1
|
Bello MB, Alsaadi A, Naeem A, Almahboub SA, Bosaeed M, Aljedani SS. Development of nucleic acid-based vaccines against dengue and other mosquito-borne flaviviruses: the past, present, and future. Front Immunol 2025; 15:1475886. [PMID: 39840044 PMCID: PMC11747009 DOI: 10.3389/fimmu.2024.1475886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Due to their widespread geographic distribution and frequent outbreaks, mosquito-borne flaviviruses, such as DENV (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and West Nile virus (WNV), are considered significant global public health threats and contribute to dramatic socioeconomic imbalances worldwide. The global prevalence of these viruses is largely driven by extensive international travels and ecological disruptions that create favorable conditions for the breeding of Aedes and Culex species, the mosquito vectors responsible for the spread of these pathogens. Currently, vaccines are available for only DENV, YFV, and JEV, but these face several challenges, including safety concerns, lengthy production processes, and logistical difficulties in distribution, especially in resource-limited regions, highlighting the urgent need for innovative vaccine approaches. Nucleic acid-based platforms, including DNA and mRNA vaccines, have emerged as promising alternatives due to their ability to elicit strong immune responses, facilitate rapid development, and support scalable manufacturing. This review provides a comprehensive update on the progress of DNA and mRNA vaccine development against mosquito-borne flaviviruses, detailing early efforts and current strategies that have produced candidates with remarkable protective efficacy and strong immunogenicity in preclinical models. Furthermore, we explore future directions for advancing nucleic acid vaccine candidates, which hold transformative potential for enhancing global public health.
Collapse
Affiliation(s)
- Muhammad Bashir Bello
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Asif Naeem
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah A. Almahboub
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammad Bosaeed
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Safia S. Aljedani
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Teufel LU, Taks EJM, van Gemert J, Neacsu M, Föhse K, Gillard J, Diavatopoulos DA, de Jonge MI, Netea MG, Joosten LAB, Arts RJW. Interleukin 38 reduces antigen-presentation capacity and antibody production after vaccination. Vaccine 2024; 42:126396. [PMID: 39353267 DOI: 10.1016/j.vaccine.2024.126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms that underpin low vaccine responses, which can lead to inadequate protection against infection, are still partially unclear. Interleukin (IL)-38 is a member of the IL-1 family, expressed by B cells among others, that regulates inflammatory responses. A recent study shows that IL-38 suppresses plasma cell generation and antibody production upon immune activation. We hypothesis that IL-38 affects antigen-presentation capacity of innate immune cells, effecting antibody production. Here, we investigated the effect of recombinant human IL-38 on human peripheral blood mononuclear cells and myeloid-derived DCs regarding cytokine production, phagocytosis, and expression of MCH II and co-stimulatory proteins in vitro, and further relate circulating plasma IL-38 concentrations to antibody responses in a cohort of 75 females aged 18-48 vaccinated with BCG and Tdap-IPV. To this end, we found that IL-38 decreased the expression of HLA-DR, HLA-DM, and CD83 on PBMCs, and CD40 and CD86 on MDDCs. IL-38 further impaired phagocytosis capacity of monocytes. Lastly, antibody production against diphtheria toxoids up to eight months post-vaccination was negatively associated with IL-38 plasma concentrations. These data suggest that IL-38 could dampen the effectiveness of antigen-presentation and phagocytosis, and could therefore modulate the immunogenicity of some vaccine types.
