1
|
McEwan TBD, De Oliveira DMP, Stares EK, Hartley-Tassell LE, Day CJ, Proctor EJ, Nizet V, Walker MJ, Jennings MP, Sluyter R, Sanderson-Smith ML. M proteins of group A Streptococcus bind hyaluronic acid via arginine-arginine/serine-arginine motifs. FASEB J 2024; 38:e70123. [PMID: 39436142 DOI: 10.1096/fj.202401301r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Tissue injury, including extracellular matrix (ECM) degradation, is a hallmark of group A Streptococcus (GAS) skin infection and is partially mediated by M proteins which possess lectin-like properties. Hyaluronic acid is a glycosaminoglycan enriched in the cutaneous ECM, yet an interaction with M proteins has yet to be explored. This study revealed that hyaluronic acid binding was conserved across phylogenetically diverse M proteins, mediated by RR/SR motifs predominantly localized in the C repeat region. Keratinocyte wound healing was decreased through the recruitment of hyaluronic acid by M proteins in an M type-specific manner. GAS strains 5448 (M1 serotype) and ALAB49 (M53 serotype) also bound hyaluronic acid via M proteins, but hyaluronic acid could increase bacterial adherence independently of M proteins. The identification of host-pathogen mechanisms that affect ECM composition and cell repair responses may facilitate the development of nonantibiotic therapeutics that arrest GAS disease progression in the skin.
Collapse
Affiliation(s)
- Tahnee B-D McEwan
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - David M P De Oliveira
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily K Stares
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Christopher J Day
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Emma-Jayne Proctor
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Mark J Walker
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael P Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ronald Sluyter
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
2
|
Nahar UJ, Wang J, Shalash AO, Lu L, Islam MT, Alharbi N, Koirala P, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Self-assembled monovalent lipidated mannose ligand as a standalone nanoadjuvant. Vaccine 2024; 42:126060. [PMID: 38897890 DOI: 10.1016/j.vaccine.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Subunit vaccines require an immunostimulant (adjuvant) and/or delivery system to induce immunity. However, currently, available adjuvants are either too dangerous in terms of side effects for human use (experimental adjuvants) or have limited efficacy and applicability. In this study, we examined the capacity of mannose-lipopeptide ligands to enhance the immunogenicity of a vaccine consisting of polyleucine(L15)-antigen conjugates anchored to liposomes. The clinically tested Group A Streptococcus (GAS) B-cell epitope, J8, combined with universal T helper PADRE (P) was used as the antigen. Six distinct mannose ligands were incorporated into neutral liposomes carrying L15PJ8. While induced antibody titers were relatively low, the ligand carrying mannose, glycine/lysine spacer, and two palmitic acids as liposomal membrane anchoring moieties (ligand 3), induced significantly higher IgG titers than non-mannosylated liposomes. The IgG titers were significantly enhanced when positively charged liposomes were employed. Importantly, the produced antibodies were able to kill GAS bacteria. Unexpectedly, the physical mixture of only ligand 3 and PJ8 produced self-assembled nanorods that induced antibody titers as high as those elicited by the lead liposomal formulation and antigen adjuvanted with the potent, but toxic, complete Freund's adjuvant (CFA). Antibodies produced upon immunization with PJ8 + 3 were even more opsonic than those induced by CFA + PJ8. Importantly, in contrast to CFA, ligand 3 did not induce observable adverse reactions or excessive inflammatory responses. Thus, we demonstrated that a mannose ligand, alone, can serve as an effective vaccine nanoadjuvant.
Collapse
Affiliation(s)
- Ummey J Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lantian Lu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md T Islam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nedaa Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Rahman NAA, Fuaad AAHA, Azami NAM, Amin MCIM, Azmi F. Next-generation Dengue Vaccines: Leveraging Peptide-Based Immunogens and Advanced Nanoparticles as Delivery Platforms. J Pharm Sci 2024; 113:2044-2054. [PMID: 38761864 DOI: 10.1016/j.xphs.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Dengue, caused by the dengue virus (DENV), is a prevalent arthropod-borne disease in humans and poses a significant burden on public health. Severe cases of dengue can be life-threatening. Although a licensed dengue vaccine is available, its efficacy varies across different virus serotypes and may exacerbate the disease in some seronegative recipients. Developing a safe and effective vaccine against all DENV serotypes remains challenging and requires continued research. Conventional approaches in dengue vaccine development, using live or attenuated microorganisms or parts of them often contain unnecessary epitopes, risking allergenic or autoimmune reactions. To address these challenges, innovative strategies such as peptide vaccines have been explored. Peptide vaccines offer a safer alternative by inducing specific immune responses with minimal immunogenic fragments. Chemical modification strategies of peptides have revolutionized their design, allowing for the incorporation of multi-epitope presentation, self-adjuvanting features, and self-assembling properties. These modifications enhance the antigenicity of the peptides, leading to improved vaccine efficacy. This review outlines advancements in peptide-based dengue vaccine development, leveraging nanoparticles as antigen-displaying platforms. Additionally, key immunological considerations for enhancing efficacy and safety against DENV infection have been addressed, providing insight into the next-generation of dengue vaccine development leveraging on peptide-nanoparticle technology.
Collapse
Affiliation(s)
- Nur Adilah Abdul Rahman
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Abdullah Al-Hadi Ahmad Fuaad
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Federal Territory of Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Tang D, Gueto-Tettay C, Hjortswang E, Ströbaek J, Ekström S, Happonen L, Malmström L, Malmström J. Multimodal Mass Spectrometry Identifies a Conserved Protective Epitope in S. pyogenes Streptolysin O. Anal Chem 2024; 96:9060-9068. [PMID: 38701337 PMCID: PMC11154737 DOI: 10.1021/acs.analchem.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
An important element of antibody-guided vaccine design is the use of neutralizing or opsonic monoclonal antibodies to define protective epitopes in their native three-dimensional conformation. Here, we demonstrate a multimodal mass spectrometry-based strategy for in-depth characterization of antigen-antibody complexes to enable the identification of protective epitopes using the cytolytic exotoxin Streptolysin O (SLO) from Streptococcus pyogenes as a showcase. We first discovered a monoclonal antibody with an undisclosed sequence capable of neutralizing SLO-mediated cytolysis. The amino acid sequence of both the antibody light and the heavy chain was determined using mass-spectrometry-based de novo sequencing, followed by chemical cross-linking mass spectrometry to generate distance constraints between the antibody fragment antigen-binding region and SLO. Subsequent integrative computational modeling revealed a discontinuous epitope located in domain 3 of SLO that was experimentally validated by hydrogen-deuterium exchange mass spectrometry and reverse engineering of the targeted epitope. The results show that the antibody inhibits SLO-mediated cytolysis by binding to a discontinuous epitope in domain 3, likely preventing oligomerization and subsequent secondary structure transitions critical for pore-formation. The epitope is highly conserved across >98% of the characterized S. pyogenes isolates, making it an attractive target for antibody-based therapy and vaccine design against severe streptococcal infections.
