1
|
Dishlers A, Petrovskis I, Skrastina D, Zarina I, Lieknina I, Jansons J, Akopjana I, Zakova J, Ose V, Sominskaya I. PreS1 Containing HBc VLPs for the Development of a Combined Therapeutic/Prophylactic Hepatitis B Vaccine. Microorganisms 2023; 11:microorganisms11040972. [PMID: 37110395 PMCID: PMC10142831 DOI: 10.3390/microorganisms11040972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The available HBV vaccines based on the HBV surface protein are manufactured in yeasts and demonstrate excellent prophylactic but no therapeutic activity and are thus ineffective against chronic HBV infection. Five different HBV core proteins (HBc)-full length and C-terminally truncated-were used for the insertion of the short, preS1,aa 20-47 and long, preS1phil, aa 12-60 + 89-119 fragments. Modified virus-like particles (VLPs) were compared for their biotechnological and immunological properties. The expression level of HBc-preS1 proteins was high for all investigated proteins, allowing us to obtain 10-20 mg of purified VLPs from a gram of biomass with the combination of gel filtration and ion-exchange chromatography to reach approximately 90% purity of target proteins. The immunogenicity of chimeric VLPs was tested in BALB/c mice, showing a high anti-preS1 response and substantial T-cell proliferation after stimulation with HBc protein. Targeted incorporation of oligonucleotide ODN 1668 in modified HBc-preS1 VLPs was demonstrated.
Collapse
Affiliation(s)
- Andris Dishlers
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Ieva Zarina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Jelena Zakova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Velta Ose
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| |
Collapse
|
2
|
Ghasemian K, Broer I, Schön J, Killisch R, Kolp N, Springer A, Huckauf J. Oral and Subcutaneous Immunization with a Plant-Produced Mouse-Specific Zona Pellucida 3 Peptide Presented on Hepatitis B Core Antigen Virus-like Particles. Vaccines (Basel) 2023; 11:vaccines11020462. [PMID: 36851339 PMCID: PMC9963689 DOI: 10.3390/vaccines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
A short mouse-specific peptide from zona pellucida 3 (mZP3, amino acids 328-342) has been shown to be associated with antibody-mediated contraception. In this study, we investigated the production of mZP3 in the plant, as an orally applicable host, and examined the immunogenicity of this small peptide in the BALB/c mouse model. The mZP3 peptide was inserted into the major immunodominant region of the hepatitis B core antigen and was produced in Nicotiana benthamiana plants via Agrobacterium-mediated transient expression. Soluble HBcAg-mZP3 accumulated at levels up to 2.63 mg/g leaf dry weight (LDW) containing ~172 µg/mg LDW mZP3 peptide. Sucrose gradient analysis and electron microscopy indicated the assembly of the HBcAg-mZP3 virus-like particles (VLPs) in the soluble protein fraction. Subcutaneously administered mZP3 peptide displayed on HBcAg VLPs was immunogenic in BALB/c mice at a relatively low dosage (5.5 µg mZP3 per dose) and led to the generation of mZP3-specific antibodies that bound to the native zona pellucida of wild mice. Oral delivery of dried leaves expressing HBcAg-mZP3 also elicited mZP3-specific serum IgG and mucosal IgA that cross-reacted with the zona pellucida of wild mice. According to these results, it is worthwhile to investigate the efficiency of plants producing HBcAg-mZP3 VLPs as immunogenic edible baits in reducing the fertility of wild mice through inducing antibodies that cross-react to the zona pellucida.
Collapse
Affiliation(s)
- Khadijeh Ghasemian
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Inge Broer
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Jennifer Schön
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany
| | - Richard Killisch
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Nadine Kolp
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence:
| |
Collapse
|
3
|
Vasilev N. Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. PLANTA MEDICA 2022; 88:1175-1189. [PMID: 34521134 DOI: 10.1055/a-1576-4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factories' commercial potential for recombinant proteins.
Collapse
Affiliation(s)
- Nikolay Vasilev
- TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
| |
Collapse
|
4
|
Abstract
The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.
Collapse
Affiliation(s)
- Jennifer Stander
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Sandiswa Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| |
Collapse
|
5
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
6
|
Chincinska IA. Leaf infiltration in plant science: old method, new possibilities. PLANT METHODS 2021; 17:83. [PMID: 34321022 PMCID: PMC8316707 DOI: 10.1186/s13007-021-00782-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/11/2021] [Indexed: 05/07/2023]
Abstract
The penetration of substances from the surface to deep inside plant tissues is called infiltration. Although various plant tissues may be effectively saturated with externally applied fluid, most described infiltration strategies have been developed for leaves. The infiltration process can be spontaneous (under normal atmospheric pressure) or forced by a pressure difference generated between the lamina surface and the inside of the leaf. Spontaneous infiltration of leaf laminae is possible with the use of liquids with sufficiently low surface tension. Forced infiltration is most commonly performed using needle-less syringes or vacuum pumps.Leaf infiltration is widely used in plant sciences for both research and application purposes, usually as a starting technique to obtain plant material for advanced experimental procedures. Leaf infiltration followed by gentle centrifugation allows to obtain the apoplastic fluid for further analyses including various omics. In studies of plant-microorganism interactions, infiltration is used for the controlled introduction of bacterial suspensions into leaf tissues or for the isolation of microorganisms inhabiting apoplastic spaces of leaves. The methods based on infiltration of target tissues allow the penetration of dyes, fixatives and other substances improving the quality of microscopic imaging. Infiltration has found a special application in plant biotechnology as a method of transient transformation with the use of Agrobacterium suspension (agroinfiltration) enabling genetic modifications of mature plant leaves, including the local induction of mutations using genome editing tools. In plant nanobiotechnology, the leaves of the target plants can be infiltrated with suitably prepared nanoparticles, which can act as light sensors or increase the plant resistance to environmental stress. In addition the infiltration has been also intensively studied due to the undesirable effects of this phenomenon in some food technology sectors, such as accidental contamination of leafy greens with pathogenic bacteria during the vacuum cooling process.This review, inspired by the growing interest of the scientists from various fields of plant science in the phenomenon of infiltration, provides the description of different infiltration methods and summarizes the recent applications of this technique in plant physiology, phytopathology and plant (nano-)biotechnology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
7
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
8
|
Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Curr Opin Colloid Interface Sci 2021; 54. [PMID: 33967586 DOI: 10.1016/j.cocis.2021.101452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches of their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. Ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall and role of GALT in inducing tolerance facilitate prevention or treatment allergic, autoimmune diseases or anti-drug antibody responses. Delivery of functional proteins facilitate treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in cGMP facilities, IND enabling studies for clinical advancement and FDA approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.
Collapse
Affiliation(s)
- Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|