Collapse
Affiliation(s)
- Lisa U Teufel
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther J M Taks
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelle van Gemert
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihaela Neacsu
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Konstantin Föhse
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joshua Gillard
- Laboratory of Medical Immunology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dimitri A Diavatopoulos
- Laboratory of Medical Immunology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Rob J W Arts
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Tan Y, Mu J, Chen J. IL-36 Gamma: A Novel Adjuvant Cytokine Enhancing Protective Immunity Induced by DNA Immunization with TGIST and TGNSM Against Toxoplasma gondii Infection in Mice. Microorganisms 2024; 12:2258. [PMID: 39597646 PMCID: PMC11596725 DOI: 10.3390/microorganisms12112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Toxoplasma gondii can cause congenital infections and abortions in humans. TgIST and TgNSM play critical roles in intracellular cyst formation and chronic infection. However, no studies have explored their potential to induce protective immunity against T. gondii infection. OBJECTIVE To evaluate the immune efficacy of DNA vaccines encoding TgNSM and TgIST genes against T. gondii infection, using the acute and chronic ME49 strain (Type II). METHODS DNA vaccines, including eukaryotic plasmids pVAX-IST and pVAX-NSM, were constructed. A cocktail DNA vaccine combining these two genes was formulated. The expression and immunogenicity were determined using the indirect immunofluorescence assay (IFA). Mice were immunized with DNA vaccines encoding either TgIST or TgNSM, as well as with the cocktail DNA vaccine. Humoral and cellular immune responses were analyzed by detecting antibody levels, cytotoxic T cell (CTL) responses, cytokines, and lymphocyte surface markers. Mouse survival and brain cyst counts were assessed 1 to 2 months post-vaccination in experimental toxoplasmosis models. The adjuvant efficacy of plasmid pVAX-IL-36γ in enhancing DNA vaccine-induced protective immunity was also evaluated. RESULTS DNA immunization with pVAX-IST and pVAX-NSM elicited strong humoral and cellular immune responses, characterized by increased Toxoplasma-specific IgG2a titers, Th1 responses (including production of IFN-γ, IL-2, IL-12p40, and IL-12p70), and cell-mediated activity with elevated frequencies of CD8+ and CD4+ T cells, and CTL responses. This provided significant protective efficacy against acute and chronic T. gondii infection. Mice immunized with the two-gene cocktail (pVAX-IST + pVAX-NSM) showed greater protection than those immunized with single-gene vaccines. Co-administration of the molecular adjuvant pVAX-IL-36γ further enhanced the protective immunity induced by the cocktail DNA vaccine. CONCLUSIONS TgIST and TgNSM induce effective immunity against T. gondii infection, making them promising vaccine candidates against toxoplasmosis. Additionally, IL-36γ is a promising genetic adjuvant that enhances protective immunity in a vaccine setting against T. gondii, and it should be evaluated in strategies against other apicomplexan parasites.
Collapse
Affiliation(s)
| | | | - Jia Chen
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.T.); (J.M.)
| |
Collapse
|
4
|
Keller J, O' Siorain JR, Kündig TM, Mellett M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem Soc Trans 2024; 52:1591-1604. [PMID: 38940747 DOI: 10.1042/bst20230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - James R O' Siorain
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
5
|
Tongmuang N, Krishnan M, Connor V, Crump C, Jensen LE. UL56 Is Essential for Herpes Simplex Virus-1 Virulence In Vivo but Is Dispensable for Induction of Host-Protective Immunity. Vaccines (Basel) 2024; 12:837. [PMID: 39203963 PMCID: PMC11359923 DOI: 10.3390/vaccines12080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) is common and can cause significant disease in humans. Unfortunately, efforts to develop effective vaccines against HSV-1 have so far failed. A detailed understanding of how the virus infects its host and how the host mounts potent immune responses against the virus may inform new vaccine approaches. Here, using a zosteriform mouse model, we examined how the HSV-1 gene UL56 affects the ability of the virus to cause morbidity and generate protective immunity. A UL56 deletion mutant, ΔUL56, was derived from the wild-type HSV-1 strain SC16, alongside a revertant strain in which UL56 was reintroduced in ΔUL56. In vitro, the three virus strains replicated in a similar manner; however, in vivo, only the wild type and the revertant strains caused shingles-like skin lesions and death. Mice previously infected with ΔUL56 became resistant to a lethal challenge with the wild-type SC16. The protective immunity induced by ΔUL56 was independent of IL-1, IL-33, and IL-36 signaling through IL-1RAP. Both skin and intramuscular ΔUL56 inoculation generated protective immunity against a lethal SC16 challenge. After 6 months, female mice remained resistant to infection, while male mice exhibited signs of declining protection. Our data demonstrate that UL56 is important for the ability of HSV-1 to spread within the infected host and that a ∆UL56 strain elicits an effective immune response against HSV-1 despite this loss of virulence. These findings may guide further HSV-1 vaccine development.