Collapse
Affiliation(s)
- Di Tang
- Division
of Infection Medicine, Department of Clinical Sciences, Faculty of
Medicine, Lund University, Klinikgatan 32, 222 42 Lund, Sweden
| | - Carlos Gueto-Tettay
- Division
of Infection Medicine, Department of Clinical Sciences, Faculty of
Medicine, Lund University, Klinikgatan 32, 222 42 Lund, Sweden
| | - Elisabeth Hjortswang
- Division
of Infection Medicine, Department of Clinical Sciences, Faculty of
Medicine, Lund University, Klinikgatan 32, 222 42 Lund, Sweden
| | - Joel Ströbaek
- Division
of Infection Medicine, Department of Clinical Sciences, Faculty of
Medicine, Lund University, Klinikgatan 32, 222 42 Lund, Sweden
| | - Simon Ekström
- SciLifeLab,
Integrated Structural Biology Platform, Structural Proteomics Unit
Sweden, Lund University, Klinikgatan 32, 222
42 Lund, Sweden
| | - Lotta Happonen
- Division
of Infection Medicine, Department of Clinical Sciences, Faculty of
Medicine, Lund University, Klinikgatan 32, 222 42 Lund, Sweden
| | - Lars Malmström
- Division
of Infection Medicine, Department of Clinical Sciences, Faculty of
Medicine, Lund University, Klinikgatan 32, 222 42 Lund, Sweden
| | - Johan Malmström
- Division
of Infection Medicine, Department of Clinical Sciences, Faculty of
Medicine, Lund University, Klinikgatan 32, 222 42 Lund, Sweden
| |
Collapse
|
5
|
Alharbi N, Shalash AO, Koirala P, Boer JC, Hussein WM, Khalil ZG, Capon RJ, Plebanski M, Toth I, Skwarczynski M. Cholesterol as an inbuilt immunoadjuvant for a lipopeptide vaccine against group A Streptococcus infection. J Colloid Interface Sci 2024; 663:43-52. [PMID: 38387185 DOI: 10.1016/j.jcis.2024.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/21/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer C Boer
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Fan J, Toth I, Stephenson RJ. Recent Scientific Advancements towards a Vaccine against Group A Streptococcus. Vaccines (Basel) 2024; 12:272. [PMID: 38543906 PMCID: PMC10974072 DOI: 10.3390/vaccines12030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a gram-positive bacterium that extensively colonises within the human host. GAS is responsible for causing a range of human infections, such as pharyngitis, impetigo, scarlet fever, septicemia, and necrotising fasciitis. GAS pathogens have the potential to elicit fatal autoimmune sequelae diseases (including rheumatic fever and rheumatic heart diseases) due to recurrent GAS infections, leading to high morbidity and mortality of young children and the elderly worldwide. Antibiotic drugs are the primary method of controlling and treating the early stages of GAS infection; however, the recent identification of clinical GAS isolates with reduced sensitivity to penicillin-adjunctive antibiotics and increasing macrolide resistance is an increasing threat. Vaccination is credited as the most successful medical intervention against infectious diseases since it was discovered by Edward Jenner in 1796. Immunisation with an inactive/live-attenuated whole pathogen or selective pathogen-derived antigens induces a potent adaptive immunity and protection against infectious diseases. Although no GAS vaccines have been approved for the market following more than 100 years of GAS vaccine development, the understanding of GAS pathogenesis and transmission has significantly increased, providing detailed insight into the primary pathogenic proteins, and enhancing GAS vaccine design. This review highlights recent advances in GAS vaccine development, providing detailed data from preclinical and clinical studies across the globe for potential GAS vaccine candidates. Furthermore, the challenges and future perspectives on the development of GAS vaccines are also described.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| |
Collapse
|
7
|
Nakakana U, Serry-Bangura A, Edem BE, Tessitore P, Di Cesare L, Moriel DG, Podda A, De Ryck IS, Arora AK. Application of Transthoracic Echocardiography for Cardiac Safety Evaluation in the Clinical Development Process of Vaccines Against Streptococcus pyogenes. Drugs R D 2024; 24:1-12. [PMID: 38494581 PMCID: PMC11035538 DOI: 10.1007/s40268-024-00452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/19/2024] Open
Abstract
Superficial infections with Streptococcus pyogenes (Strep A), pharyngitis and impetigo can induce acute rheumatic fever, an autoimmune sequela manifesting mostly with arthritis and rheumatic carditis. Valvular heart damage can persist or advance following repeated episodes of acute rheumatic fever, causing rheumatic heart disease. Acute rheumatic fever and rheumatic heart disease disproportionately affect children and young adults in developing countries and disadvantaged communities in developed countries. People living with rheumatic heart disease are at risk of experiencing potentially fatal complications such as heart failure, bacterial endocarditis or stroke. Transthoracic echocardiography plays a central role in diagnosing both rheumatic carditis and rheumatic heart disease. Despite the obvious medical need, no licensed Strep A vaccines are currently available, as their clinical development process faces several challenges, including concerns for cardiac safety. However, the development of Strep A vaccines has been recently relaunched by many vaccine developers. In this context, a reliable and consistent safety evaluation of Strep A vaccine candidates, including the use of transthoracic echocardiography for detecting cardiac adverse events, could greatly contribute to developing a safe and efficacious product in the near future. Here, we propose a framework for the consistent use of transthoracic echocardiography to proactively detect cardiac safety events in clinical trials of Strep A vaccine candidates.
Collapse
Affiliation(s)
- Usman Nakakana
- Vaccines Institute for Global Health (Global Health Vaccines R&D), GSK, Siena, Italy.
| | | | - Bassey Effiom Edem
- Vaccines Institute for Global Health (Global Health Vaccines R&D), GSK, Siena, Italy
- Janssen Biologics BV, Leiden, the Netherlands
| | | | - Leonardo Di Cesare
- Vaccines Institute for Global Health (Global Health Vaccines R&D), GSK, Siena, Italy
| | - Danilo Gomes Moriel
- Vaccines Institute for Global Health (Global Health Vaccines R&D), GSK, Siena, Italy
| | - Audino Podda
- Vaccines Institute for Global Health (Global Health Vaccines R&D), GSK, Siena, Italy
- Independent consultant, Siena, Italy
| | | | - Ashwani Kumar Arora
- Vaccines Institute for Global Health (Global Health Vaccines R&D), GSK, Siena, Italy
| |
Collapse
|
8
|
Koirala P, Shalash AO, Chen SPR, Faruck MO, Wang J, Hussein WM, Khalil ZG, Capon RJ, Monteiro MJ, Toth I, Skwarczynski M. Polymeric Nanoparticles as Oral and Intranasal Peptide Vaccine Delivery Systems: The Role of Shape and Conjugation. Vaccines (Basel) 2024; 12:198. [PMID: 38400181 PMCID: PMC10893271 DOI: 10.3390/vaccines12020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Mucosal vaccines are highly attractive due to high patient compliance and their suitability for mass immunizations. However, all currently licensed mucosal vaccines are composed of attenuated/inactive whole microbes, which are associated with a variety of safety concerns. In contrast, modern subunit vaccines use minimal pathogenic components (antigens) that are safe but typically poorly immunogenic when delivered via mucosal administration. In this study, we demonstrated the utility of various functional polymer-based nanostructures as vaccine carriers. A Group A Streptococcus (GAS)-derived peptide antigen (PJ8) was selected in light of the recent global spread of invasive GAS infection. The vaccine candidates were prepared by either conjugation or physical mixing of PJ8 with rod-, sphere-, worm-, and tadpole-shaped polymeric nanoparticles. The roles of nanoparticle shape and antigen conjugation in vaccine immunogenicity were demonstrated through the comparison of three distinct immunization pathways (subcutaneous, intranasal, and oral). No additional adjuvant or carrier was required to induce bactericidal immune responses even upon oral vaccine administration.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Sung-Po R. Chen
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (S.-P.R.C.); (M.J.M.)
