1
|
Kwantwi LB, Rosen ST, Querfeld C. The role of signaling lymphocyte activation molecule family receptors in hematologic malignancies. Curr Opin Oncol 2024; 36:449-455. [PMID: 39007334 DOI: 10.1097/cco.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of the current understanding of SLAM-family receptors in hematologic malignancies. We highlighted their contribution to the disease pathogenesis and targeting strategies to improve therapeutic outcomes. RECENT FINDINGS Emerging studies have reported the tumor-promoting role of SLAM-family receptors in various hematologic malignancies, including chronic lymphocytic leukemia, acute myeloid leukemia, and multiple myeloma. Specifically, they regulate the interaction between malignant cells and the tumor microenvironment to promote apoptosis resistance, therapeutic resistance, impairment of antitumor and tumor progression. SUMMARY SLAM-family receptors promote the progression of hematologic malignancies by regulating the interaction between malignant cells and the tumor microenvironment. This provides the rationale that SLAM-targeted therapies are appealing strategies to enhance therapeutic outcomes in patients.
Collapse
Affiliation(s)
| | - Steven T Rosen
- Department of Hematology & Hematopoietic Cell Transplantation
- Beckman Research Institute, Duarte, California, USA
| | - Christiane Querfeld
- Department of Pathology
- Department of Hematology & Hematopoietic Cell Transplantation
- Division of Dermatology, City of Hope Medical Center
- Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
2
|
Weng J, Wang Z, Hu Z, Xu W, Sun JL, Wang F, Zhou Q, Liu S, Xu M, Xu M, Gao D, Shen YH, Yi Y, Shi Y, Dong Q, Zhou C, Ren N. Repolarization of Immunosuppressive Macrophages by Targeting SLAMF7-Regulated CCL2 Signaling Sensitizes Hepatocellular Carcinoma to Immunotherapy. Cancer Res 2024; 84:1817-1833. [PMID: 38484085 DOI: 10.1158/0008-5472.can-23-3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 06/05/2024]
Abstract
Immune checkpoint inhibitors have limited efficacy in hepatocellular carcinoma (HCC). Macrophages are the most abundant immune cells in HCC, suggesting that a better understanding of the intrinsic processes by which tumor cells regulate macrophages could help identify strategies to improve response to immunotherapy. As signaling lymphocytic activation molecule (SLAM) family members regulate various immune functions, we investigated the role of specific SLAM receptors in the immunobiology of HCC. Comparison of the transcriptomic landscapes of immunotherapy-responsive and nonresponsive patients with advanced HCC identified SLAMF7 upregulation in immunotherapy-responsive HCC, and patients with HCC who responded to immunotherapy also displayed higher serum levels of SLAMF7. Loss of Slamf7 in liver-specific knockout mice led to increased hepatocarcinogenesis and metastasis, elevated immunosuppressive macrophage infiltration, and upregulated PD-1 expression in CD8+ T cells. HCC cell-intrinsic SLAMF7 suppressed MAPK/ATF2-mediated CCL2 expression to regulate macrophage migration and polarization in vitro. Mechanistically, SLAMF7 associated with SH2 domain-containing adaptor protein B (SHB) through its cytoplasmic 304 tyrosine site to facilitate the recruitment of SHIP1 to SLAMF7 and inhibit the ubiquitination of TRAF6, thereby attenuating MAPK pathway activation and CCL2 transcription. Pharmacological antagonism of the CCL2/CCR2 axis potentiated the therapeutic effect of anti-PD-1 antibody in orthotopic HCC mouse models with low SLAMF7 expression. In conclusion, this study highlights SLAMF7 as a regulator of macrophage function and a potential predictive biomarker of immunotherapy response in HCC. Strategies targeting CCL2 signaling to induce macrophage repolarization in HCC with low SLAMF7 might enhance the efficacy of immunotherapy. SIGNIFICANCE CCL2 upregulation caused by SLAMF7 deficiency in hepatocellular carcinoma cells induces immunosuppressive macrophage polarization and confers resistance to immune checkpoint blockade, providing potential biomarkers and targets to improve immunotherapy response in patients.