Collapse
Affiliation(s)
- Nopprarat Tongmuang
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19104, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19104, USA
| | - Meera Krishnan
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19104, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19104, USA
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Colin Crump
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Liselotte E. Jensen
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19104, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19104, USA
- Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
Zhou Y, Chen J, Bai S, Yang F, Yan R, Song Y, Yang B, Li C, Wang J. Interleukin-36gamma Mediates the In Vitro Activation of CD8 + T Cells from Patients Living with Chronic Human Immunodeficiency Virus-1 Infection. Viral Immunol 2024; 37:24-35. [PMID: 38301135 DOI: 10.1089/vim.2023.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Interleukin-36 (IL-36) signaling plays an important role in promoting CD8+ T cell-mediated antitumor immune responses. The role of IL-36 signaling in CD8+ T cells that are involved in host immune responses during human immunodeficiency virus-1 (HIV-1) infection has not been characterized. Sixty-one patients living with chronic HIV-1 infection and 23 controls were enrolled in this study. The levels of IL-36 cytokine family members were measured by enzyme-linked immunosorbent assay. Purified CD8+ T cells were stimulated with recombinant IL-36gamma (1 or 10 ng/mL). The expression of inhibitory receptors, the secretion of cytotoxic molecules and interferon-gamma, and the mRNA levels of apoptosis-related ligands were assessed to evaluate the effect of IL-36gamma on CD8+ T cell function in vitro. There were no significant differences in IL-36alpha, IL-36beta, or IL-36 receptor antagonist levels between patients living with chronic HIV-1 infection and controls. Plasma IL-36gamma levels were reduced in patients living with chronic HIV-1 infection. Perforin, granzyme B, and granulysin secretion, as well as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) mRNA expression, but not programmed death-1 (PD-1) or cytotoxic T lymphocyte-associated protein-4 (CTLA-4) expression was downregulated in CD8+ T cells from patients living with chronic HIV-1 infection. The addition of both 1 and 10 ng/mL IL-36gamma enhanced perforin, granzyme B, granulysin, and interferon-gamma secretion by CD8+ T cells without affecting PD-1/CTLA-4 or TRAIL/FasL mRNA expression in CD8+ T cells from patients living with chronic HIV-1 infection. The addition of 1 ng/mL IL-36gamma also promoted perforin and granzyme B secretion by HIV-1-specific CD8+ T cells from patients living with chronic HIV-1 infection. The reduced IL-36gamma levels in patients living with chronic HIV-1 infection might be insufficient for the activation of CD8+ T cells, leading to CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yingquan Zhou
- Department of Infectious Diseases, Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Jijun Chen
- Institute for STD and AIDS Prevention and Control, Lanzhou Center for Disease Control and Prevention, Lanzhou, China
| | - Shaoli Bai
- Department of Infectious Diseases, Lanzhou Pulmonary Hospital, Lanzhou, China
- Department of Internal Medicine, Gansu Province Hospital Rehabilitation Center, Lanzhou, China
| | - Fan Yang
- Department of Infectious Diseases, Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Ruqing Yan
- Department of Infectious Diseases, Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Yanjun Song
- Department of Infectious Diseases, Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Binfa Yang
- Department of Infectious Diseases, Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Chao Li
- Department of Infectious Diseases, Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Jianyun Wang
- Department of Infectious Diseases, Gansu Province Hospital Rehabilitation Center, Lanzhou, China
| |
Collapse
|
7
|
D’Alise AM, Nocchi L, Garzia I, Seclì L, Infante L, Troise F, Cotugno G, Allocca S, Romano G, Lahm A, Leoni G, Sasso E, Scarselli E, Nicosia A. Adenovirus Encoded Adjuvant (AdEnA) anti-CTLA-4, a novel strategy to improve Adenovirus based vaccines against infectious diseases and cancer. Front Immunol 2023; 14:1156714. [PMID: 37180141 PMCID: PMC10169702 DOI: 10.3389/fimmu.2023.1156714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Luigia Infante
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | | | | | | | | | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| | | | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| |
Collapse
|
8
|
The role of IL-36 subfamily in intestinal disease. Biochem Soc Trans 2022; 50:223-230. [PMID: 35166319 DOI: 10.1042/bst20211264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Interleukin (IL)-36 is a subfamily, of the IL-1 super-family and includes IL-36α, IL-36β, IL-36γ, IL-38 and IL-36Ra. IL-36 cytokines are involved in the pathology of multiple tissues, including skin, lung, oral cavity, intestine, kidneys and joints. Recent studies suggest that IL-36 signaling regulates autoimmune disease in addition to antibacterial and antiviral responses. Most research has focused on IL-36 in skin diseases such as psoriasis, however, studies on intestinal diseases are also underway. This review outlines what is known about the bioactivity of the IL-36 subfamily and its role in the pathogenesis of intestinal diseases such as inflammatory bowel disease, colorectal cancer, gut dysbacteriosis and infection, and proposes that IL-36 may be a target for novel therapeutic strategies to prevent or treat intestinal diseases.