| | - Mohammad O. Faruck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Michael J. Monteiro
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (S.-P.R.C.); (M.J.M.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| |
Collapse
|
9
|
Wang J, Ma C, Li M, Gao X, Wu H, Dong W, Wei L. Streptococcus pyogenes: Pathogenesis and the Current Status of Vaccines. Vaccines (Basel) 2023; 11:1510. [PMID: 37766186 PMCID: PMC10534548 DOI: 10.3390/vaccines11091510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive coccal bacterium, poses a significant global disease burden, especially in low- and middle-income countries. Its manifestations can range from pharyngitis and skin infection to severe and aggressive diseases, such as necrotizing fasciitis and streptococcal toxic shock syndrome. At present, although GAS is still sensitive to penicillin, there are cases of treatment failure for GAS pharyngitis, and antibiotic therapy does not universally prevent subsequent disease. In addition to strengthening global molecular epidemiological surveillance and monitoring of antibiotic resistance, developing a safe and effective licensed vaccine against GAS would be the most effective way to broadly address GAS-related diseases. Over the past decades, the development of GAS vaccines has been stalled, mainly because of the wide genetic heterogeneity of GAS and the diverse autoimmune responses to GAS. With outbreaks of scarlet fever in various countries in recent years, accelerating the development of a safe and effective vaccine remains a high priority. When developing a GAS vaccine, many factors need to be considered, including the selection of antigen epitopes, avoidance of self-response, and vaccine coverage. Given the challenges in GAS vaccine development, this review describes the important virulence factors that induce disease by GAS infection and how this has influenced the progression of vaccine development efforts, focusing on several candidate vaccines that are further along in development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
10
|
Jin S, Zhang J, Nahar UJ, Huang W, Alharbi NA, Shalash AO, Koirala P, Yang J, Kiong JJE, Khalil ZG, Capon RJ, Stephenson RJ, Skwarczynski M, Toth I, Hussein WM. Activity Relationship of Poly(ethylenimine)-Based Liposomes as Group A Streptococcus Vaccine Delivery Systems. ACS Infect Dis 2023; 9:1570-1581. [PMID: 37489053 DOI: 10.1021/acsinfecdis.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Untreated group A Streptococcus (GAS) can lead to a range of life-threatening diseases, including rheumatic heart disease. To date, no therapeutic or prophylactic vaccines are commercially available to treat or prevent GAS infection. Development of a peptide-based subunit vaccine offers a promising solution, negating the safety issues of live-attenuated or inactive vaccines. Subunit vaccines administer small peptide fragments (antigens), which are typically poorly immunogenic. Therefore, these peptide antigens require formulation with an immune stimulant and/or vaccine delivery platform to improve their immunogenicity. We investigated polyelectrolyte complexes (PECs) and polymer-coated liposomes as self-adjuvanting delivery vehicles for a GAS B cell peptide epitope conjugated to a universal T-helper epitope and a synthetic toll-like receptor 2-targeting moiety lipid core peptide-1 (LCP-1). A structure-activity relationship of cationic PEC vaccines containing different external PEI-coatings (poly(ethylenimine); 10 kDa PEI, 25 kDa PEI, and a synthetic mannose-functionalized 25 kDa PEI) formed vaccines PEC-1, PEC-2, and PEC-3, respectively. All three PEC vaccines induced J8-specific systemic immunoglobulin G (IgG) antibodies when administered intranasally to female BALB/c mice without the use of additional adjuvants. Interestingly, PEC-3 induced the highest antibody titers among all tested vaccines, with the ability to effectively opsonize two clinically isolated GAS strains. A comparative study of PEC-2 and PEC-3 with liposome-based delivery systems was performed subcutaneously. LCP-1 was incorporated into a liposome formulation (DPPC, DPPG and cholesterol), and the liposomes were externally coated with PEI (25 kDa; Lip-2) or mannosylated PEI (25 kDa; Lip-3). All liposome vaccines induced stronger humoral immune responses compared to their PEC counterparts. Notably, sera of mice immunized with Lip-2 and Lip-3 produced significantly higher opsonic activity against clinically isolated GAS strains compared to the positive control, P25-J8 emulsified with the commercial adjuvant, complete Freund's adjuvant (CFA). This study highlights the capability of a PEI-liposome system to act as a self-adjuvanting vehicle for the delivery of GAS peptide antigens and protection against GAS infection.
Collapse
Affiliation(s)
- Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ummey J Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nedaa A Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jolynn J E Kiong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Chen S, Ozberk V, Sam G, Gonzaga ZJC, Calcutt A, Pandey M, Good MF, Rehm BHA. Polymeric epitope-based vaccine induces protective immunity against group A Streptococcus. NPJ Vaccines 2023; 8:102. [PMID: 37452052 PMCID: PMC10349049 DOI: 10.1038/s41541-023-00695-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Group A Streptococcus (Strep A) is a life-threatening human pathogen with no licensed vaccine. Here, we used a biopolymer particle (BP) approach to display repeats of Strep A vaccine candidate peptides p*17 and K4S2 derived from M and non-M protein, respectively. BPs densely displaying both peptides (BP-p*17-S2) were successfully assembled in one-step inside an engineered endotoxin-free Escherichia coli strain. Purified BP-p*17-S2 showed a spherical core-shell morphology with a biopolymer core and peptide shell. Upon formulation with aluminum hydroxide as adjuvant, BP-p*17-S2 exhibited a mean diameter of 2.9 µm and a positive surface charge of 22 mV. No cytotoxicity was detected when tested against HEK-293 cells. Stability studies showed that BP-p*17-S2 is ambient-temperature stable. Immunized mice showed no adverse reactions, while producing high titers of peptide specific antibodies and cytokines. This immune response could be correlated with protective immunity in an animal model of infection, i.e. intranasal challenge of mice with Strep A, where a significant reduction of >100-fold of pathogen burden in nose-associated lymphoid tissue, lung, and spleen was obtained. The cost-effective scalable manufacture of ambient-temperature stable BPs coated with Strep A peptides combined with their immunogenic properties offer an attractive alternative strategy to current Strep A vaccine development.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia.
| | - Victoria Ozberk
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia
| | - Zennia Jean C Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia
| | - Ainslie Calcutt
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Michael F Good
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia.
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia.
| |
Collapse
|
12
|
Jiang F, Peng C, Cheng P, Wang J, Lian J, Gong W. PP19128R, a Multiepitope Vaccine Designed to Prevent Latent Tuberculosis Infection, Induced Immune Responses In Silico and In Vitro Assays. Vaccines (Basel) 2023; 11:vaccines11040856. [PMID: 37112768 PMCID: PMC10145841 DOI: 10.3390/vaccines11040856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Latent tuberculosis infection (LTBI) is the primary source of active tuberculosis (ATB), but a preventive vaccine against LTBI is lacking. Methods: In this study, dominant helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), and B-cell epitopes were identified from nine antigens related to LTBI and regions of difference (RDs). These epitopes were used to construct a novel multiepitope vaccine (MEV) based on their antigenicity, immunogenicity, sensitization, and toxicity. The immunological characteristics of the MEV were analyzed with immunoinformatics technology and verified by enzyme-linked immunospot assay and Th1/Th2/Th17 cytokine assay in vitro. Results: A novel MEV, designated PP19128R, containing 19 HTL epitopes, 12 CTL epitopes, 8 B-cell epitopes, toll-like receptor (TLR) agonists, and helper peptides, was successfully constructed. Bioinformatics analysis showed that the antigenicity, immunogenicity, and solubility of PP19128R were 0.8067, 9.29811, and 0.900675, respectively. The global population coverage of PP19128R in HLA class I and II alleles reached 82.24% and 93.71%, respectively. The binding energies of the PP19128R-TLR2 and PP19128R-TLR4 complexes were -1324.77 kcal/mol and -1278 kcal/mol, respectively. In vitro experiments showed that the PP19128R vaccine significantly increased the number of interferon gamma-positive (IFN-γ+) T lymphocytes and the levels of cytokines, such as IFN-γ, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10. Furthermore, positive correlations were observed between PP19128R-specific cytokines in ATB patients and individuals with LTBI. Conclusions: The PP19128R vaccine is a promising MEV with excellent antigenicity and immunogenicity and no toxicity or sensitization that can induce robust immune responses in silico and in vitro. This study provides a vaccine candidate for the prevention of LTBI in the future.