Collapse
Affiliation(s)
- Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Zhiqiu Hu
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Fu Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Dongmei Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
3
|
Kikuchi T, Tsukada N, Kunisada K, Nomura-Yogo M, Oda Y, Sato K, Takei T, Ogura M, Abe Y, Suzuki K, Ishida T. Cytomegalovirus Reactivation during Elotuzumab Therapy in Patients with Multiple Myeloma. Acta Haematol 2024:1-6. [PMID: 38657575 DOI: 10.1159/000539066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Some treatments are associated with cytomegalovirus (CMV) reactivation (CMVRA) in patients with multiple myeloma (MM). However, no reports exist on the association between elotuzumab and CMVRA. Therefore, we assessed the incidence of CMVRA in patients with MM who received elotuzumab therapy. METHODS The medical records of 85 patients who underwent elotuzumab therapy were included in the retrospective analysis for CMV positivity. RESULTS Thirty patients were tested for CMV antigenemia during elotuzumab therapy, and 16 were positive for CMV antigenemia; the cumulative incidence rate of CMVRA 6 months after elotuzumab initiation was 18.4%. The history of allogeneic stem cell transplantation (allo-HSCT) was significantly more common in the CMVRA group (31.2%) than that of the group without CMVRA (8.7%). However, even among patients who did not undergo allo-HSCT, the cumulative incidence rate of CMVRA at 6 months was 15.1%. During CMVRA, the symptoms included fever in 8 cases, while retinitis was observed in 1 case. Five patients required antiviral therapy and CMV antigenemia resolved in all but 1 case. CONCLUSION Although the patient population was heterogeneous, CMVRA cannot be underestimated during elotuzumab therapy, and evaluation of CMVRA, especially in symptomatic cases, is clinically important.
Collapse
Affiliation(s)
- Taku Kikuchi
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Nobuhiro Tsukada
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kodai Kunisada
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Moe Nomura-Yogo
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yuki Oda
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kota Sato
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Tomomi Takei
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Mizuki Ogura
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yu Abe
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| |
Collapse
|
4
|
Kusuda M, Nakasone H, Yoshimura K, Okada Y, Tamaki M, Matsuoka A, Ishikawa T, Meno T, Nakamura Y, Kawamura M, Takeshita J, Kawamura S, Yoshino N, Misaki Y, Gomyo A, Tanihara A, Kimura SI, Kako S, Kanda Y. Gene expression and TCR amino acid sequences selected by HLA-A02:01-restricted CTLs specific to HTLV-1 in ATL patients. Br J Haematol 2023; 202:578-588. [PMID: 37317804 DOI: 10.1111/bjh.18918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Adult T-cell leukaemia/lymphoma (ATL) is an aggressive malignancy of peripheral T cells caused by human T-cell lymphotropic virus type-1 (HTLV-1). Tax is the most important regulatory protein for HTLV-1. We aimed to reveal a unique amino acid sequence (AA) of complementarity-determining region 3 (CDR3) of the T-cell receptor (TCR)β and TCRα chains of HLA-A*02:01-restricted Tax11-19 -specific cytotoxic T cells (Tax-CTLs). The gene expression profiles (GEP) of Tax-CTLs were assessed by the next-generation sequence (NGS) method with SMARTer technology. Tax-CTLs seemed to be oligoclonal, and their gene compositions were skewed. The unique motifs of 'DSWGK' in TCRα and 'LAG' in TCRβ at CDR3 were observed in almost all patients. Tax-CTL clones harbouring the 'LAG' motif with BV28 had a higher binding score than those without either of them, besides a higher binding score associated with longer survival. Tax-CTLs established from a single cell showed killing activities against Tax-peptide-pulsed HLA-A2+ T2 cell lines. GEP of Tax-CTLs revealed that genes associated with immune response activity were well preserved in long-term survivors with stable status. These methods and results can help us better understand immunity against ATL, and should contribute to future studies on the clinical application of adoptive T-cell therapies.
