrane into the cytoplasm to bind cellular factors such as retromer required for intracellular virus trafficking. Here, we show that an ~110 amino acid segment of L2 is predicted to be disordered and that large deletions in this segment abolish infectivity of HPV16 pseudoviruses by inhibiting cytoplasmic protrusion of L2, association with retromer, and proper virus trafficking. The activity of these mutants can be restored by insertion of protein segments with diverse sequences, compositions, and chemical properties, including scrambled amino acid sequences, a tandem array of a short sequence, and the intrinsically disordered region of an unrelated cellular protein. The infectivity of mutants with small in-frame deletions in this segment directly correlates with the size of the segment. These results indicate that the length of the disordered segment, not its sequence or composition, determines its activity during HPV16 pseudovirus infection. We propose that a minimal length of L2 is required for it to protrude far enough into the cytoplasm to bind cytoplasmic trafficking factors, but the sequence of this segment is largely irrelevant. Thus, protein segments can carry out complex biological functions such as Human papillomavirus pseudovirus infection in a sequence-independent manner. This finding has important implications for protein function and evolution.
Collapse
Affiliation(s)
- Changin Oh
- Department of Genetics, Yale School of Medicine, New Haven, CT06520-8005
| | - Patrick M. Buckley
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536-0812
| | - Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT06520-8005
| | - Aitor Hierro
- Center for Cooperative Research in Biosciences, Bilbao, Derio48160, Spain
- Basque Foundation for Science, Bilbao48009, Spain
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT06520-8005
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT06520-8040
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06520-8024
- Yale Cancer Center, New Haven, CT06520-8028
| |
Collapse
|
5
|
Chen J, Wang D, Wang Z, Wu K, Wei S, Chi X, Qian C, Xu Y, Zhou L, Li Y, Zhang S, Li T, Kong Z, Wang Y, Zheng Q, Yu H, Zhao Q, Zhang J, Xia N, Li S, Gu Y. Critical Residues Involved in the Coassembly of L1 and L2 Capsid Proteins of Human Papillomavirus 16. J Virol 2023; 97:e0181922. [PMID: 36815785 PMCID: PMC10062154 DOI: 10.1128/jvi.01819-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Zhiping Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Kunbao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Shuangping Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Xin Chi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Ciying Qian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Yujie Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yuqian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Sibo Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Human Papillomavirus 16 E2 Interaction with TopBP1 Is Required for E2 and Viral Genome Stability during the Viral Life Cycle. J Virol 2023; 97:e0006323. [PMID: 36840558 PMCID: PMC10062148 DOI: 10.1128/jvi.00063-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
CK2 phosphorylation of HPV16 E2 at serine 23 promotes interaction with TopBP1, and this interaction is important for E2 plasmid segregation function. Here, we demonstrate that the E2-TopBP1 interaction is critical for E2 and viral genome stability during the viral life cycle. Introduction of the S23A mutation into the HPV16 genome results in a loss of E2 expression and viral genome integration during organotypic rafting. Coculture of N/Tert-1+E2-S23A cells with J2 fibroblasts results in E2-S23A degradation via the proteasome; wild-type E2 is not degraded. TopBP1 siRNA treatment of N/Tert-1+E2-WT cells results in E2 degradation only in the presence of J2 cells demonstrating the critical role for TopBP1 in maintaining E2 stability. The CK2 inhibitor CX4945 promotes E2-WT degradation in the presence of fibroblasts as it disrupts E2-TopBP1 interaction. siRNA targeting SIRT1 rescues E2-S23A stability in N/Tert-1 cells treated with J2 fibroblasts, with an increased E2-S23A acetylation. The results demonstrate that the E2-TopBP1 interaction is critical during the viral life cycle as it prevents fibroblast stimulated SIRT1 mediated deacetylation of E2 that promotes protein degradation. This means that the E2-TopBP1 complex maintains E2 and viral genome stability and that disruption of this complex can promote viral genome integration. Finally, we demonstrate that HPV11 E2 also interacts with TopBP1 and that this interaction is critical for HPV11 E2 stability in the presence of J2 cells. Treatment of N/Tert-1 + 11E2-WT cells with CX4945 results in 11E2 degradation. Therefore, CK2 inhibition is a therapeutic strategy for alleviating HPV11 diseases, including juvenile respiratory papillomatosis. IMPORTANCE Human papillomaviruses are pathogens that cause a host of diseases ranging from benign warts to cancers. There are no therapeutics available for combating these diseases that directly target viral proteins or processes; therefore, we must enhance our understanding of HPV life cycles to assist with identifying novel treatments. In this report, we demonstrate that HPV16 and HPV11 E2 protein expression is dependent upon TopBP1 interaction in keratinocytes interacting with fibroblasts, which recapitulate stromal interactions in culture. The degradation of 16E2 promotes HPV16 genome integration; therefore, the E2-TopBP1 interaction is critical during the viral life cycle. We demonstrate that the CK2 inhibitor CX4945 disrupts HPV11 interaction with TopBP1 and destabilizes HPV11 E2 protein in the presence of J2 fibroblasts; we propose that CX4945 could alleviate HPV11 disease burden.
Collapse
|
7
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
8
|
Interaction with TopBP1 Is Required for Human Papillomavirus 16 E2 Plasmid Segregation/Retention Function during Mitosis. J Virol 2022; 96:e0083022. [PMID: 35880889 PMCID: PMC9400484 DOI: 10.1128/jvi.00830-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus 16 (HPV16) E2 is a DNA-binding protein that regulates transcription, replication and potentially, segregation of the HPV16 genome during the viral life cycle. In the segregation model, E2 simultaneously binds to viral and host chromatin, acting as a bridge to ensure that viral genomes reside in daughter nuclei following cell division. The host chromatin receptor for E2 mediating this function is unknown. Recently, we demonstrated that CK2 phosphorylation of E2 on serine 23 (S23) is required for interaction with TopBP1, and that this interaction promotes E2 and TopBP1 recruitment to mitotic chromatin. Here, we demonstrate that in U2OS cells expressing wild-type E2 and a non-TopBP1-binding mutant (S23A, serine 23 mutated to alanine), interaction with TopBP1 is essential for E2 recruitment of plasmids to mitotic chromatin. Using novel quantitative segregation assays, we demonstrate that interaction with TopBP1 is required for E2 plasmid segregation function in U2OS and N/Tert-1 cells. Small interfering RNA (siRNA) knockdown of TopBP1 or CK2 enzyme components disrupts E2 segregation/retention function. The interaction of E2 with TopBP1 promotes increased levels of E2 protein during mitosis in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes (HFK) immortalized by the HPV16 genome. Overall, our results demonstrate that E2 has plasmid segregation activity, and that the E2-TopBP1 interaction is essential for this E2 function. IMPORTANCE HPV16 causes 3% to 4% of all human cancers. It is proposed that during the viral life cycle, the viral genome is actively segregated into daughter nuclei, ensuring viral replication in the subsequent S phase. The E2 protein potentially bridges the viral and host genomes during mitosis to mediate segregation of the circular viral plasmid. Here, we demonstrate that E2 has the ability to mediate plasmid segregation, and that this function is dependent upon interaction with the host protein TopBP1. Additionally, we demonstrate that the E2-TopBP1 interaction promotes enhanced E2 expression during mitosis, which likely promotes the plasmid segregation function of E2. Overall, our results present a mechanism of how HPV16 can segregate its viral genome during an active infection, a critical aspect of the viral life cycle.