Collapse
|
9
|
Ye J, Li R, Yang Y, Dong W, Wang Y, Wang H, Sun T, Li L, Shen Q, Qin C, Xu X, Liao H, Jin Y, Xia X, Liu Y. Comparative colloidal stability, antitumor efficacy, and immunosuppressive effect of commercial paclitaxel nanoformulations. J Nanobiotechnology 2021; 19:199. [PMID: 34225762 PMCID: PMC8256566 DOI: 10.1186/s12951-021-00946-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background Standard chemotherapy with taxanes, such as paclitaxel (PTX), remains the mainstay of systemic treatment of triple-negative breast cancer. Nanotechnology-based formulations have gradually replaced PTX injection and are widely used in China. However, no studies have compared the colloidal stability, antitumor efficacy, and safety of commercial PTX nanoformulations. Additionally, the desire to evaluate preclinical antitumor efficacy in human-derived tumor cells led to the widespread application of immunodeficient mouse models that likely contributed to the neglect of nanomedicines-immune system interactions. The present study investigated the colloidal stability, antitumor efficacy and safety, and nanomedicines-host immune system interactions of PTX nanoformulations. A further comparative analysis was performed to evaluate the clinical potential. Results Compared with liposome, PTX emulsion and PTX nanoparticle exhibited favorable colloidal stability. PTX emulsion was superior in inducing apoptosis and had a more pronounced inhibitory effect on 4T1-tumor spheroids compared with PTX liposome and PTX nanoparticle. Although PTX emulsion exhibited superior in vitro antitumor effect, no significant differences in the in vivo antitumor efficacy were found among the three types of PTX nanoformulations in an immunocompetent orthotopic 4T1 murine triple-negative breast cancer model. All PTX nanoformulations at maximum tolerated dose (MTD) induced lymphopenia and immunosuppression, as evidenced by the reduction of T cell subpopulations and inhibition of the dendritic cells maturation. Conclusions The MTD PTX nanomedicines-induced lymphopenia and immunosuppression may weaken the lymphocyte-mediated antitumor cellular immune response and partly account for the lack of differences in the in vivo antitumor outcomes of PTX nanoformulations. Understanding of what impacts PTX nanomedicines has on the immune system may be critical to improve the design and conduct of translational research of PTX nanomedicines in monotherapy or combination therapy with immunotherapy. Graphic abstract ![]()
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Renjie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yujie Wang
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Tong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qiqi Shen
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Caiyun Qin
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Xiaoyan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yiqun Jin
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Yi P, Liang Y. The Role of IL-36 in Infectious Diseases: Potential Target for COVID-19? Front Immunol 2021; 12:662266. [PMID: 34054828 PMCID: PMC8155493 DOI: 10.3389/fimmu.2021.662266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
DNA Vaccine Development at Pre- and Post-Operation Warp Speed. Vaccines (Basel) 2020; 8:vaccines8040737. [PMID: 33291723 PMCID: PMC7761981 DOI: 10.3390/vaccines8040737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
DNA is a rapidly developing vaccine platform for combatting cancer, infectious and noninfectious diseases [...].
