1
|
Yamaura H, Shimoyama A, Hosomi K, Kabayama K, Kunisawa J, Fukase K. Chemical Synthesis of Acetobacter pasteurianus Lipid A with a Unique Tetrasaccharide Backbone and Evaluation of Its Immunological Functions. Angew Chem Int Ed Engl 2024; 63:e202402922. [PMID: 38581637 DOI: 10.1002/anie.202402922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.
Collapse
Affiliation(s)
- Haruki Yamaura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Osaka, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| |
Collapse
|
2
|
Kajiyama S, Nagatake T, Ishikawa S, Hosomi K, Shimada Y, Matsui Y, Kunisawa J. Lentinula Edodes Mycelia extract regulates the function of antigen-presenting cells to activate immune cells and prevent tumor-induced deterioration of immune function. BMC Complement Med Ther 2023; 23:281. [PMID: 37553633 PMCID: PMC10408224 DOI: 10.1186/s12906-023-04106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Immune cell activation is essential for cancer rejection; however, the tumor microenvironment leads to deterioration of immune function, which enables cancer cells to survive and proliferate. We previously reported that oral ingestion of Lentinula Edodes Mycelia (L.E.M.) extract enhances the tumor antigen-specific T-cell response and exerts an antitumor effect in a tumor-bearing mouse model. In this study, we focused on antigen-presenting cells (APCs) located upstream of the immune system, induced a T-cell response, then examined the impact of L.E.M. extract on the APCs. L.E.M. extract enhanced the expression of MHC-I, MHC-II, CD86, CD80, and CD40 in bone marrow-derived dendritic cells (DCs) and strongly induced the production of IL-12. L.E.M.-stimulated DCs enhanced IFN-γ production from CD8+ T cells and induced their differentiation into effector cells. Furthermore, L.E.M. extract promoted IL-12 production and suppressed the production of IL-10 and TGF-β by transforming bone marrow-derived macrophages into M1-like macrophages. Furthermore, in a B16F10 melanoma inoculation model, DCs in the spleen were decreased and their activation was suppressed by the presence of cancer; however, ingestion of L.E.M. extract prevented this functional deterioration of DCs. In the spleen of cancer-bearing mice, the number of CD11b- F4/80+ macrophages in a hypoactivated state was also increased, whereas L.E.M. extract suppressed the increase of such macrophages. These findings suggest that L.E.M. extract may exhibit an antitumor immune response by regulating the function of APCs to induce cytotoxic T lymphocytes, as well as by suppressing the decline in antigen-presenting cell activity caused by the presence of cancer.
Collapse
Affiliation(s)
- Shota Kajiyama
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan
- Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Satoru Ishikawa
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan
| | - Yuki Shimada
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Yasunori Matsui
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Science, Osaka University, Suita, Japan.