Collapse
|
9
|
Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex.
Collapse
|
10
|
Prabhakar AT, James CD, Das D, Otoa R, Day M, Burgner J, Fontan CT, Wang X, Glass SH, Wieland A, Donaldson MM, Bristol ML, Li R, Oliver AW, Pearl LH, Smith BO, Morgan IM. CK2 Phosphorylation of Human Papillomavirus 16 E2 on Serine 23 Promotes Interaction with TopBP1 and Is Critical for E2 Interaction with Mitotic Chromatin and the Viral Life Cycle. mBio 2021; 12:e0116321. [PMID: 34544280 PMCID: PMC8546539 DOI: 10.1128/mbio.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
During the human papillomavirus 16 (HPV16) life cycle, the E2 protein interacts with host factors to regulate viral transcription, replication, and genome segregation/retention. Our understanding of host partner proteins and their roles in E2 functions remains incomplete. Here we demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 in vitro and in vivo and that E2 is phosphorylated on this residue during the HPV16 life cycle. We investigated the consequences of mutating serine 23 on E2 functions. E2-S23A (E2 with serine 23 mutated to alanine) activates and represses transcription identically to E2-WT (wild-type E2), and E2-S23A is as efficient as E2-WT in transient replication assays. However, E2-S23A has compromised interaction with mitotic chromatin compared with E2-WT. In E2-WT cells, both E2 and TopBP1 levels increase during mitosis compared with vector control cells. In E2-S23A cells, neither E2 nor TopBP1 levels increase during mitosis. Introduction of the S23A mutation into the HPV16 genome resulted in delayed immortalization of human foreskin keratinocytes (HFK) and higher episomal viral genome copy number in resulting established HFK. Remarkably, S23A cells had a disrupted viral life cycle in organotypic raft cultures, with a loss of E2 expression and a failure of viral replication. Overall, our results demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 and that this interaction is critical for the viral life cycle. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo. This complex results in stabilization of E2 during mitosis. We demonstrate that CK2 phosphorylates E2 on serine 23 in vivo and that CK2 inhibitors disrupt the E2-TopBP1 complex. Mutation of E2 serine 23 to alanine disrupts the HPV16 life cycle, hindering immortalization and disrupting the viral life cycle, demonstrating a critical function for this residue.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Dipon Das
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Raymonde Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Burgner
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Christian T. Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Sarah H. Glass
- VCU School of Dentistry, Department of Oral Diagnostic Sciences, Richmond, Virginia, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary M. Donaldson
- School of Veterinary Medicine, University of Glasgow, Bearsden, United Kingdom
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Renfeng Li
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Anthony W. Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Laurence H. Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Brian O. Smith
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
11
|
Stanley M. Host defence and persistent human papillomavirus infection. Curr Opin Virol 2021; 51:106-110. [PMID: 34628358 DOI: 10.1016/j.coviro.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The ability to establish long term persistent infection is a feature of human papillomaviruses. The available evidence is that this ability is a consequence of a complex local immune milieu whereby innate immune receptors and signalling pathway cascades are inhibited by HPV early proteins resulting in failure of dendritic cell maturation, antigen processing and presentation and activation of cytotoxic antigen specific T cell responses. The development of cutaneous and mucosal infection models with the mouse papillomavirus MmuPV1 and the access to multiple gene deficient strains is providing the frame work to dissect the mechanisms underlying these complex host virus interactions.
Collapse
|
12
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
13
|
Tu Q, Feng W, Chen Z, Li Q, Zhao Y, Chen J, Jiang P, Xue X, Zhang L, Zhao KN. Characterization of Episomal Replication of Bovine Papillomavirus Type 1 DNA in Long-Term Virion-Infected Saccharomyces Cerevisiae Culture. Virol Sin 2021; 36:1492-1502. [PMID: 34460066 PMCID: PMC8692549 DOI: 10.1007/s12250-021-00439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that bovine papillomavirus type 1 (BPV-1) DNA can replicate its genome and produce infectious virus-like particles in short term virion-infected S. cerevisiae (budding yeast) cultures (Zhao and Frazer 2002, Journal of Virology, 76:3359–64 and 76:12265–73). Here, we report the episomal replications of BPV-1 DNA in long term virion-infected S. cerevisiae culture up to 108 days. Episomal replications of the BPV-1 DNA could be divided into three patterns at three stages, early active replication (day 3–16), middle weak replication (day 23–34/45) and late stable replication (day 45–82). Two-dimensional gel electrophoresis analysis and Southern blot hybridization have revealed further that multiple replication intermediates of BPV-1 DNA including linear form, stranded DNA, monomers and higher oligomers were detected in the virion-infected yeast cells over the time course. Higher oligomers shown as covalently closed circular DNAs (cccDNAs) are the most important replication intermediates that serve as the main nuclear transcription template for producing all viral RNAs in the viral life cycle. In this study, the cccDNAs were generated at the early active replication stage with the highest frequencies and then at late stable replication, but they appeared to be suppressed at the middle weak replication. Our data provided a novel insight that BPV-1 genomic DNA could replicate episomally for the long period and produce the key replication intermediates cccDNAs in S. cerevisiae system.