Collapse
Affiliation(s)
- Fan Jiang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
- The Second Brigade of Cadet, Basic Medical Science Academy of Air Force Medical University, Xi'an 710032, China
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Cong Peng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
13
|
Multiepitope Subunit Peptide-Based Nanovaccine against Porcine Circovirus Type 2 (PCV2) Elicited High Antibody Titers in Vaccinated Mice. Molecules 2023; 28:molecules28052248. [PMID: 36903494 PMCID: PMC10005372 DOI: 10.3390/molecules28052248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.
Collapse
|
14
|
Chen S, Quan DH, Sam G, Ozberk V, Wang XT, Halfmann P, Pandey M, Good MF, Kawaoka Y, Britton WJ, Rehm BHA. Assembly of Immunogenic Protein Particles toward Advanced Synthetic Vaccines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205819. [PMID: 36564365 DOI: 10.1002/smll.202205819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Diana H Quan
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Xiaonan T Wang
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4215, Australia
| |
Collapse
|
15
|
Zhang C, Zhang Y, Li Y, Lu J, Xiong S, Yue Y. Exosome-based delivery of VP1 protein conferred enhanced resistance of mice to CVB3-induced viral myocarditis. Virology 2023; 579:46-53. [PMID: 36603532 DOI: 10.1016/j.virol.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Coxsackievirus B3 (CVB3) is an important cause of viral myocarditis with no vaccine available in clinic. Herein we constructed an exosome-based anti-CVB3 vaccine (Exo-VP1), and compared its immunogenicity and immunoprotection with our previously reported recombinant VP1 protein (rVP1) vaccine. We found that compared with the 25 μg rVP1 vaccine, Exo-VP1 vaccine containing only 2 μg VP1 protein induced much stronger CVB3-specific T cell proliferation and CTL responses (with an increase of more than 70% and 40% respectively), and elicited greater splenic Th1/CTL associated cytokines (IFN-γ, TNF-α and IL-12). Furthermore, higher IgG levels with increased neutralizing titers and avidity were also evidenced in Exo-VP1 group. Consistently, Exo-VP1 group exhibited enhanced resistance to viral myocarditis than rVP1 vaccine, reflected by reduced cardiac viral loads, improved myocardial inflammation and an increased survival rate. Collectively, we reported that Exo-VP1 might present a more potent CVB3 vaccine candidate than rVP1 vaccine.
Collapse
Affiliation(s)
- Changwei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuanyu Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Juan Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Yang J, Boer JC, Khongkow M, Phunpee S, Khalil ZG, Bashiri S, Deceneux C, Goodchild G, Hussein WM, Capon RJ, Ruktanonchai U, Plebanski M, Toth I, Skwarczynski M. The Development of Surface-Modified Liposomes as an Intranasal Delivery System for Group A Streptococcus Vaccines. Vaccines (Basel) 2023; 11:vaccines11020305. [PMID: 36851183 PMCID: PMC9961534 DOI: 10.3390/vaccines11020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number of self-adjuvanting liposomal systems for intranasal delivery of lipopeptide vaccine against group A Streptococcus (GAS). Among them, two liposome formulations bearing lipidated cell-penetrating peptide KALA and a new lipidated chitosan derivative (oleoyl-quaternized chitosan, OTMC) stimulated high systemic antibody titers in outbred mice. The antibodies were fully functional and were able to kill GAS bacteria. Importantly, OTMC was far more effective at stimulating antibody production than the classical immune-stimulating trimethyl chitosan formulation. In a simple physical mixture, OTMC also enhanced the immune responses of the tested vaccine, without the need for a liposome delivery system. The adjuvanting capacity of OTMC was further confirmed by its ability to stimulate cytokine production by dendritic cells. Thus, we discovered a new immune stimulant with promising properties for mucosal vaccine development.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Pathumthani 12120, Thailand
| | - Sarunya Phunpee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Pathumthani 12120, Thailand
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Cyril Deceneux
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Georgia Goodchild
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Pathumthani 12120, Thailand
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: ; Tel.: +61-73-346-9894
| |
Collapse
|
17
|
Cheng P, Jiang F, Wang G, Wang J, Xue Y, Wang L, Gong W. Bioinformatics analysis and consistency verification of a novel tuberculosis vaccine candidate HP13138PB. Front Immunol 2023; 14:1102578. [PMID: 36825009 PMCID: PMC9942524 DOI: 10.3389/fimmu.2023.1102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Background With the increasing incidence of tuberculosis (TB) and the shortcomings of existing TB vaccines to prevent TB in adults, new TB vaccines need to be developed to address the complex TB epidemic. Method The dominant epitopes were screened from antigens to construct a novel epitope vaccine termed HP13138PB. The immune properties, structure, and function of HP13138PB were predicted and analyzed with bioinformatics and immunoinformatics. Then, the immune responses induced by the HP13138PB were confirmed by enzyme-linked immunospot assay (ELISPOT) and Th1/Th2/Th17 multi-cytokine detection kit. Result The HP13138PB vaccine consisted of 13 helper T lymphocytes (HTL) epitopes, 13 cytotoxic T lymphocytes (CTL) epitopes, and 8 B-cell epitopes. It was found that the antigenicity, immunogenicity, and solubility index of the HP13138PB vaccine were 0.87, 2.79, and 0.55, respectively. The secondary structure prediction indicated that the HP13138PB vaccine had 31% of α-helix, 11% of β-strand, and 56% of coil. The tertiary structure analysis suggested that the Z-score and the Favored region of the HP13138PB vaccine were -4.47 88.22%, respectively. Furthermore, the binding energies of the HP13138PB to toll-like receptor 2 (TLR2) was -1224.7 kcal/mol. The immunoinformatics and real-world experiments showed that the HP13138PB vaccine could induce an innate and adaptive immune response characterized by significantly higher levels of cytokines such as interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and IL-10. Conclusion The HP13138PB is a potential vaccine candidate to prevent TB, and this study preliminarily evaluated the ability of the HP13138PB to generate an immune response, providing a precursor target for developing TB vaccines.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fan Jiang
- The Second Brigade of Cadet, Basic Medical School, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Guiyuan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Hebei North University, Zhangjiakou, Hebei, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Liang Wang
- Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Bahnan W, Happonen L, Khakzad H, Kumra Ahnlide V, de Neergaard T, Wrighton S, André O, Bratanis E, Tang D, Hellmark T, Björck L, Shannon O, Malmström L, Malmström J, Nordenfelt P. A human monoclonal antibody bivalently binding two different epitopes in streptococcal M protein mediates immune function. EMBO Mol Med 2022; 15:e16208. [PMID: 36507602 PMCID: PMC9906385 DOI: 10.15252/emmm.202216208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Group A streptococci have evolved multiple strategies to evade human antibodies, making it challenging to create effective vaccines or antibody treatments. Here, we have generated antibodies derived from the memory B cells of an individual who had successfully cleared a group A streptococcal infection. The antibodies bind with high affinity in the central region of the surface-bound M protein. Such antibodies are typically non-opsonic. However, one antibody could effectively promote vital immune functions, including phagocytosis and in vivo protection. Remarkably, this antibody primarily interacts through a bivalent dual-Fab cis mode, where the Fabs bind to two distinct epitopes in the M protein. The dual-Fab cis-binding phenomenon is conserved across different groups of M types. In contrast, other antibodies binding with normal single-Fab mode to the same region cannot bypass the M protein's virulent effects. A broadly binding, protective monoclonal antibody could be a candidate for anti-streptococcal therapy. Our findings highlight the concept of dual-Fab cis binding as a means to access conserved, and normally non-opsonic regions, regions for protective antibody targeting.