| |
Collapse
|
3
|
Yang H, Sherman ME, Koo CJ, Treaster LM, Smith JP, Gallaher SG, Goodlett DR, Sweet CR, Ernst RK. Structure Determination of Lipid A with Multiple Glycosylation Sites by Tandem MS of Lithium-Adducted Negative Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1047-1055. [PMID: 37184080 DOI: 10.1021/jasms.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
FLATn is a tandem mass spectrometric technique that can be used to rapidly generate spectral information applicable for structural elucidation of lipids like lipid A from Gram-negative bacterial species from a single bacterial colony. In this study, we extend the scope and capability of FLATn by tandem MS fragmentation of lithium-adducted molecular lipid A anions and fragments (FLATn-Li) that provides additional structural and diagnostic data from FLATn samples allowing for the discrimination of terminal phosphate modifications in a variety of pathogenic and environmental species. Using FLATn-Li, we elucidated the lipid A structure from several bacterial species, including novel structures from arctic bacterioplankton of the Duganella and Massilia genera that favor 4-amino-4-deoxy-l-arabinopyranose (Ara4N) modification at the 1-phosphate position and that demonstrate double glycosylation with Ara4N at the 1 and 4' phosphate positions simultaneously. The structures characterized in this work demonstrate that some environmental psychrophilic species make extensive use of this structural lipid A modification previously characterized as a pathogenic adaptation and the structural basis of resistance to cationic antimicrobial peptides. This observation extends the role of phosphate modification(s) in environmental species adaptation and suggests that Ara4N modification can functionally replace the positive charge of the phosphoethanolamine modification that is more typically found attached to the 1-phosphate position of modified lipid A.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States of America
| | - Matthew E Sherman
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States of America
| | - Caitlyn J Koo
- Chemistry Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
- School of Medicine, Uniformed Services University, Bethesda, Maryland 20814, United States of America
| | - Logan M Treaster
- Chemistry Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
- School of Medicine, University of Kansas, Kansas City, Kansas 66160, United States of America
| | - Joseph P Smith
- Oceanography Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
| | - Shawn G Gallaher
- Oceanography Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, British Columbia V8Z 7Z8, Canada
| | - Charles R Sweet
- Chemistry Department, United States Naval Academy, Annapolis, Maryland 21402, United States of America
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States of America
| |
Collapse
|
4
|
Sun X, Hosomi K, Shimoyama A, Yoshii K, Lan H, Wang Y, Yamaura H, Nagatake T, Ishii KJ, Akira S, Kiyono H, Fukase K, Kunisawa J. TLR4 agonist activity of Alcaligenes lipid a utilizes MyD88 and TRIF signaling pathways for efficient antigen presentation and T cell differentiation by dendritic cells. Int Immunopharmacol 2023; 117:109852. [PMID: 36806039 DOI: 10.1016/j.intimp.2023.109852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
Alcaligenes faecalis was previously identified as an intestinal lymphoid tissue-resident commensal bacteria, and our subsequent studies showed that lipopolysaccharide and its core active element (i.e., lipid A) have a potent adjuvant activity to promote preferentially antigen-specific Th17 response and antibody production. Here, we compared A. faecalis lipid A (ALA) with monophosphoryl lipid A, a licensed lipid A-based adjuvant, to elucidate the immunological mechanism underlying the adjuvant properties of ALA. Compared with monophosphoryl lipid A, ALA induced higher levels of MHC class II molecules and costimulatory CD40, CD80, and CD86 on dendritic cells (DCs), which in turn resulted in strong T cell activation. Moreover, ALA more effectively promoted the production of IL-6 and IL-23 from DCs than did monophosphoryl lipid A, thus leading to preferential induction of Th17 and Th1 cells. As underlying mechanisms, we found that the ALA-TLR4 axis stimulated both MyD88- and TRIF-mediated signaling pathways, whereas monophosphoryl lipid A was biased toward TRIF signaling. These findings revealed the effects of ALA on DCs and T cells and its induction pattern on signaling pathways.
Collapse
Affiliation(s)
- Xiao Sun
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Atsushi Shimoyama
- Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan
| | - Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yunru Wang
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Haruki Yamaura
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Ken J Ishii
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Kiyono
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), San Diego, CA, United States; Chiba University (CU)-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), UCSD, San Diego, CA, United States; Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Fukase
- Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Graduate School of Science, Osaka University, Osaka, Japan; Collaborative Research between NIBIOHN and Graduate School of Science, Forefront Research Center, Osaka University, Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan; Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan; Graduate School of Dentistry, Osaka University, Suita, Japan.
| |
Collapse
|
5
|
Abstract
Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, and its active principle, lipid A, have immunostimulatory properties and thus potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, it is necessary to structurally modify LPS and lipid A to minimize toxicity while maintaining adjuvant effects for use as vaccine adjuvants. Various studies have focused on the chemical synthetic method of lipid As and their structure-activity relationship, which are reviewed in this chapter.