Collapse
Affiliation(s)
- Quanmei Tu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Weixu Feng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhuo Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qijia Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kong-Nan Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China. .,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, 4067, Australia.
| |
Collapse
|
14
|
Xie J, Zhang P, Crite M, Lindsay CV, DiMaio D. Retromer stabilizes transient membrane insertion of L2 capsid protein during retrograde entry of human papillomavirus. SCIENCE ADVANCES 2021; 7:eabh4276. [PMID: 34193420 PMCID: PMC11057781 DOI: 10.1126/sciadv.abh4276] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Retromer, a cellular protein trafficking complex, sorts human papillomaviruses (HPVs) into the retrograde pathway for transport of HPV to the nucleus during virus entry. Here, we conducted a protein modulation screen to isolate four artificial transmembrane proteins called traptamers that inhibit different steps of HPV entry. By analyzing cells expressing pairs of traptamers, we ordered the trafficking steps during entry into a coherent pathway. One traptamer stimulates ubiquitination of the L2 capsid protein or associated proteins and diverts incoming virus to the lysosome, whereas the others act downstream by preventing sequential passage of the virus through retrograde compartments. Complex genetic interactions between traptamers revealed that a cell-penetrating peptide (CPP) on L2 mediates transient insertion of L2 into the endosome membrane, which is stabilized by retromer-L2 binding. These results define the retrograde entry route taken by HPV and show that retromer can play a role in CPP-mediated membrane insertion.
Collapse
Affiliation(s)
- Jian Xie
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA
| | - Pengwei Zhang
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA
| | - Mac Crite
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06519 USA
| | - Christina V Lindsay
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA.
- Department of Therapeutic Radiology, Yale School of Medicine, PO Box 208040, New Haven, CT 06520-8040 USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, PO Box 208024, New Haven, CT 06520-8024 USA
- Yale Cancer Center, PO Box 208028, New Haven, CT 06520-8028 USA
| |
Collapse
|
15
|
Abstract
Human papillomavirus (HPV) infection is a multi-step process that implies complex interactions of the viral particles with cellular proteins. The HPV capsid includes the two structural proteins L1 and L2, that play crucial roles on infectious viral entry. L2 is particularly relevant for the intracellular trafficking of the viral DNA towards the nucleus. Here, using proteomic studies we identified CCT proteins as novel interaction partners of HPV-16 L2. The CCT multimeric complex is an essential chaperonin which interacts with a large number of protein targets. We analysed the binding of different components of the CCT complex to L2. We confirmed the interaction of this structural viral protein with the CCT subunit 3 (CCT3) and we found that this interaction requires the N-terminal region of L2. Defects in HPV-16 pseudoviral particle (PsVs) infection were revealed by siRNA-mediated knockdown of some CCT subunits. While a substantial drop in the viral infection was associated with the ablation of CCT component 2, even more pronounced effects on infectivity were observed upon depletion of CCT component 3. Using confocal immunofluorescence assays, CCT3 co-localised with HPV PsVs at early times after infection, with L2 being required for this to occur. Further analysis showed the colocalization of several other subunits of CCT with the PsVs. Moreover, we observed a defect in capsid uncoating and a change in PsVs intracellular normal processing when ablating CCT3. Taken together, these studies demonstrate the importance of CCT chaperonin during HPV infectious entry.ImportanceSeveral of the mechanisms that function during the infection of target cells by HPV particles have been previously described. However, many aspects of this process remain unknown. In particular, the role of cellular proteins functioning as molecular chaperones during HPV infections has been only partially investigated. To the best of our knowledge, we describe here for the first time, a requirement of the CCT chaperonin for HPV infection. The role of this cellular complex seems to be determined by the binding of its component 3 to the viral structural protein L2. However, CCT's effect on HPV infection most probably comprises the whole chaperonin complex. Altogether, these studies define an important role for the CCT chaperonin in the processing and intracellular trafficking of HPV particles and in subsequent viral infectious entry.
Collapse
|
16
|
Chandra M, Kendall AK, Jackson LP. Toward Understanding the Molecular Role of SNX27/Retromer in Human Health and Disease. Front Cell Dev Biol 2021; 9:642378. [PMID: 33937239 PMCID: PMC8083963 DOI: 10.3389/fcell.2021.642378] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Aberrations in membrane trafficking pathways have profound effects in cellular dynamics of cellular sorting processes and can drive severe physiological outcomes. Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-FERM domain family and is required for endosomal recycling of many important transmembrane receptors. Multiple studies have shown SNX27-mediated recycling requires association with retromer, one of the best-known regulators of endosomal trafficking. SNX27/retromer downregulation is strongly linked to Down's Syndrome (DS) via glutamate receptor dysfunction and to Alzheimer's Disease (AD) through increased intracellular production of amyloid peptides from amyloid precursor protein (APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel trafficking, and its over-expression is linked to tumorigenesis, cancer progression, and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer is vital for normal cellular function to prevent human diseases. The role of SNX27 in regulating cargo recycling from endosomes to the cell surface is firmly established, but how SNX27 assembles with retromer to generate tubulovesicular carriers remains elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent neurodegenerative disease is now an emerging area of study. This review will provide an update on our molecular understanding of endosomal trafficking events mediated by the SNX27/retromer complex on endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
17
|
Yong X, Mao L, Shen X, Zhang Z, Billadeau DD, Jia D. Targeting Endosomal Recycling Pathways by Bacterial and Viral Pathogens. Front Cell Dev Biol 2021; 9:648024. [PMID: 33748141 PMCID: PMC7970000 DOI: 10.3389/fcell.2021.648024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes are essential cellular stations where endocytic and secretory trafficking routes converge. Proteins transiting at endosomes can be degraded via lysosome, or recycled to the plasma membrane, trans-Golgi network (TGN), or other cellular destinations. Pathways regulating endosomal recycling are tightly regulated in order to preserve organelle identity, to maintain lipid homeostasis, and to support other essential cellular functions. Recent studies have revealed that both pathogenic bacteria and viruses subvert host endosomal recycling pathways for their survival and replication. Several host factors that are frequently targeted by pathogens are being identified, including retromer, TBC1D5, SNX-BARs, and the WASH complex. In this review, we will focus on the recent advances in understanding how intracellular bacteria, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijack host endosomal recycling pathways. This exciting work not only reveals distinct mechanisms employed by pathogens to manipulate host signaling pathways, but also deepens our understanding of the molecular intricacies regulating endosomal receptor trafficking.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Human Papillomavirus 16 L2 Recruits both Retromer and Retriever Complexes during Retrograde Trafficking of the Viral Genome to the Cell Nucleus. J Virol 2021; 95:JVI.02068-20. [PMID: 33177206 DOI: 10.1128/jvi.02068-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies have identified an interaction between the human papillomavirus (HPV) L2 minor capsid protein and sorting nexins 17 and 27 (SNX17 and SNX27) during virus infection. Further studies show the involvement of both retromer and retriever complexes in this process since knockdown of proteins from either complex impairs infection. In this study, we show that HPV L2 and 5-ethynyl-2'-deoxyuridine (EdU)-labeled pseudovirions colocalize with both retromer and retriever, with components of each complex being bound by L2 during infection. We also show that both sorting nexins may interact with either of the recycling complexes but that the interaction between SNX17 and HPV16 L2 is not responsible for retriever recruitment during infection, instead being required for retromer recruitment. Furthermore, we show that retriever recruitment most likely involves a direct interaction between L2 and the C16orf62 subunit of the retriever, in a manner similar to that of its interaction with the VPS35 subunit of retromer.IMPORTANCE Previous studies identified sorting nexins 17 and 27, as well as the retromer complex, as playing a role in HPV infection. This study shows that the newly identified retriever complex also plays an important role and begins to shed light on how both sorting nexins contribute to retromer and retriever recruitment during the infection process.