Collapse
|
12
|
Xu Z, Patel A, Tursi NJ, Zhu X, Muthumani K, Kulp DW, Weiner DB. Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:571030. [PMID: 35047878 PMCID: PMC8757735 DOI: 10.3389/fmedt.2020.571030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
DNA vaccines are considered as a third-generation vaccination approach in which antigenic materials are encoded as DNA plasmids for direct in vivo production to elicit adaptive immunity. As compared to other platforms, DNA vaccination is considered to have a strong safety profile, as DNA plasmids neither replicate nor elicit vector-directed immune responses in hosts. While earlier work found the immune responses induced by DNA vaccines to be sub-optimal in larger mammals and humans, recent developments in key synthetic DNA and electroporation delivery technologies have now allowed DNA vaccines to elicit significantly more potent and consistent responses in several clinical studies. This paper will review findings from the recent clinical and preclinical studies on DNA vaccines targeting emerging infectious diseases (EID) including COVID-19 caused by the SARS-CoV-2 virus, and the technological advancements pivotal to the improved responses-including the use of the advanced delivery technology, DNA-encoded cytokine/mucosal adjuvants, and innovative concepts in immunogen design. With continuous advancement over the past three decades, the DNA approach is now poised to develop vaccines against COVID-19, as well as other EIDs.
Collapse
Affiliation(s)
- Ziyang Xu
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ami Patel
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Nicholas J. Tursi
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Xizhou Zhu
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Kar Muthumani
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Daniel W. Kulp
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - David B. Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
13
|
Thorne AH, Malo KN, Wong AJ, Nguyen TT, Cooch N, Reed C, Yan J, Broderick KE, Smith TRF, Masteller EL, Humeau L. Adjuvant Screen Identifies Synthetic DNA-Encoding Flt3L and CD80 Immunotherapeutics as Candidates for Enhancing Anti-tumor T Cell Responses. Front Immunol 2020; 11:327. [PMID: 32161596 PMCID: PMC7052369 DOI: 10.3389/fimmu.2020.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Overcoming tolerance to tumor-associated antigens remains a hurdle for cancer vaccine-based immunotherapy. A strategy to enhance the anti-tumor immune response is the inclusion of adjuvants to cancer vaccine protocols. In this report, we generated and systematically screened over twenty gene-based molecular adjuvants composed of cytokines, chemokines, and T cell co-stimulators for the ability to increase anti-tumor antigen T cell immunity. We identified several robust adjuvants whose addition to vaccine formulations resulted in enhanced T cell responses targeting the cancer antigens STEAP1 and TERT. We further characterized direct T cell stimulation through CD80-Fc and indirect T cell targeting via the dendritic cell activator Flt3L-Fc. Mechanistically, intramuscular delivery of Flt3L-Fc into mice was associated with a significant increase in infiltration of dendritic cells at the site of administration and trafficking of activated dendritic cells to the draining lymph node. Gene expression analysis of the muscle tissue confirmed a significant up-regulation in genes associated with dendritic cell signaling. Addition of CD80-Fc to STEAP1 vaccine formulation mimicked the engagement provided by DCs and increased T cell responses to STEAP1 by 8-fold, significantly increasing the frequency of antigen-specific cells expressing IFNγ, TNFα, and CD107a for both CD8+ and CD4+ T cells. CD80-Fc enhanced T cell responses to multiple tumor-associated antigens including Survivin and HPV, indicating its potential as a universal adjuvant for cancer vaccines. Together, the results of our study highlight the adjuvanting effect of T cell engagement either directly, CD80-Fc, or indirectly, Flt3L-Fc, for cancer vaccines.
Collapse
Affiliation(s)
| | | | - Ashley J. Wong
- Inovio Pharmaceuticals Inc., San Diego, CA, United States
| | | | - Neil Cooch
- Inovio Pharmaceuticals Inc., Plymouth, PA, United States
| | - Charles Reed
- Inovio Pharmaceuticals Inc., Plymouth, PA, United States
| | - Jian Yan
- Inovio Pharmaceuticals Inc., Plymouth, PA, United States
| | | | | | | | - Laurent Humeau
- Inovio Pharmaceuticals Inc., San Diego, CA, United States,*Correspondence: Laurent Humeau
| |
Collapse
|