Collapse
|
6
|
Zhang Z, Tang Y, Fang W, Cui K, Xu D, Liu G, Chi S, Tan B, Mai K, Ai Q. Octanoate Alleviates Dietary Soybean Oil-Induced Intestinal Physical Barrier Damage, Oxidative Stress, Inflammatory Response and Microbial Dysbiosis in Large Yellow Croaker ( Larimichthys Crocea). Front Immunol 2022; 13:892901. [PMID: 35844501 PMCID: PMC9277137 DOI: 10.3389/fimmu.2022.892901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Octanoate is a type of classical medium-chain fatty acids, which is widely used to treat neurological and metabolic syndrome. However, the specific role of octanoate in repairing intestinal health impairment is currently unknown. Therefore, we investigated whether dietary octanoate repaired the intestinal damage induced by surplus soybean oil in Larimichthys crocea. In this study, dietary octanoate alleviated abnormal morphology of the intestine and enhanced expression of ZO-1 and ZO-2 to improve intestinal physical barrier. Further, dietary octanoate increased antioxidant enzymic activities and decreased the level of ROS to alleviate the intestinal oxidative stress. Dietary octanoate also attenuated the expression of proinflammatory cytokines and the polarity of macrophage to reduce the intestinal inflammatory response. Moreover, the result of intestinal microbial 16S rRNA sequence showed that dietary octanoate repaired the intestinal mucosal microbial dysbiosis, and increased the relative abundance of Lactobacillus. Dietary octanoate supplementation also increased the level of acetic acid in intestinal content and serum through increasing the abundance of acetate-producing strains. Overall, in Larimichthys crocea, dietary octanoate might alleviated oxidative stress, inflammatory response and microbial dysbiosis to repair the intestinal damage induced by surplus soybean oil. This work provides vital insights into the underlying mechanisms and treatment strategies for intestinal damage in vertebrates.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Guobin Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Utilization of gut environment-mediated control system of host immunity in the development of vaccine adjuvants. Vaccine 2022; 40:5399-5403. [DOI: 10.1016/j.vaccine.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
|
8
|
Liu Z, Hosomi K, Shimoyama A, Yoshii K, Sun X, Lan H, Wang Y, Yamaura H, Kenneth D, Saika A, Nagatake T, Kiyono H, Fukase K, Kunisawa J. Chemically Synthesized Alcaligenes Lipid A as an Adjuvant to Augment Immune Responses to Haemophilus Influenzae Type B Conjugate Vaccine. Front Pharmacol 2021; 12:763657. [PMID: 34744743 PMCID: PMC8569242 DOI: 10.3389/fphar.2021.763657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
We previously identified Alcaligenes spp. as a commensal bacterium that resides in lymphoid tissues, including Peyer’s patches. We found that Alcaligenes-derived lipopolysaccharide acted as a weak agonist of Toll-like receptor four due to the unique structure of lipid A, which lies in the core of lipopolysaccharide. This feature allowed the use of chemically synthesized Alcaligenes lipid A as a safe synthetic vaccine adjuvant that induces Th17 polarization to enhance systemic IgG and respiratory IgA responses to T-cell–dependent antigens (e.g., ovalbumin and pneumococcal surface protein A) without excessive inflammation. Here, we examined the adjuvant activity of Alcaligenes lipid A on a Haemophilus influenzae B conjugate vaccine that contains capsular polysaccharide polyribosyl ribitol phosphate (PRP), a T-cell–independent antigen, conjugated with the T-cell–dependent tetanus toxoid (TT) antigen (i.e., PRP-TT). When mice were subcutaneously immunized with PRP alone or mixed with TT, Alcaligenes lipid A did not affect PRP-specific IgG production. In contrast, PRP-specific serum IgG responses were enhanced when mice were immunized with PRP-TT, but these responses were impaired in similarly immunized T-cell—deficient nude mice. Furthermore, TT-specific—but not PRP-specific—T-cell activation occurred in mice immunized with PRP-TT together with Alcaligenes lipid A. In addition, coculture with Alcaligenes lipid A promoted significant proliferation of and enhanced antibody production by B cells. Together, these findings suggest that Alcaligenes lipid A exerts an adjuvant activity on thymus-independent Hib polysaccharide antigen in the presence of a T-cell–dependent conjugate carrier antigen.