Collapse
|
19
|
Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, Campos SK. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 2020; 16:e1009028. [PMID: 33253291 PMCID: PMC7728285 DOI: 10.1371/journal.ppat.1009028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.
Collapse
Affiliation(s)
- Brittany L. Uhlorn
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Robert Jackson
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Shuaizhi Li
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Shauna M. Bratton
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
20
|
Das D, Bristol ML, Pichierri P, Morgan IM. Using a Human Papillomavirus Model to Study DNA Replication and Repair of Wild Type and Damaged DNA Templates in Mammalian Cells. Int J Mol Sci 2020; 21:E7564. [PMID: 33066318 PMCID: PMC7589113 DOI: 10.3390/ijms21207564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomaviruses have 8kbp DNA episomal genomes that replicate autonomously from host DNA. During initial infection, the virus increases its copy number to 20-50 copies per cell, causing torsional stress on the replicating DNA. This activates the DNA damage response (DDR) and HPV replicates its genome, at least in part, using homologous recombination. An active DDR is on throughout the HPV life cycle. Two viral proteins are required for replication of the viral genome; E2 binds to 12bp palindromic sequences around the A/T rich origin of replication and recruits the viral helicase E1 via a protein-protein interaction. E1 forms a di-hexameric complex that replicates the viral genome in association with host factors. Transient replication assays following transfection with E1-E2 expression plasmids, along with an origin containing plasmid, allow monitoring of E1-E2 replication activity. Incorporating a bacterial lacZ gene into the origin plasmid allows for the determination of replication fidelity. Here we describe how we exploited this system to investigate replication and repair in mammalian cells, including using damaged DNA templates. We propose that this system has the potential to enhance the understanding of cellular components involved in DNA replication and repair.
Collapse
Affiliation(s)
- Dipon Das
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA; (D.D.); (M.L.B.)
| | - Molly L. Bristol
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA; (D.D.); (M.L.B.)
| | - Pietro Pichierri
- Department of Environment and Health, Istituto Superiore di Sanita’, 00161 Rome, Italy;
| | - Iain M. Morgan
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA; (D.D.); (M.L.B.)
- VCU Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
21
|
Xie J, Zhang P, Crite M, DiMaio D. Papillomaviruses Go Retro. Pathogens 2020; 9:E267. [PMID: 32272661 PMCID: PMC7238053 DOI: 10.3390/pathogens9040267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses are important pathogens responsible for approximately 5% of cancer as well as other important human diseases, but many aspects of the papillomavirus life cycle are poorly understood. To undergo genome replication, HPV DNA must traffic from the cell surface to the nucleus. Recent findings have revolutionized our understanding of HPV entry, showing that it requires numerous cellular proteins and proceeds via a series of intracellular membrane-bound vesicles that comprise the retrograde transport pathway. This paper reviews the evidence supporting this unique entry mechanism with a focus on the crucial step by which the incoming virus particle is transferred from the endosome into the retrograde pathway. This new understanding provides novel insights into basic cellular biology and suggests novel rational approaches to inhibit HPV infection.
Collapse
Affiliation(s)
- Jian Xie
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
| | - Pengwei Zhang
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
| | - Mac Crite
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA;
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, P.O. Box 208024, New Haven, CT 06520-8024, USA
- Yale Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028, USA
| |
Collapse
|
22
|
Cell-penetrating peptide inhibits retromer-mediated human papillomavirus trafficking during virus entry. Proc Natl Acad Sci U S A 2020; 117:6121-6128. [PMID: 32123072 DOI: 10.1073/pnas.1917748117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Virus replication requires critical interactions between viral proteins and cellular proteins that mediate many aspects of infection, including the transport of viral genomes to the site of replication. In human papillomavirus (HPV) infection, the cellular protein complex known as retromer binds to the L2 capsid protein and sorts incoming virions into the retrograde transport pathway for trafficking to the nucleus. Here, we show that short synthetic peptides containing the HPV16 L2 retromer-binding site and a cell-penetrating sequence enter cells, sequester retromer from the incoming HPV pseudovirus, and inhibit HPV exit from the endosome, resulting in loss of viral components from cells and in a profound, dose-dependent block to infection. The peptide also inhibits cervicovaginal HPV16 pseudovirus infection in a mouse model. These results confirm the retromer-mediated model of retrograde HPV entry and validate intracellular virus trafficking as an antiviral target. More generally, inhibiting virus replication with agents that can enter cells and disrupt essential protein-protein interactions may be applicable in broad outline to many viruses.
Collapse
|
23
|
Yadav R, Zhai L, Tumban E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2019; 12:v12010018. [PMID: 31877975 PMCID: PMC7019592 DOI: 10.3390/v12010018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infections worldwide. Ninety percent of infected individuals clear the infection within two years; however, in the remaining 10% of infected individuals, the infection(s) persists and ultimately leads to cancers (anogenital cancers and head and neck cancers) and genital warts. Fortunately, three prophylactic vaccines have been approved to protect against HPV infections. The most recent HPV vaccine, Gardasil-9 (a nonavalent vaccine), protects against seven HPV types associated with ~90% of cervical cancer and against two HPV types associated with ~90% genital warts with little cross-protection against non-vaccine HPV types. The current vaccines are based on virus-like particles (VLPs) derived from the major capsid protein, L1. The L1 protein is not conserved among HPV types. The minor capsid protein, L2, on the other hand, is highly conserved among HPV types and has been an alternative target antigen, for over two decades, to develop a broadly protective HPV vaccine. The L2 protein, unlike the L1, cannot form VLPs and as such, it is less immunogenic. This review summarizes current studies aimed at developing HPV L2 vaccines by multivalently displaying L2 peptides on VLPs derived from bacteriophages and eukaryotic viruses. Recent data show that a monovalent HPV L1 VLP as well as bivalent MS2 VLPs displaying HPV L2 peptides (representing amino acids 17–36 and/or consensus amino acids 69–86) elicit robust broadly protective antibodies against diverse HPV types (6/11/16/18/26/31/33/34/35/39/43/44/45/51/52/53/56/58/59/66/68/73) associated with cancers and genital warts. Thus, VLP-based L2 vaccines look promising and may be favorable, in the near future, over current L1-based HPV vaccines and should be explored further.