Collapse
Affiliation(s)
- Wael Bahnan
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Hamed Khakzad
- Equipe Signalisation Calcique et Infections MicrobiennesÉcole Normale Supérieure Paris‐SaclayGif‐sur‐YvetteFrance,Institut National de la Santé et de la Recherche Médicale (INSERM) U1282Gif‐sur‐YvetteFrance,Present address:
Université de Lorraine, Inria, LORIANancyFrance
| | - Vibha Kumra Ahnlide
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Therese de Neergaard
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Sebastian Wrighton
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Oscar André
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Thomas Hellmark
- Department of Clinical Sciences Lund, Division of NephrologyLund UniversityLundSweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| |
Collapse
|
19
|
Muacevic A, Adler JR, Toor D, Lyngdoh V, Nongrum G, Kapoor M, Chakraborti A. Group A Streptococcus Infections: Their Mechanisms, Epidemiology, and Current Scope of Vaccines. Cureus 2022; 14:e33146. [PMID: 36721580 PMCID: PMC9884514 DOI: 10.7759/cureus.33146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 01/01/2023] Open
Abstract
Group A streptococci (GAS) are gram-positive, cocci-shaped bacteria that cause a wide variety of infections and are a cause of significant health burden, particularly in lower- and middle-income nations. The GAS genome contains a number of virulence factors such as the M-protein, hyaluronic acid, C5a peptidase, etc. Despite its significant health burden across the globe, a proper vaccine against GAS infections is not yet available. Various candidates for an effective GAS vaccine are currently being researched. These are based on various parts of the streptococcal genome. These include candidates based on the N-terminal region of the M protein, the conserved C-terminal region of the M protein, and other parts of the streptococcal genome. The development of a vaccine against GAS infections is hampered by certain challenges, such as extensive genetic heterogeneity and high protein sequence variation. This review paper sheds light on the various virulence factors of GAS, their epidemiology, the different vaccine candidates currently being researched, and the challenges associated with M-protein and non-M-protein-based vaccines. This review also sheds light on the current scenario regarding the status of vaccine development against GAS-related infections.
Collapse
|
20
|
Kiong J, Nahar UJ, Jin S, Shalash AO, Zhang J, Koirala P, Khalil ZG, Capon RJ, Skwarczynski M, Toth I, Hussein WM. Development of Multilayer Nanoparticles for the Delivery of Peptide-Based Subunit Vaccine against Group A Streptococcus. Pharmaceutics 2022; 14:pharmaceutics14102151. [PMID: 36297584 PMCID: PMC9610843 DOI: 10.3390/pharmaceutics14102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide-based subunit vaccines include only minimal antigenic determinants, and, therefore, are less likely to induce allergic immune responses and adverse effects compared to traditional vaccines. However, peptides are weakly immunogenic and susceptible to enzymatic degradation when administered on their own. Hence, we designed polyelectrolyte complex (PEC)-based delivery systems to protect peptide antigens from degradation and improve immunogenicity. Lipopeptide (LCP-1) bearing J8 B-cell epitope derived from Group A Streptococcus (GAS) M-protein was selected as the model peptide antigen. In the pilot study, LCP-1 incorporated in alginate/cross-linked polyarginine-J8-based PEC induced high J8-specific IgG antibody titres. The PEC system was then further modified to improve its immune stimulating capability. Of the formulations tested, PEC-4, bearing LCP-1, alginate and cross-linked polylysine, induced the highest antibody titres in BALB/c mice following subcutaneous immunisation. The antibodies produced were more opsonic than those induced by mice immunised with other PECs, and as opsonic as those induced by antigen adjuvanted with powerful complete Freund’s adjuvant.
Collapse
Affiliation(s)
- Jolynn Kiong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ummey Jannatun Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
21
|
Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
23
|
Takahashi R, Radcliff FJ, Proft T, Tsai CJ. Pilus proteins from
Streptococcus pyogenes
stimulate innate immune responses through Toll‐like receptor 2. Immunol Cell Biol 2022; 100:174-185. [PMID: 35124861 PMCID: PMC9303359 DOI: 10.1111/imcb.12523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
The group A Streptococcus (GAS) pilus is a long, flexible, hair‐like structure anchored to the cell surface that facilitates the adherence of GAS to host cells, thus playing a critical role in initiating infections. Because of its important role in GAS virulence, the pilus has become an attractive target for vaccine development. While current research mainly focuses on pilus function and its potential as a vaccine component, there is a lack of knowledge on how the host immune system recognizes and responds to this abundant surface structure. Here we show that both assembled GAS pili and individual pilus proteins induce a potent release of the proinflammatory cytokines tumor necrosis factor and interleukin‐8. We further show that the surface‐exposed backbone pilin and ancillary pilin 1 subunits are Toll‐like receptor 2 (TLR2) agonists. Using reporter cell lines coexpressing human TLR2 in combination with either TLR1 or TLR6, we determined that activation was mediated by the TLR2/TLR6 heterodimer. Finally, we used solid‐phase and flow cytometry binding assays to illustrate a direct interaction between the pilus subunits and TLR2. These results provide further support for the suitability of the pilus as a vaccine component and opens potential avenues for using GAS pili as an adjuvant or immune‐modulation agent.
Collapse
Affiliation(s)
- Risa Takahashi
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries The University of Auckland Auckland New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries The University of Auckland Auckland New Zealand
| | - Catherine J‐Y Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries The University of Auckland Auckland New Zealand
| |
Collapse
|
24
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
25
|
Rwebembera J, Nascimento BR, Minja NW, de Loizaga S, Aliku T, dos Santos LPA, Galdino BF, Corte LS, Silva VR, Chang AY, Dutra WO, Nunes MCP, Beaton AZ. Recent Advances in the Rheumatic Fever and Rheumatic Heart Disease Continuum. Pathogens 2022; 11:179. [PMID: 35215123 PMCID: PMC8878614 DOI: 10.3390/pathogens11020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Nearly a century after rheumatic fever (RF) and rheumatic heart disease (RHD) was eradicated from the developed world, the disease remains endemic in many low- and middle-income countries (LMICs), with grim health and socioeconomic impacts. The neglect of RHD which persisted for a semi-centennial was further driven by competing infectious diseases, particularly the human immunodeficiency virus (HIV) pandemic. However, over the last two-decades, slowly at first but with building momentum, there has been a resurgence of interest in RF/RHD. In this narrative review, we present the advances that have been made in the RF/RHD continuum over the past two decades since the re-awakening of interest, with a more concise focus on the last decade's achievements. Such primary advances include understanding the genetic predisposition to RHD, group A Streptococcus (GAS) vaccine development, and improved diagnostic strategies for GAS pharyngitis. Echocardiographic screening for RHD has been a major advance which has unearthed the prevailing high burden of RHD and the recent demonstration of benefit of secondary antibiotic prophylaxis on halting progression of latent RHD is a major step forward. Multiple befitting advances in tertiary management of RHD have also been realized. Finally, we summarize the research gaps and provide illumination on profitable future directions towards global eradication of RHD.
Collapse
Affiliation(s)
- Joselyn Rwebembera
- Department of Adult Cardiology (JR), Uganda Heart Institute, Kampala 37392, Uganda
| | - Bruno Ramos Nascimento
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
- Servico de Cardiologia e Cirurgia Cardiovascular e Centro de Telessaude, Hospital das Clinicas da Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 110, 1st Floor, Belo Horizonte 30130-100, MG, Brazil
| | - Neema W. Minja
- Rheumatic Heart Disease Research Collaborative in Uganda, Uganda Heart Institute, Kampala 37392, Uganda;
| | - Sarah de Loizaga
- School of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (S.d.L.); (A.Z.B.)
| | - Twalib Aliku
- Department of Paediatric Cardiology (TA), Uganda Heart Institute, Kampala 37392, Uganda;
| | - Luiza Pereira Afonso dos Santos
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Bruno Fernandes Galdino
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Luiza Silame Corte
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Vicente Rezende Silva
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Andrew Young Chang
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
- National Institute of Science and Technology in Tropical Diseases (INCT-DT), Salvador 40170-970, BA, Brazil
| | - Maria Carmo Pereira Nunes
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
- Servico de Cardiologia e Cirurgia Cardiovascular e Centro de Telessaude, Hospital das Clinicas da Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 110, 1st Floor, Belo Horizonte 30130-100, MG, Brazil
| | - Andrea Zawacki Beaton
- School of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (S.d.L.); (A.Z.B.)