Collapse
Affiliation(s)
- Zilai Liu
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan
| | | | - Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Medicine, Osaka University, Suita, Japan
| | - Xiao Sun
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yunru Wang
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Haruki Yamaura
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Davie Kenneth
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), San Diego, CA, United States.,Chiba University (CU)-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), UCSD, San Diego, CA, United States.,Future Medicine Education and Research Organization, Chiba University, Chiba, Japan.,Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Fukase
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Graduate School of Science, Osaka University, Toyonaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Kobe University, Kobe, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Shimoyama A, Fukase K. Lipid A-Mediated Bacterial-Host Chemical Ecology: Synthetic Research of Bacterial Lipid As and Their Development as Adjuvants. Molecules 2021; 26:molecules26206294. [PMID: 34684874 PMCID: PMC8538916 DOI: 10.3390/molecules26206294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial-host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.
Collapse
Affiliation(s)
- Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Correspondence: (A.S.); (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Correspondence: (A.S.); (K.F.)
| |
Collapse
|
10
|
Wang Y, Hosomi K, Shimoyama A, Yoshii K, Nagatake T, Fujimoto Y, Kiyono H, Fukase K, Kunisawa J. Lipopolysaccharide Derived From the Lymphoid-Resident Commensal Bacteria Alcaligenes faecalis Functions as an Effective Nasal Adjuvant to Augment IgA Antibody and Th17 Cell Responses. Front Immunol 2021; 12:699349. [PMID: 34276692 PMCID: PMC8281128 DOI: 10.3389/fimmu.2021.699349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Alcaligenes spp., including A. faecalis, is a gram-negative facultative bacterium uniquely residing inside the Peyer's patches. We previously showed that A. faecalis-derived lipopolysaccharides (Alcaligenes LPS) acts as a weak agonist of toll-like receptor 4 to activate dendritic cells and shows adjuvant activity by enhancing IgG and Th17 responses to systemic vaccination. Here, we examined the efficacy of Alcaligenes LPS as a nasal vaccine adjuvant. Nasal immunization with ovalbumin (OVA) plus Alcaligenes LPS induced follicular T helper cells and germinal center formation in the nasopharynx-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs), and consequently enhanced OVA-specific IgA and IgG responses in the respiratory tract and serum. In addition, nasal immunization with OVA plus Alcaligenes LPS induced OVA-specific T cells producing IL-17 and/or IL-10, whereas nasal immunization with OVA plus cholera toxin (CT) induced OVA-specific T cells producing IFN-γ and IL-17, which are recognized as pathogenic type of Th17 cells. In addition, CT, but not Alcaligenes LPS, promoted the production of TNF-α and IL-5 by T cells. Nasal immunization with OVA plus CT, but not Alcaligenes LPS, led to increased numbers of neutrophils and eosinophils in the nasal cavity. Together, these findings indicate that the benign nature of Alcaligenes LPS is an effective nasal vaccine adjuvant that induces antigen-specific mucosal and systemic immune responses without activation of inflammatory cascade after nasal administration.
Collapse
Affiliation(s)
- Yunru Wang
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Japan
- Institute for Radiation Sciences, Osaka University, Suita, Japan
| | - Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine, University of California San Diego, La Jolla, CA, United States
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Japan
- Institute for Radiation Sciences, Osaka University, Suita, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Dentistry, Osaka University, Suita, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
11
|
Wilson HL, Haddadi A, Mutwiri GK. Vaccine Formulation for Infectious Diseases and Adjuvant Mechanisms of Action. Vaccines (Basel) 2021; 9:vaccines9060667. [PMID: 34207033 PMCID: PMC8235003 DOI: 10.3390/vaccines9060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Heather L. Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Correspondence:
| | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - George K. Mutwiri
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
12
|
Shimoyama A, Di Lorenzo F, Yamaura H, Mizote K, Palmigiano A, Pither MD, Speciale I, Uto T, Masui S, Sturiale L, Garozzo D, Hosomi K, Shibata N, Kabayama K, Fujimoto Y, Silipo A, Kunisawa J, Kiyono H, Molinaro A, Fukase K. Lipopolysaccharide from Gut-Associated Lymphoid-Tissue-Resident Alcaligenes faecalis: Complete Structure Determination and Chemical Synthesis of Its Lipid A. Angew Chem Int Ed Engl 2021; 60:10023-10031. [PMID: 33522128 PMCID: PMC8252424 DOI: 10.1002/anie.202012374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.