Collapse
Affiliation(s)
- Rashi Yadav
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
| | - Lukai Zhai
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Current address: Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Tumban
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Correspondence: ; Tel.: +1-906-487-2256; Fax: +1-906-487-3167
| |
Collapse
|
24
|
Chai Z, Yang Y, Gu Z, Cai X, Ye W, Kong L, Qiu X, Ying L, Wang Z, Wang L. Recombinant Viral Capsid Protein L2 (rVL2) of HPV 16 Suppresses Cell Proliferation and Glucose Metabolism via ITGB7/C/EBPβ Signaling Pathway in Cervical Cancer Cell Lines. Onco Targets Ther 2019; 12:10415-10425. [PMID: 31819523 PMCID: PMC6890187 DOI: 10.2147/ott.s228631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Capsid protein L2 is the minor capsid protein of human papillomavirus 16 (HPV16). Although L2-based vaccines were developed, the therapeutic effect of recombinant viral capsid protein L2 (rVL2) was still to be illustrated. Methods We used glucose uptake and lactate production assay to verify the inhibitory effect of rVL2 on the glucose metabolism in cervical cancer cells. Secondly, we performed gene-chip assay, RT-PCR, and Western blot to determine the role of ITGB7/C/EBPβ signaling pathway in rVL2-mediated glucose metabolism in vitro. Finally, we used an animal model to verify the function of rVL2 in cervical cancer. Results We found that rVL2 reduced glucose uptake and lactate production levels in cervical cancer cells, which caused the inhibition of cell proliferation. rVL2 decreased the expression levels of key metabolic enzymes, including GLUT1, LDHA, and ALDOA, to affect cell metabolism in cervical cancer cells by inhibiting ITGB7/C/EBPβ signaling pathway in vitro and in vivo. Conclusion These results demonstrated the vital role of rVL2 in the glycolysis-induced cell growth and proliferation via suppressing ITGB7/C/EBPβ signaling axis.
Collapse
Affiliation(s)
- Zhihong Chai
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Yufei Yang
- Department of Obstetrics and Gynecology, Xihua Hospital Affiliated to Shanghai Jiaotong University School Medicine, Shanghai 200092, People's Republic of China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - ZhongYi Gu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai 201102, People's Republic of China
| | - Xianli Cai
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Wenwei Ye
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Lin Kong
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Xiaoxiao Qiu
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Lingxiao Ying
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Ziliang Wang
- Department of Obstetrics and Gynecology, Xihua Hospital Affiliated to Shanghai Jiaotong University School Medicine, Shanghai 200092, People's Republic of China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Linyou Wang
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| |
Collapse
|
25
|
Li S, Bronnimann MP, Williams SJ, Campos SK. Glutathione contributes to efficient post-Golgi trafficking of incoming HPV16 genome. PLoS One 2019; 14:e0225496. [PMID: 31743367 PMCID: PMC6863556 DOI: 10.1371/journal.pone.0225496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted pathogen in the United States, causing 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires transport of the viral genome (vDNA) into the nucleus of basal keratinocytes. During this process, minor capsid protein L2 facilitates subcellular retrograde trafficking of the vDNA from endosomes to the Golgi, and accumulation at host chromosomes during mitosis for nuclear retention and localization during interphase. Here we investigated the relationship between cellular glutathione (GSH) and HPV16 infection. siRNA knockdown of GSH biosynthetic enzymes results in a partial decrease of HPV16 infection. Likewise, infection of HPV16 in GSH depleted keratinocytes is inefficient, an effect that was not seen with adenoviral vectors. Analysis of trafficking revealed no defects in cellular binding, entry, furin cleavage of L2, or retrograde trafficking of HPV16, but GSH depletion hindered post-Golgi trafficking and translocation, decreasing nuclear accumulation of vDNA. Although precise mechanisms have yet to be defined, this work suggests that GSH is required for a specific post-Golgi trafficking step in HPV16 infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Spencer J. Williams
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States of America
| | - Samuel K. Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States of America
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
26
|
Gulati NM, Miyagi M, Wiens ME, Smith JG, Stewart PL. α-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Pathog Immun 2019; 4:196-234. [PMID: 31583330 PMCID: PMC6755940 DOI: 10.20411/pai.v4i2.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Human papillomavirus (HPV) is linked to nearly all cases of cervical cancer. Despite available vaccines, a deeper understanding of the immune response to HPV is needed. Human α-defensin 5 (HD5), an innate immune effector peptide, blocks infection of multiple sero-types of HPV, including high-risk HPV16. While a common mechanism of α-defensin anti-viral activity against nonenveloped viruses such as HPV has emerged, there is limited understanding of how α-defensins bind to viral capsids to block infection. Methods: We have used cryo-electron microscopy (cryoEM), mass spectrometry (MS) crosslinking and differential lysine modification studies, and molecular dynamics (MD) simulations to probe the interaction of HPV16 pseudovirions (PsVs) with HD5. Results: CryoEM single particle reconstruction did not reveal HD5 density on the capsid surface. Rather, increased density was observed under the capsid shell in the presence of HD5. MS studies indicate that HD5 binds near the L1 and L2 capsid proteins and specifically near the C-terminal region of L1. MD simulations indicate that favorable electrostatic interactions can be formed between HD5 and the L1 C-terminal tail. Conclusions: A model is presented for how HD5 affects HPV16 structure and cell entry. In this model, HD5 binds to disordered regions of L1 and L2 protruding from the icosahedrally ordered capsid. HD5 acts to cement interactions between L1 and L2 and leads to a closer association of the L2/genome core with the L1 capsid. This model provides a structural rationale for our prior observation that HD5 interferes with the separation of L1 from the L2/genome complex during cell entry. Graphical Abstract
Collapse
Affiliation(s)
- Neetu M Gulati
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Mayim E Wiens
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
27
|
Yan H, Foo SS, Chen W, Yoo JS, Shin WJ, Wu C, Jung JU. Efficient Inhibition of Human Papillomavirus Infection by L2 Minor Capsid-Derived Lipopeptide. mBio 2019; 10:e01834-19. [PMID: 31387913 PMCID: PMC6686047 DOI: 10.1128/mbio.01834-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
The amino (N)-terminal region of human papillomavirus (HPV) minor capsid protein (L2) is a highly conserved region which is essential for establishing viral infection. Despite its importance in viral infectivity, the role of the HPV N-terminal domain has yet to be fully characterized. Using fine mapping analysis, we identified a 36-amino-acid (aa) peptide sequence of the L2 N terminus, termed L2N, that is critical for HPV infection. Ectopic expression of L2N with the transmembrane sequence on the target cell surface conferred resistance to HPV infection. Additionally, L2N peptide with chemical or enzymatic lipidation at the carboxyl (C) terminus efficiently abrogated HPV infection in target cells. Among the synthetic L2N lipopeptides, a stearoylated lipopeptide spanning aa 13 to 46 (13-46st) exhibited the most potent anti-HPV activity, with a half-maximal inhibitory concentration (IC50) of ∼200 pM. Furthermore, we demonstrated that the 13-46st lipopeptide inhibited HPV entry by blocking trans-Golgi network retrograde trafficking of virion particles, leading to rapid degradation. Fundamentally, the inhibitory effect of L2N lipopeptides appeared to be evolutionarily conserved, as they showed cross-type inhibition among various papillomaviruses. In conclusion, our findings provide new insights into the critical role of the L2N sequence in the HPV entry mechanism and identify the therapeutic potential of L2N lipopeptide as an effective anti-HPV agent.IMPORTANCE HPV is a human oncogenic virus that causes a major public health problem worldwide, which is responsible for approximately 5% of total human cancers and almost all cases of cervical cancers. HPV capsid consists of two structure proteins, the major capsid L1 protein and the minor capsid L2 protein. While L2 plays critical roles during the viral life cycle, the molecular mechanism in viral entry remains elusive. Here, we performed fine mapping of the L2 N-terminal region and defined a short 36-amino-acid peptide, called L2N, which is critical for HPV infection. Specifically, L2N peptide with carboxyl-terminal lipidation acted as a potent and cross-type HPV inhibitor. Taken together, data from our study highlight the essential role of the L2N sequence at the early step of HPV entry and suggests the L2N lipopeptide as a new strategy to broadly prevent HPV infection.