- Cincinnati Children’s Hospital Medical Center, The Heart Institute, Cincinnati, OH 45229, USA
| |
Collapse
|
26
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
27
|
Faruck MO, Skwarczynski M, Toth I. Polymer-Peptide Conjugate Vaccine for Oral Immunization. Methods Mol Biol 2022; 2412:35-44. [PMID: 34918240 DOI: 10.1007/978-1-0716-1892-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, well-known as "click" reaction, is widely used in organic synthesis, medicinal chemistry, and polymer science for the conjugation of molecular entities of all sizes. In this protocol, B-cell epitope J8, derived from group A Streptococcus (GAS) M protein, and universal T-helper epitope PADRE were conjugated to poly(methyl acrylate) (PMA) to form a self-assembled nanoparticle vaccine candidate (PMA-P-J8). The vaccine construct was orally administered to mice in a single dose of 30 μg, resulting in the production of a high number of serum (IgG) and salivary (IgA) antibodies.
Collapse
Affiliation(s)
- Mohammad Omer Faruck
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
28
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
29
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Hookworm infection: Toward development of safe and effective peptide vaccines. J Allergy Clin Immunol 2021; 148:1394-1419.e6. [PMID: 34872650 DOI: 10.1016/j.jaci.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.
Collapse
Affiliation(s)
- Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
30
|
Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials 2021; 280:121303. [PMID: 34871877 DOI: 10.1016/j.biomaterials.2021.121303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Dendrimers are well-defined, highly branched, multivalent and monodisperse molecules which host a range of attractive, yet functional, chemical and biological characteristics. A dendrimers accessible surface groups enable coupling to different functional moieties (e.g., antibodies, peptides, proteins, etc), which is further assisted by the dendrimers tailored size and surface charge. This adaptability allows for the preparation of molecularly precise vaccines with highly specific and predictable properties, and in conjunction with a dendrimers immune stimulating (adjuvanting) property, makes dendrimers attractive substrates for biomedical applications, including vaccines. This review highlights the structural and synthetic evolution of dendrimers throughout history, detailing the dendrimers role as both an adjuvant and carrier system for vaccine antigens, in addition to reviewing the development of commercially available vaccines for use in humans.
Collapse
Affiliation(s)
- Silvia Chowdhury
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
31
|
Azuar A, Shibu MA, Adilbish N, Marasini N, Hung H, Yang J, Luo Y, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjug Chem 2021; 32:2307-2317. [PMID: 34379392 DOI: 10.1021/acs.bioconjchem.1c00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-based vaccines are composed of small, defined, antigenic peptide epitopes. They are designed to induce well-controlled immune responses. Multiple epitopes are often employed in these vaccines to cover strain variability of a pathogen. However, peptide epitopes cannot stimulate adequate immune responses on their own and require an adjuvant (immune stimulant) and/or delivery system. Here, we designed and synthesized a multiepitope vaccine candidate against Group A Streptococcus (GAS) composed of several B-cell epitopes (J8, PL1, and 88/30) derived from GAS M-protein, universal PADRE T-helper cell epitope, and a polyleucine self-adjuvanting unit. The vaccine components were conjugated together (using mercapto-maleimide and azide-alkyne Huisgen cycloaddition reactions) or delivered as a mixture. The conjugated multiepitope vaccine candidate self-assembled into small nanoparticles and chain-like aggregated nanoparticles (CLANs) that were able to induce the production of J8-, PL1-, and 88/30-specific antibodies in mice. The multiepitope conjugate and the physical mixture of conjugates bearing the individual epitopes produced similar nanoparticles and induced comparable immune responses. Hence, simple physical mixing can replace complex chemical conjugation to produce multiepitope nanoparticles with equivalent morphology and immunological efficacy. This greatly simplifies vaccine production.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nomin Adilbish
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hong Hung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zeinab G Khalil
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
32
|
Awan F, Ali MM, Dong Y, Yu Y, Zeng Z, Liu Y. In Silico Analysis of Potential Outer Membrane Beta-Barrel Proteins in Aeromonas hydrophila Pangenome. Int J Pept Res Ther 2021; 27:2381-2389. [PMID: 34335123 PMCID: PMC8310902 DOI: 10.1007/s10989-021-10259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Outer membrane proteins (OMPs) of Aeromonas hydrophila have a variety of functional roles in virulence and pathogenesis and represent promising targets for vaccine development. The main objective of this study was to develop an in-silico model of beta-barrel OMP present among the valid A. hydrophila pangenomes (n = 22). With a program named the β-barrel Outer Membrane Protein Predictor (BOMP), total beta-barrel OMPs (n = 3127) were predicted across 22 genomes with the estimated median number of 64 per genome. In pangenome analysis, only 32 OMPs were found to be conserved. These beta-barrel OMPs also showed variations among source of isolation, COG and KEGG classes. Among 32 conserved OMPs, a highly antigenic protein was identified by utilizing Vaxijen. With B cell epitope predictions, two fragments of amino acid sequences i.e. GLTLGAQFTGNNDPQNADRSN (21 mer) and FKPSLAYLRTDVKDNARGI DDTATEY (26 mer) bearing B-cell binding sites were selected. Further, an epitope (12 amino acids: GLTLGAQFTGNN) that complexes to maximum MHC alleles with a higher antigenicity was determined. The analysis of evolutionary forces on the identified OMP sequence and epitope indicated that none of basic amino acid sites has shown significantly different substitution ratios. This conserved protein and epitope will be helpful in developing a vaccine that may be effective against all the A. hydrophila strains. Also, this study provides a theoretical basis for vaccine design against other pathogenic bacteria.
Collapse
Affiliation(s)
- Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yong Yu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenling Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Use of a Novel Peptide Welding Technology Platform for the Development of B- and T-Cell Epitope-Based Vaccines. Vaccines (Basel) 2021; 9:vaccines9050526. [PMID: 34069535 PMCID: PMC8160815 DOI: 10.3390/vaccines9050526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide vaccines incorporating B- and T-cell epitopes have shown promise in the context of various cancers and infections. These vaccines are relatively simple to manufacture, but more immunogenic formulations are considered a priority. We developed tetrabranched derivatives for this purpose based on a novel peptide welding technology (PWT). PWTs provide molecular scaffolds for the efficient synthesis of ultrapure peptide dendrimers, which allow the delivery of multiple ligands within a single macromolecular structure. Peptide vaccines incorporating T-cell epitopes derived from melanoma and B-cell epitopes derived from human immunodeficiency virus, synthesized using this approach, elicited primary immune responses in vitro and in vivo. Subcutaneous administration of the B-cell epitope-based vaccines also elicited more potent humoral responses than subcutaneous administration of the corresponding peptides alone. Highly immunogenic peptide epitope-based vaccines can therefore be generated quickly and easily using a novel PWT.