Collapse
Affiliation(s)
- Machiko Kusuda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medicial University, Shimotsuke, Japan
| | - Kazuki Yoshimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yosuke Okada
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masaharu Tamaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Akari Matsuoka
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takuto Ishikawa
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Tomohiro Meno
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yuhei Nakamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masakatsu Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Junko Takeshita
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shunto Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Nozomu Yoshino
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yukiko Misaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ayumi Gomyo
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Aki Tanihara
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
5
|
Wu Y, Wang Q, Li M, Lao J, Tang H, Ming S, Wu M, Gong S, Li L, Liu L, Huang X. SLAMF7 regulates the inflammatory response in macrophages during polymicrobial sepsis. J Clin Invest 2023; 133:150224. [PMID: 36749634 PMCID: PMC10014109 DOI: 10.1172/jci150224] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Uncontrolled inflammation occurred in sepsis results in multiple organ injuries and shock, which contributes to the death of patients with sepsis. However, the regulatory mechanisms that restrict excessive inflammation are still elusive. Here, we identified an Ig-like receptor called signaling lymphocyte activation molecular family 7 (SLAMF7) as a key suppressor of inflammation during sepsis. We found that the expression of SLAMF7 on monocytes/macrophages was significantly elevated in patients with sepsis and in septic mice. SLAMF7 attenuated TLR-dependent MAPK and NF-κB signaling activation in macrophages by cooperating with Src homology 2-containing inositol-5'‑phosphatase 1 (SHIP1). Furthermore, SLAMF7 interacted with SHIP1 and TNF receptor-associated factor 6 (TRAF6) to inhibit K63 ubiquitination of TRAF6. In addition, we found that tyrosine phosphorylation sites within the intracellular domain of SLAMF7 and the phosphatase domain of SHIP1 were indispensable for the interaction between SLAMF7, SHIP1, and TRAF6 and SLAMF7-mediated modulation of cytokine production. Finally, we demonstrated that SLAMF7 protected against lethal sepsis and endotoxemia by downregulating macrophage proinflammatory cytokines and suppressing inflammation-induced organ damage. Taken together, our findings reveal a negative regulatory role of SLAMF7 in polymicrobial sepsis, thus providing sights into the treatment of sepsis.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Qiaohua Wang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Miao Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Juanfeng Lao
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Huishu Tang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Minhao Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Linhai Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China.,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
| |
Collapse
|
6
|
Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. Animals (Basel) 2022; 12:ani12243542. [PMID: 36552462 PMCID: PMC9774311 DOI: 10.3390/ani12243542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease in domestic swine. Signaling lymphocytic activation molecule family member 1 (SLAMF1) is a costimulatory factor that is involved in innate immunity, inflammation, and infection. Here, we demonstrate that overexpression of the SLAMF1 gene inhibited PRRSV replication significantly and reduced the levels of key signaling pathways, including MyD88, RIG-I, TLR2, TRIF, and inflammatory factors IL-6, IL-1β, IL-8, TNF-β, TNF-α, and IFN-α in vitro. However, the knockdown of the SLAMF1 gene could enhance replication of the PRRSV and the levels of key signaling pathways and inflammatory factors. Overall, our results identify a new, to our knowledge, antagonist of the PRRSV, as well as a novel antagonistic mechanism evolved by inhibiting innate immunity and inflammation, providing a new reference and direction for PRRSV disease resistance breeding.