Collapse
Affiliation(s)
- Huan Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Suan-Sin Foo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiqiang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christine Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
28
|
Human Papillomavirus 16 Capsids Mediate Nuclear Entry during Infection. J Virol 2019; 93:JVI.00454-19. [PMID: 31092566 DOI: 10.1128/jvi.00454-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious human papillomavirus 16 (HPV16) L1/L2 pseudovirions were found to remain largely intact during vesicular transport to the nucleus. By electron microscopy, capsids with a diameter of 50 nm were clearly visible within small vesicles attached to mitotic chromosomes and to a lesser extent within interphase nuclei, implying nuclear disassembly. By confocal analysis, it was determined that nuclear entry of assembled L1 is dependent upon the presence of the minor capsid protein, L2, but independent of encapsidated DNA. We also demonstrate that L1 nuclear localization and mitotic chromosome association can occur in vivo in the murine cervicovaginal challenge model of HPV16 infection. These findings challenge the prevailing concepts of PV uncoating and disassembly. More generally, they document that a largely intact viral capsid can enter the nucleus within a transport vesicle, establishing a novel mechanism by which a virus accesses the nuclear cellular machinery.IMPORTANCE Papillomaviruses (PVs) comprise a large family of nonenveloped DNA viruses that include HPV16, among other oncogenic types, the causative agents of cervical cancer. Delivery of the viral DNA into the host cell nucleus is necessary for establishment of infection. This was thought to occur via a subviral complex following uncoating of the larger viral capsid. In this study, we demonstrate that little disassembly of the PV capsid occurs prior to nuclear delivery. These surprising data reveal a previously unrecognized viral strategy to access the nuclear replication machinery. Understanding viral entry mechanisms not only increases our appreciation of basic cell biological pathways but also may lead to more effective antiviral interventions.
Collapse
|
29
|
The Host-Microbe Interplay in Human Papillomavirus-Induced Carcinogenesis. Microorganisms 2019; 7:microorganisms7070199. [PMID: 31337018 PMCID: PMC6680694 DOI: 10.3390/microorganisms7070199] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Every year nearly half a million new cases of cervix cancer are diagnosed worldwide, making this malignancy the fourth commonest cancer in women. In 2018, more than 270,000 women died of cervix cancer globally with 85% of them being from developing countries. The majority of these cancers are caused by the infection with carcinogenic strains of human papillomavirus (HPV), which is also causally implicated in the development of other malignancies, including cancer of the anus, penis cancer and head and neck cancer. HPV is by far the most common sexually transmitted infection worldwide, however, most infected people do not develop cancer and do not even have a persistent infection. The development of highly effective HPV vaccines against most common high-risk HPV strains is a great medical achievement of the 21st century that could prevent up to 90% of cervix cancers. In this article, we review the current understanding of the balanced virus-host interaction that can lead to either virus elimination or the establishment of persistent infection and ultimately malignant transformation. We also highlight the influence of certain factors inherent to the host, including the immune status, genetic variants and the coexistence of other microbe infections and microbiome composition in the dynamic of HPV infection induced carcinogenesis.
Collapse
|
30
|
Broniarczyk J, Massimi P, Pim D, Bergant Marušič M, Myers MP, Garcea RL, Banks L. Phosphorylation of Human Papillomavirus Type 16 L2 Contributes to Efficient Virus Infectious Entry. J Virol 2019; 93:e00128-19. [PMID: 30996086 PMCID: PMC6580975 DOI: 10.1128/jvi.00128-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/05/2019] [Indexed: 01/10/2023] Open
Abstract
The human papillomavirus (HPV) capsid comprises two viral proteins, L1 and L2, with the L2 component being essential to ensure efficient endocytic transport of incoming viral genomes. Several studies have previously reported that L1 and L2 are posttranslationally modified, but it is uncertain whether these modifications affect HPV infectious entry. Using a proteomic screen, we identified a highly conserved phospho-acceptor site on the HPV-16 and bovine papillomavirus 1 (BPV-1) L2 proteins. The phospho-modification of L2 and its presence in HPV pseudovirions (PsVs) were confirmed using anti-phospho-L2-specific antibodies. Mutation of the phospho-acceptor sites of both HPV-16 and BPV-1 L2 resulted in the production of infectious virus particles, with no differences in efficiencies of packaging the reporter DNA. However, these mutated PsVs showed marked defects in infectious entry. Further analysis revealed a defect in uncoating, characterized by a delay in the exposure of a conformational epitope on L1 that indicates capsid uncoating. This uncoating defect was accompanied by a delay in the proteolysis of both L1 and L2 in mutated HPV-16 PsVs. Taken together, these studies indicate that phosphorylation of L2 during virus assembly plays an important role in optimal uncoating of virions during infection, suggesting that phosphorylation of the viral capsid proteins contributes to infectious entry.IMPORTANCE The papillomavirus L2 capsid protein plays an essential role in infectious entry, where it directs the successful trafficking of incoming viral genomes to the nucleus. However, nothing is known about how potential posttranslational modifications may affect different aspects of capsid assembly or infectious entry. In this study, we report the first phospho-specific modification of the BPV-1 and HPV-16 L2 capsid proteins. The phospho-acceptor site is very highly conserved across multiple papillomavirus types, indicating a highly conserved function within the L2 protein and the viral capsid. We show that this modification plays an essential role in infectious entry, where it modulates susceptibility of the incoming virus to capsid disassembly. These studies therefore define a completely new means of regulating the papillomavirus L2 proteins, a regulation that optimizes endocytic processing and subsequent completion of the infectious entry pathway.