Collapse
|
34
|
Yang J, Firdaus F, Azuar A, Khalil ZG, Marasini N, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines (Basel) 2021; 9:499. [PMID: 34066099 PMCID: PMC8151947 DOI: 10.3390/vaccines9050499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Peptide-based vaccine development represents a highly promising strategy for preventing Group A Streptococcus (GAS) infection. However, these vaccines need to be administered with the help of a delivery system and/or immune adjuvant. Cell-penetrating peptides (CPPs) have been used as a powerful tool for delivering various therapeutic agents, including peptides, as they can overcome the permeability barrier of cell membranes. Here, we used CPPs to deliver our lead lipopeptide-based vaccine (LCP-1). CPPs were anchored through a spacer to LCP-1-bearing multilamellar and unilamellar liposomes and administered to Swiss outbred mice. Tat47-57 conjugated to two palmitic acids via a (Gly)6 spacer (to form a liposome-anchoring moiety) was the most efficient system for triggering immune responses when combined with multilamellar liposomes bearing LCP-1. The immunostimulatory potential of a variety of other CPPs was examined following intranasal administration in mice. Among them, LCP-1/liposomes/Tat47-57 and LCP-1/liposomes/KALA induced the highest antibody titers. The antibodies produced showed high opsonic activity against clinically isolated GAS strains D3840 and GC2 203. The use of the CPP-liposome delivery system is a promising strategy for liposome-based GAS vaccine development.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Farrhana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| |
Collapse
|
35
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Azuar A, Li Z, Shibu MA, Zhao L, Luo Y, Shalash AO, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A Streptococcus Vaccine Delivery. J Med Chem 2021; 64:2648-2658. [PMID: 33529034 DOI: 10.1021/acs.jmedchem.0c01660] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide antigens have been widely used in the development of vaccines, especially for those against autoimmunity-inducing pathogens and cancers. However, peptide-based vaccines require adjuvant and/or a delivery system to stimulate desired immune responses. Here, we explored the potential of self-adjuvanting poly(hydrophobic amino acids) (pHAAs) to deliver peptide-based vaccine against Group A Streptococcus (GAS). We designed and synthesized self-assembled nanoparticles with a variety of conjugates bearing a peptide antigen (J8-PADRE) and polymerized hydrophobic amino acids to evaluate the effects of structural arrangement and pHAAs properties on a system's ability to induce humoral immune responses. Immunogenicity of the developed conjugates was also compared to commercially available human adjuvants. We found that a linear conjugate bearing J8-PADRE and 15 copies of leucine induced equally effective, or greater, immune responses than commercial adjuvants. Our fully defined, adjuvant-free, single molecule-based vaccine induced the production of antibodies capable of killing GAS bacteria.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhuoqing Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, St. Lucia, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
37
|
Castro SA, Dorfmueller HC. A brief review on Group A Streptococcus pathogenesis and vaccine development. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201991. [PMID: 33959354 PMCID: PMC8074923 DOI: 10.1098/rsos.201991] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a Gram-positive human-exclusive pathogen, responsible for more than 500 000 deaths annually worldwide. Upon infection, GAS commonly triggers mild symptoms such as pharyngitis, pyoderma and fever. However, recurrent infections or prolonged exposure to GAS might lead to life-threatening conditions. Necrotizing fasciitis, streptococcal toxic shock syndrome and post-immune mediated diseases, such as poststreptococcal glomerulonephritis, acute rheumatic fever and rheumatic heart disease, contribute to very high mortality rates in non-industrialized countries. Though an initial reduction in GAS infections was observed in high-income countries, global outbreaks of GAS, causing rheumatic fever and acute poststreptococcal glomerulonephritis, have been reported over the last decade. At the same time, our understanding of GAS pathogenesis and transmission has vastly increased, with detailed insight into the various stages of infection, beginning with adhesion, colonization and evasion of the host immune system. Despite deeper knowledge of the impact of GAS on the human body, the development of a successful vaccine for prophylaxis of GAS remains outstanding. In this review, we discuss the challenges involved in identifying a universal GAS vaccine and describe several potential vaccine candidates that we believe warrant pursuit.
Collapse
Affiliation(s)
- Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
38
|
Pandey M, Ozberk V, Eskandari S, Shalash AO, Joyce MA, Saffran HA, Day CJ, Lepletier A, Spillings BL, Mills JL, Calcutt A, Fan F, Williams JT, Stanisic DI, Hattingh L, Gerrard J, Skwarczynski M, Mak J, Jennings MP, Toth I, Tyrrell DL, Good MF. Antibodies to neutralising epitopes synergistically block the interaction of the receptor-binding domain of SARS-CoV-2 to ACE 2. Clin Transl Immunology 2021; 10:e1260. [PMID: 33732459 PMCID: PMC7937407 DOI: 10.1002/cti2.1260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives A major COVID‐19 vaccine strategy is to induce antibodies that prevent interaction between the Spike protein's receptor‐binding domain (RBD) and angiotensin‐converting enzyme 2 (ACE2). These vaccines will also induce T‐cell responses. However, concerns were raised that aberrant vaccine‐induced immune responses may exacerbate disease. We aimed to identify minimal epitopes on the RBD that would induce antibody responses that block the interaction of the RBD and ACE2 as a strategy leading to an effective vaccine with reduced risk of inducing immunopathology. Methods We procured a series of overlapping 20‐amino acid peptides spanning the RBD and asked which were recognised by plasma from COVID‐19 convalescent patients. Identified epitopes were conjugated to diphtheria‐toxoid and used to vaccinate mice. Immune sera were tested for binding to the RBD and for their ability to block the interaction of the RBD and ACE2. Results Seven putative vaccine epitopes were identified. Memory B‐cells (MBCs) specific for one of the epitopes were identified in the blood of convalescent patients. When used to vaccinate mice, six induced antibodies that bound recRBD and three induced antibodies that could partially block the interaction of the RBD and ACE2. However, when the sera were combined in pairs, we observed significantly enhanced inhibition of binding of RBD to ACE2. Two of the peptides were located in the main regions of the RBD known to contact ACE2. Of significant importance to vaccine development, two of the peptides were in regions that are invariant in the UK and South African strains. Conclusion COVID‐19 convalescent patients have SARS‐CoV‐2‐specific antibodies and MBCs, the specificities of which can be defined with short peptides. Epitope‐specific antibodies synergistically block RBD–ACE2 interaction.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Victoria Ozberk
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | | | | | | | | | - Christopher J Day
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Ailin Lepletier
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | | | - Jamie-Lee Mills
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Ainslie Calcutt
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | - Fan Fan
- Olymvax Biopharmaceuticals Chengdu China
| | | | | | | | - John Gerrard
- Gold Coast Hospital and Health Service Gold Coast QLD Australia
| | | | - Johnson Mak
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| | | | - Istvan Toth
- University of Queensland Brisbane QLD Australia
| | | | - Michael F Good
- Institute for Glycomics Griffith University Gold Coast QLD Australia
| |
Collapse
|
39
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
40
|
Systems Genetics Approaches in Mouse Models of Group A Streptococcal Necrotizing Soft-Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33079368 DOI: 10.1007/978-3-030-57616-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mouse models are invaluable resources for studying the pathogenesis and preclinical evaluation of therapeutics and vaccines against many human pathogens. Infections caused by group A streptococcus (GAS, Streptococcus pyogenes) are heterogeneous ranging from mild pharyngitis to severe invasive necrotizing fasciitis, a subgroup of necrotizing soft-tissue infections (NSTIs). While several strains of mice including BALB/c, C3H/HeN, CBA/J, and C57BL/10 offered significant insights, the human specificity and the interindividual variations on susceptibility or resistance to GAS infections limit their ability to mirror responses as seen in humans. In this chapter, we discuss the advanced recombinant inbred (ARI) BXD mouse model that mimics the genetic diversity as seen in humans and underpins the feasibility to map multiple genes (genetic loci) modulating GAS NSTI. GAS produces a myriad of virulence factors, including superantigens (SAg). Superantigens are potent immune toxins that activate T cells by cross-linking T cell receptors with human leukocyte antigen class-II (HLA-II) molecules expressed on antigen-presenting cells. This leads to a pro-inflammatory cytokine storm and the subsequent multiple organ damage and shock. Inbred mice are innately refractive to SAg-mediated responses. In this chapter, we discuss the versatility of the HLA-II transgenic mouse model that allowed the biological validation of known genetic associations to GAS NSTI. The combined utility of ARI-BXD and HLA-II mice as complementary approaches that offer clinically translatable insights into pathomechanisms driven by complex traits and host genetic context and novel means to evaluate the in vivo efficiency of therapies to improve outcomes of GAS NSTI are also discussed.