Collapse
|
7
|
Qian Y, Yang T, Liang H, Deng M. Myeloid checkpoints for cancer immunotherapy. Chin J Cancer Res 2022; 34:460-482. [PMID: 36398127 PMCID: PMC9646457 DOI: 10.21147/j.issn.1000-9604.2022.05.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2023] Open
Abstract
Myeloid checkpoints are receptors on the myeloid cell surface which can mediate inhibitory signals to modulate anti-tumor immune activities. They can either inhibit cellular phagocytosis or suppress T cells and are thus involved in the pathogenesis of various diseases. In the tumor microenvironment, besides killing tumor cells by phagocytosis or activating anti-tumor immunity by tumor antigen presentation, myeloid cells could execute pro-tumor efficacies through myeloid checkpoints by interacting with counter-receptors on other immune cells or cancer cells. In summary, myeloid checkpoints may be promising therapeutic targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Yixin Qian
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Ting Yang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| |
Collapse
|
8
|
O'Connell P, Blake MK, Godbehere S, Amalfitano A, Aldhamen YA. SLAMF7 modulates B cells and adaptive immunity to regulate susceptibility to CNS autoimmunity. J Neuroinflammation 2022; 19:241. [PMID: 36199066 PMCID: PMC9533612 DOI: 10.1186/s12974-022-02594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic, debilitating condition characterized by CNS autoimmunity stemming from a complex etiology involving both environmental and genetic factors. Our current understanding of MS points to dysregulation of the immune system as the pathogenic culprit, however, it remains unknown as to how the many genes associated with increased susceptibility to MS are involved. One such gene linked to MS susceptibility and known to regulate immune function is the self-ligand immune cell receptor SLAMF7. Methods We subjected WT and SLAMF7−/− mice to multiple EAE models, compared disease severity, and comprehensively profiled the CNS immune landscape of these mice. We identified all SLAMF7-expressing CNS immune cells and compared the entire CNS immune niche between genotypes. We performed deep phenotyping and in vitro functional studies of B and T cells via spectral cytometry and BioPlex assays. Adoptive transfer studies involving the transfer of WT and SLAMF7−/− B cells into B cell-deficient mice (μMT) were also performed. Finally, B–T cell co-culture studies were performed, and a comparative cell–cell interaction network derived from scRNA-seq data of SLAMF7+ vs. SLAMF7− human CSF immune cells was constructed. Results We found SLAMF7−/− mice to be more susceptible to EAE compared to WT mice and found SLAMF7 to be expressed on numerous CNS immune cell subsets. Absence of SLAMF7 did not grossly alter the CNS immune landscape, but allowed for altered immune cell subset infiltration during EAE in a model-dependent manner. Global lack of SLAMF7 expression increased myeloid cell activation states along with augmented T cell anti-MOG immunity. B cell profiling studies revealed increased activation states of specific plasma and B cell subsets in SLAMF7−/− mice during EAE, and functional co-culture studies determined that SLAMF7−/− B cells induce exaggerated T cell activation. Adoptive transfer studies revealed that the increased susceptibility of SLAMF7−/− mice to EAE is partly B cell dependent and reconstruction of the human CSF SLAMF7-interactome found B cells to be critical to cell–cell communication between SLAMF7-expressing cells. Conclusions Our studies have identified novel roles for SLAMF7 in CNS immune regulation and B cell function, and illuminate underpinnings of the genetic association between SLAMF7 and MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02594-9.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Davalos V, García-Prieto CA, Ferrer G, Aguilera-Albesa S, Valencia-Ramos J, Rodríguez-Palmero A, Ruiz M, Planas-Serra L, Jordan I, Alegría I, Flores-Pérez P, Cantarín V, Fumadó V, Viadero MT, Rodrigo C, Méndez-Hernández M, López-Granados E, Colobran R, Rivière JG, Soler-Palacín P, Pujol A, Esteller M. Epigenetic profiling linked to multisystem inflammatory syndrome in children (MIS-C): A multicenter, retrospective study. EClinicalMedicine 2022; 50:101515. [PMID: 35770252 PMCID: PMC9233426 DOI: 10.1016/j.eclinm.2022.101515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. METHODS Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C = 29 and non-MIS-C = 56) and validation (MIS-C = 14 and non-MIS-C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. FINDINGS The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. INTERPRETATION We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder. FUNDING Unstoppable campaign of Josep Carreras Leukaemia Foundation, Fundació La Marató de TV3, Cellex Foundation and CERCA Programme/Generalitat de Catalunya.