Collapse
Affiliation(s)
- Justyna Broniarczyk
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Paola Massimi
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - David Pim
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Michael P Myers
- Protein Networks, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Robert L Garcea
- BioFrontiers Institute and the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
31
|
Bugnon Valdano M, Pim D, Banks L. Choosing the right path: membrane trafficking and infectious entry of small DNA tumor viruses. Curr Opin Cell Biol 2019; 59:112-120. [PMID: 31128386 DOI: 10.1016/j.ceb.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 01/27/2023]
Abstract
To infect mammalian cells, all infectious viruses must cross a common set of biophysical membrane barriers to gain access to the cell. The virus capsid proteins attach to a host cell, become endocytosed, and traffic the viral genome to sites of replication. To do this they must interact with the membrane-confined organelles that control endocytosis, endosomal sorting, processing, and degradation of biological molecules. In this review, we highlight some recent advances in our understanding of the mechanisms that small non-enveloped DNA tumor viruses, such as Human Papillomavirus (HPV) and Polyomaviruses (PyV) employ to attain infectious entry. These viruses exploit different pathways to mediate entry, uncoating and subsequent transport to the nucleus via the Trans Golgi Network (TGN) or the Endoplasmic Reticulum (ER). Understanding how the viral capsid proteins interact with cellular membranous organelles sheds light on the novel ways by which viruses can hi-jack endocytic transport pathways and provides unique insights into how the highly complex machinery controlling cargo fate determination is regulated within the cell.
Collapse
Affiliation(s)
- Marina Bugnon Valdano
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy
| | - David Pim
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy.
| |
Collapse
|
32
|
Mikuličić S, Finke J, Boukhallouk F, Wüstenhagen E, Sons D, Homsi Y, Reiss K, Lang T, Florin L. ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. eLife 2019; 8:44345. [PMID: 31107240 PMCID: PMC6557631 DOI: 10.7554/elife.44345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/17/2019] [Indexed: 01/23/2023] Open
Abstract
Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway by the shedding of growth factors which triggers the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jérôme Finke
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Fatima Boukhallouk
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Elena Wüstenhagen
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dominik Sons
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yahya Homsi
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Karina Reiss
- Department of Dermatology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
33
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Breiner B, Preuss L, Roos N, Conrady M, Lilie H, Iftner T, Simon C. Refolding and in vitro characterization of human papillomavirus 16 minor capsid protein L2. Biol Chem 2019; 400:513-522. [PMID: 30375341 DOI: 10.1515/hsz-2018-0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 01/31/2023]
Abstract
The minor capsid protein L2 of papillomaviruses exhibits multiple functions during viral entry including membrane interaction. Information on the protein is scarce, because of its high tendency of aggregation. We determined suitable conditions to produce a functional human papillomavirus (HPV) 16 L2 protein and thereby provide the opportunity for extensive in vitro analysis with respect to structural and biochemical information on L2 proteins and mechanistic details in viral entry. We produced the L2 protein of high-risk HPV 16 in Escherichia coli as inclusion bodies and purified the protein under denaturing conditions. A successive buffer screen resulted in suitable conditions for the biophysical characterization of 16L2. Analytical ultracentrifugation of the refolded protein showed a homogenous monomeric species. Furthermore, refolded 16L2 shows secondary structure elements. The N-terminal region including the proposed transmembrane region of 16L2 shows alpha-helical characteristics. However, overall 16L2 appears largely unstructured. Refolded 16L2 is capable of binding to DNA indicating that the putative DNA-binding regions are accessible in refolded 16L2. Further the refolded protein interacts with liposomal membranes presumably via the proposed transmembrane region at neutral pH without structural changes. This indicates that 16L2 can initially interact with membranes via pre-existing structural features.
Collapse
Affiliation(s)
- Bastian Breiner
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Laura Preuss
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Nora Roos
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Marcel Conrady
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 03, D-06120, Halle/Saale, Germany
| | - Thomas Iftner
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Claudia Simon
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| |
Collapse
|
35
|
Inoue T, Zhang P, Zhang W, Goodner-Bingham K, Dupzyk A, DiMaio D, Tsai B. γ-Secretase promotes membrane insertion of the human papillomavirus L2 capsid protein during virus infection. J Cell Biol 2018; 217:3545-3559. [PMID: 30006461 PMCID: PMC6168257 DOI: 10.1083/jcb.201804171] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 01/02/2023] Open
Abstract
Despite their importance as human pathogens, entry of human papillomaviruses (HPVs) into cells is poorly understood. The transmembrane protease γ-secretase executes a crucial function during the early stages of HPV infection, but the role of γ-secretase in infection and the identity of its critical substrate are unknown. Here we demonstrate that γ-secretase harbors a previously uncharacterized chaperone function, promoting low pH-dependent insertion of the HPV L2 capsid protein into endosomal membranes. Upon membrane insertion, L2 recruits the cytosolic retromer, which enables the L2 viral genome complex to enter the retrograde transport pathway and traffic to the Golgi en route for infection. Although a small fraction of membrane-inserted L2 is also cleaved by γ-secretase, this proteolytic event appears dispensable for HPV infection. Our findings demonstrate that γ-secretase is endowed with an activity that can promote membrane insertion of L2, thereby targeting the virus to the productive infectious pathway.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Pengwei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Wei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | | | - Allison Dupzyk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
36
|
Zhang P, Monteiro da Silva G, Deatherage C, Burd C, DiMaio D. Cell-Penetrating Peptide Mediates Intracellular Membrane Passage of Human Papillomavirus L2 Protein to Trigger Retrograde Trafficking. Cell 2018; 174:1465-1476.e13. [PMID: 30122350 PMCID: PMC6128760 DOI: 10.1016/j.cell.2018.07.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Cell-penetrating peptides (CPPs) are short protein segments that can transport cargos into cells. Although CPPs are widely studied as potential drug delivery tools, their role in normal cell physiology is poorly understood. Early during infection, the L2 capsid protein of human papillomaviruses binds retromer, a cytoplasmic trafficking factor required for delivery of the incoming non-enveloped virus into the retrograde transport pathway. Here, we show that the C terminus of HPV L2 proteins contains a conserved cationic CPP that drives passage of a segment of the L2 protein through the endosomal membrane into the cytoplasm, where it binds retromer, thereby sorting the virus into the retrograde pathway for transport to the trans-Golgi network. These experiments define the cell-autonomous biological role of a CPP in its natural context and reveal how a luminal viral protein engages an essential cytoplasmic entry factor.