Collapse
|
41
|
Bellini C, Horváti K. Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis. Cells 2020; 9:cells9122673. [PMID: 33333744 PMCID: PMC7765234 DOI: 10.3390/cells9122673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The World Health Organization (WHO) herald of the “End TB Strategy” has defined goals and targets for tuberculosis prevention, care, and control to end the global tuberculosis endemic. The emergence of drug resistance and the relative dreadful consequences in treatment outcome has led to increased awareness on immunization against Mycobacterium tuberculosis (Mtb). However, the proven limited efficacy of Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mtb, has highlighted the need for alternative vaccines. In this review, we seek to give an overview of Mtb infection and failure of BCG to control it. Afterward, we focus on the protein- and peptide-based subunit vaccine subtype, examining the advantages and drawbacks of using this design approach. Finally, we explore the features of subunit vaccine candidates currently in pre-clinical and clinical evaluation, including the antigen repertoire, the exploited adjuvanted delivery systems, as well as the spawned immune response.
Collapse
Affiliation(s)
- Chiara Bellini
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
42
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
43
|
Dai CC, Yang J, Hussein WM, Zhao L, Wang X, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A Streptococcus. ACS Infect Dis 2020; 6:2502-2512. [PMID: 32786276 DOI: 10.1021/acsinfecdis.0c00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group A Streptococcus (GAS) and GAS-related infections are a worldwide challenge, with no commercial GAS vaccine available. Polyethylenimine (PEI) attaches to the cells' surface and delivers cargo into endosomal and cytosolic compartments. We hypothesized that this will confer mucosal adjuvant properties for peptide antigens against group A Streptococcus (GAS). In this study, we successfully demonstrated the development of PEI incorporated liposomes for the delivery of a lipopeptide-based vaccine (LCP-1) against GAS. Outbred mice were administrated with the vaccine formulations intranasally, and immunological investigation showed that the PEI liposomes elicited significant mucosal and systemic immunity with the production of IgA and IgG antibodies. Antibodies were shown to effectively opsonize multiple isolates of clinically isolated GAS. This proof-of-concept study showed the capability for PEI liposomes to act as a safe vehicle for the delivery of GAS peptide antigens to elicit immune responses against GAS infection, making PEI a promising addition to liposomal mucosal vaccines.
Collapse
Affiliation(s)
- Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
44
|
Mensah GA. Cardiovascular health research, training, and capacity building for the eradication of rheumatic fever and rheumatic heart disease in our lifetime: the inaugural Bongani Mayosi Memorial Lecture. LANCET GLOBAL HEALTH 2020; 8:e1098-e1100. [PMID: 32710866 DOI: 10.1016/s2214-109x(20)30297-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022]
Affiliation(s)
- George A Mensah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Dai C, Khalil ZG, Hussein WM, Yang J, Wang X, Zhao L, Capon RJ, Toth I, Stephenson RJ. Opsonic Activity of Conservative Versus Variable Regions of the Group A Streptococcus M Protein. Vaccines (Basel) 2020; 8:vaccines8020210. [PMID: 32392777 PMCID: PMC7349123 DOI: 10.3390/vaccines8020210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Group A Streptococcus (GAS) and GAS-associated infections are a global challenge, with no licensed GAS vaccine on the market. The GAS M protein is a critical virulence factor in the fight against GAS infection, and it has been a primary target for GAS vaccine development. Measuring functional opsonic antibodies against GAS is an important component in the clinical development path for effective vaccines. In this study, we compared the opsonic activity of two synthetic, self-adjuvanting subunit vaccines containing either the J8- or 88/30-epitope in Swiss outbred mice using intranasal administration. Following primary immunization and three boosts, sera were assessed for IgG activity using ELISA, and opsonization activity against seven randomly selected clinical isolates of GAS was measured. Vaccine constructs containing the conservative J8-epitope showed significant opsonic activity against six out of the seven GAS clinical isolates, while the vaccine containing the variable 88/30-epitope did not show any significant opsonic activity.
Collapse
Affiliation(s)
- Chuankai Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Correspondence:
| |
Collapse
|
46
|
Madge HYR, Sharma H, Hussein WM, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Structure–Activity Analysis of Cyclic Multicomponent Lipopeptide Self-Adjuvanting Vaccine Candidates Presenting Group A Streptococcus Antigens. J Med Chem 2020; 63:5387-5397. [DOI: 10.1021/acs.jmedchem.0c00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Harrison Y. R. Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Hansa Sharma
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane 4072, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
47
|
Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I. Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E823. [PMID: 32357402 PMCID: PMC7712447 DOI: 10.3390/nano10050823] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Peptide subunit vaccines hold great potential compared to traditional vaccines. However, peptides alone are poorly immunogenic. Therefore, it is of great importance that a vaccine delivery platform and/or adjuvant that enhances the immunogenicity of peptide antigens is developed. Here, we report the development of two different systems for the delivery of lipopeptide subunit vaccine (LCP-1) against group A streptococcus: polymer-coated liposomes and polyelectrolyte complexes (PECs). First, LCP-1-loaded and alginate/trimethyl chitosan (TMC)-coated liposomes (Lip-1) and LCP-1/alginate/TMC PECs (PEC-1) were examined for their ability to trigger required immune responses in outbred Swiss mice; PEC-1 induced stronger humoral immune responses than Lip-1. To further assess the adjuvanting effect of anionic polymers in PECs, a series of PECs (PEC-1 to PEC-5) were prepared by mixing LCP-1 with different anionic polymers, namely alginate, chondroitin sulfate, dextran, hyaluronic acid, and heparin, then coated with TMC. All produced PECs had similar particle sizes (around 200 nm) and surface charges (around + 30 mV). Notably, PEC-5, which contained heparin, induced higher antigen-specific systemic IgG and mucosal IgA titers than all other PECs. PEC systems, especially when containing heparin and TMC, could function as a promising platform for peptide-based subunit vaccine delivery for intranasal administration.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Wanli Jin
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Jazmina Gonzalez Cruz
- Diamantina Institute, Translational Research Institute, The University of Queensland, Wooloongabba, QLD 4102, Australia;
| | - Nirmal Marasini
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
48
|
Faruck MO, Zhao L, Hussein WM, Khalil ZG, Capon RJ, Skwarczynski M, Toth I. Polyacrylate-Peptide Antigen Conjugate as a Single-Dose Oral Vaccine against Group A Streptococcus. Vaccines (Basel) 2020; 8:E23. [PMID: 31941060 PMCID: PMC7157655 DOI: 10.3390/vaccines8010023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Group A Streptococcus (GAS)-associated rheumatic heart disease is a leading cause of death caused by GAS infection. While antibiotics can treat the infection in most cases, growing antibiotic resistance, late medical intervention, and recurrent infection are major obstacles to the effective treatment of GAS-associated diseases. As GAS infection typically originates from the bacterial colonization of mucosal tissue in the throat, an oral vaccine that can generate both systemic and mucosal immune responses would solve problems associated with traditional medical interventions. Moreover, orally delivered vaccines are more easily administered and less expensive for mass immunization. In this study, the B-cell epitope J8, derived from GAS M protein, and universal T-helper Pan HLA-DR-binding epitope peptide (PADRE), were conjugated to poly (methyl acrylate) (PMA) to form a self-assembled nanoparticle vaccine candidate (PMA-P-J8). Strong systemic and mucosal immune responses were induced upon single oral immunization of mice with the conjugate. The antibodies generated were opsonic against GAS clinical isolates as measured after boost immunization. Thus, we developed a simple conjugate as an effective, adjuvant-free oral peptide-based vaccine.
Collapse
Affiliation(s)
- Mohammad Omer Faruck
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|