Collapse
Affiliation(s)
- Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Carlos A. García-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Gerardo Ferrer
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Spain
| | | | | | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Iolanda Jordan
- Pediatric Critical Care Unit, Hospital Universitari Sant Joan de Deu, Barcelona, Catalonia, Spain
| | | | | | - Verónica Cantarín
- Pediatrics Department, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Victoria Fumadó
- Unitat de Malalties Infeccioses i Importades, Servei de Pediatría, Infectious and Imported Diseases, Pediatric Unit, Hospital Universitari Sant Joan de Deú, Barcelona, Catalonia, Spain
| | - Maria Teresa Viadero
- Servicio de Pediatría del Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carlos Rodrigo
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Maria Méndez-Hernández
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Eduardo López-Granados
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Department of Immunology, La Paz University Hospital, Madrid, Spain; La Paz Institute of Biomedical Research, Madrid, Spain
| | - Roger Colobran
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Corresponding author at: Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain
- Corresponding author at: Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
10
|
O'Connell P, Blake MK, Pepelyayeva Y, Hyslop S, Godbehere S, Angarita AM, Pereira-Hicks C, Amalfitano A, Aldhamen YA. Adenoviral delivery of an immunomodulatory protein to the tumor microenvironment controls tumor growth. Mol Ther Oncolytics 2022; 24:180-193. [PMID: 35036523 PMCID: PMC8741417 DOI: 10.1016/j.omto.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/04/2021] [Indexed: 11/15/2022] Open
Abstract
Targeted modulation of the immune system against tumors can achieve responses in otherwise refractory cancers, which has spurred efforts aimed at optimizing such strategies. To this end, we have previously investigated cancer immunotherapy approaches using recombinant adenovirus vectors, as well as via modulation of the self-ligand receptor SLAMF7. Here, we present a gene transfer-based immunotherapy approach using targeted expression of a SLAMF7-Fc fusion construct directly into tumors at high concentrations via a recombinant adenoviral vector (Ad-SF7-Fc). Using multiple murine cancer models, we show that Ad-SF7-Fc can induce tumor control via augmentation of innate immunity; specifically, induction of type I interferons and activation of dendritic cells (DCs) and macrophages. Analogously, we find that modulating SLAMF7 signaling via an adenoviral vector expressing its intracellular adaptor, EAT-2, is also capable of inducing tumor control. Finally, we employ a novel in vivo prediction approach and dataset integration with machine learning to dissect how Ad-SF7-Fc modulates cell-type-specific responses in the tumor microenvironment to achieve tumor control. Thus, our novel combinatorial cancer immunotherapy highlights the benefit of multimodal immune modulation and lays a framework for combination with complementary approaches capable of inducing adaptive immune responses.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Maja K. Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sean Hyslop
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Ariana M. Angarita
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Cristiane Pereira-Hicks
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
O'Connell P, Hyslop S, Blake MK, Godbehere S, Amalfitano A, Aldhamen YA. SLAMF7 Signaling Reprograms T Cells toward Exhaustion in the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2020; 206:193-205. [PMID: 33288545 DOI: 10.4049/jimmunol.2000300] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
T cell exhaustion represents one of the most pervasive strategies tumors employ to circumvent the immune system. Although repetitive, cognate TCR signaling is recognized as the primary driving force behind this phenomenon, and it remains unknown what other forces drive T cell exhaustion in the tumor microenvironment (TME). In this study, we show that activation of the self-ligand SLAMF7 immune receptor on T cells induced STAT1 and STAT3 phosphorylation, expression of multiple inhibitory receptors, and transcription factors associated with T cell exhaustion. Analysis of The Cancer Genome Atlas revealed that SLAMF7 transcript levels were strongly correlated with various inhibitory receptors and that high SLAMF7 expression was indicative of poor survival in clear cell renal cell carcinoma (ccRCC). Targeted reanalysis of a CyTOF dataset, which profiled the TME in 73 ccRCC patients, revealed cell-type-specific SLAMF7 expression patterns, strong correlations between exhausted T cells and SLAMF7+ tumor-associated macrophages (TAMs), and a unique subset of SLAMF7highCD38high TAMs. These SLAMF7highCD38high TAMs showed the strongest correlations with exhausted T cells and were an independent prognostic factor in ccRCC. Confirmatory ex vivo coculture studies validated that SLAMF7-SLAMF7 interactions between murine TAMs and CD8+ T cells induce expression of multiple inhibitory receptors. Finally, mice lacking SLAMF7 show restricted growth of B16-F10 tumors, and CD8+ T cells from these mice express less PD-1 and TOX and exhibited an impaired ability to progress through the exhaustion developmental trajectory to terminal exhaustion. These findings suggest that SLAMF7 might play an important role in modulating T cell function in the TME.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Sean Hyslop
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and
| |
Collapse
|