Collapse
Affiliation(s)
- Pengwei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520-8005, USA
| | | | - Catherine Deatherage
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002, USA
| | - Christopher Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520-8005, USA; Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8024, USA; Yale Cancer Center, New Haven, CT 06520-8028, USA.
| |
Collapse
|
37
|
Papillomaviruses and Endocytic Trafficking. Int J Mol Sci 2018; 19:ijms19092619. [PMID: 30181457 PMCID: PMC6163501 DOI: 10.3390/ijms19092619] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Endocytic trafficking plays a major role in transport of incoming human papillomavirus (HPVs) from plasma membrane to the trans Golgi network (TGN) and ultimately into the nucleus. During this infectious entry, several cellular sorting factors are recruited by the viral capsid protein L2, which plays a critical role in ensuring successful transport of the L2/viral DNA complex to the nucleus. Later in the infection cycle, two viral oncoproteins, E5 and E6, have also been shown to modulate different aspects of endocytic transport pathways. In this review, we highlight how HPV makes use of and perturbs normal endocytic transport pathways, firstly to achieve infectious virus entry, secondly to produce productive infection and the completion of the viral life cycle and, finally, on rare occasions, to bring about the development of malignancy.
Collapse
|
38
|
Van Doorslaer K, Chen Z, Bernard HU, Chan PKS, DeSalle R, Dillner J, Forslund O, Haga T, McBride AA, Villa LL, Burk RD. ICTV Virus Taxonomy Profile: Papillomaviridae. J Gen Virol 2018; 99:989-990. [PMID: 29927370 PMCID: PMC6171710 DOI: 10.1099/jgv.0.001105] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023] Open
Abstract
The Papillomaviridae is a family of small, non-enveloped viruses with double-stranded DNA genomes of 5 748 to 8 607 bp. Their classification is based on pairwise nucleotide sequence identity across the L1 open reading frame. Members of the Papillomaviridae primarily infect mucosal and keratinised epithelia, and have been isolated from fish, reptiles, birds and mammals. Despite a long co-evolutionary history with their hosts, some papillomaviruses are pathogens of their natural host species. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Papillomaviridae, which is available at http://www.ictv.global/report/papillomaviridae.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, BIO5 Institute, and the University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hans-Ulrich Bernard
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Paul K. S. Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, USA
| | - Joakim Dillner
- International HPV Reference Center, Department of Laboratory Medicine, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Ola Forslund
- Department of Medical Microbiology, Laboratory Medicine, Lund University, Sölvegatan 23, Sjukhusområdet, 221 85 Lund, Sweden
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, The University of Tokyo, Tokyo, Japan
| | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luisa L. Villa
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert D. Burk
- Departments of Epidemiology and Population Health, Pediatrics, Microbiology and Immunology, and Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - ICTV Report Consortium
- School of Animal and Comparative Biomedical Sciences, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, BIO5 Institute, and the University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, USA
- International HPV Reference Center, Department of Laboratory Medicine, Karolinska Institutet, 14186 Stockholm, Sweden
- Department of Medical Microbiology, Laboratory Medicine, Lund University, Sölvegatan 23, Sjukhusområdet, 221 85 Lund, Sweden
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Universidade de São Paulo, São Paulo, SP, Brazil
- Departments of Epidemiology and Population Health, Pediatrics, Microbiology and Immunology, and Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
39
|
The Myb-related protein MYPOP is a novel intrinsic host restriction factor of oncogenic human papillomaviruses. Oncogene 2018; 37:6275-6284. [PMID: 30018400 PMCID: PMC6265261 DOI: 10.1038/s41388-018-0398-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
Abstract
The skin represents a physical and chemical barrier against invading pathogens, which is additionally supported by restriction factors that provide intrinsic cellular immunity. These factors detect viruses to block their replication cycle. Here, we uncover the Myb-related transcription factor, partner of profilin (MYPOP) as a novel antiviral protein. It is highly expressed in the epithelium and binds to the minor capsid protein L2 and the DNA of human papillomaviruses (HPV), which are the primary causative agents of cervical cancer and other tumors. The early promoter activity and early gene expression of the oncogenic HPV types 16 and 18 is potently silenced by MYPOP. Cellular MYPOP-depletion relieves the restriction of HPV16 infection, demonstrating that MYPOP acts as a restriction factor. Interestingly, we found that MYPOP protein levels are significantly reduced in diverse HPV-transformed cell lines and in HPV-induced cervical cancer. Decades ago it became clear that the early oncoproteins E6 and E7 cooperate to immortalize keratinocytes by promoting degradation of tumor suppressor proteins. Our findings suggest that E7 stimulates MYPOP degradation. Moreover, overexpression of MYPOP blocks colony formation of HPV and non-virally transformed keratinocytes, suggesting that MYPOP exhibits tumor suppressor properties.
Collapse
|
40
|
Elwell C, Engel J. Emerging Role of Retromer in Modulating Pathogen Growth. Trends Microbiol 2018; 26:769-780. [PMID: 29703496 DOI: 10.1016/j.tim.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens have developed elegant mechanisms to modulate host endosomal trafficking. The highly conserved retromer pathway has emerged as an important target of viruses and intravacuolar bacteria. Some pathogens require retromer function to survive. For others, retromer activity restricts intracellular growth; these pathogens must disrupt retromer function to survive. In this review, we discuss recent paradigm changes to the current model for retromer assembly and cargo selection. We highlight how the study of pathogen effectors has contributed to these fundamental insights, with a special focus on the biology and structure of two recently described bacterial effectors, Chlamydia trachomatis IncE and Legionella pneumophila RidL. These two pathogens employ distinct strategies to target retromer components and overcome restriction of intracellular growth imposed by retromer.
Collapse
Affiliation(s)
- Cherilyn Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
McBride AA, Münger K. Expert Views on HPV Infection. Viruses 2018; 10:v10020094. [PMID: 29495253 PMCID: PMC5850401 DOI: 10.3390/v10020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karl Münger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|