Collapse
Affiliation(s)
- Atsushi Shimoyama
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Project Research Center for Fundamental SciencesOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Haruki Yamaura
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Keisuke Mizote
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Angelo Palmigiano
- CNRInstitute for Polymers, Composites and Biomaterials IPCBVia P. Gaifami 1895126CataniaItaly
| | - Molly D. Pither
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Immacolata Speciale
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Tomoya Uto
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Seiji Masui
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Luisa Sturiale
- CNRInstitute for Polymers, Composites and Biomaterials IPCBVia P. Gaifami 1895126CataniaItaly
| | - Domenico Garozzo
- CNRInstitute for Polymers, Composites and Biomaterials IPCBVia P. Gaifami 1895126CataniaItaly
| | - Koji Hosomi
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental SystemNational Institutes of Biomedical Innovation, Health and NutritionOsaka567-0085Japan
| | - Naoko Shibata
- Faculty of Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Kazuya Kabayama
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Project Research Center for Fundamental SciencesOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| | - Yukari Fujimoto
- Faculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohamaKanagawa223-8522Japan
| | - Alba Silipo
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Jun Kunisawa
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental SystemNational Institutes of Biomedical Innovation, Health and NutritionOsaka567-0085Japan
- International Research and Development Center for Mucosal VaccinesThe Institute of Medical ScienceThe University of Tokyo4–6-1 Shirokanedai, Minato-kuTokyo108-8639Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal VaccinesThe Institute of Medical ScienceThe University of Tokyo4–6-1 Shirokanedai, Minato-kuTokyo108-8639Japan
| | - Antonio Molinaro
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Department of Chemical Sciences and Task Force on Microbiome StudiesUniversity of Naples Federico IIVia Cinthia 480126NaplesItaly
| | - Koichi Fukase
- Department of ChemistryGraduate School of ScienceOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
- Project Research Center for Fundamental SciencesOsaka University1-1 Machikaneyama, ToyonakaOsaka560-0043Japan
| |
Collapse
|
13
|
Shimoyama A, Di Lorenzo F, Yamaura H, Mizote K, Palmigiano A, Pither MD, Speciale I, Uto T, Masui S, Sturiale L, Garozzo D, Hosomi K, Shibata N, Kabayama K, Fujimoto Y, Silipo A, Kunisawa J, Kiyono H, Molinaro A, Fukase K. Lipopolysaccharide from Gut‐Associated Lymphoid‐Tissue‐Resident
Alcaligenes faecalis
: Complete Structure Determination and Chemical Synthesis of Its Lipid A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Shimoyama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Project Research Center for Fundamental Sciences Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Haruki Yamaura
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keisuke Mizote
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Angelo Palmigiano
- CNR Institute for Polymers, Composites and Biomaterials IPCB Via P. Gaifami 18 95126 Catania Italy
| | - Molly D. Pither
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Immacolata Speciale
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Tomoya Uto
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Seiji Masui
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Luisa Sturiale
- CNR Institute for Polymers, Composites and Biomaterials IPCB Via P. Gaifami 18 95126 Catania Italy
| | - Domenico Garozzo
- CNR Institute for Polymers, Composites and Biomaterials IPCB Via P. Gaifami 18 95126 Catania Italy
| | - Koji Hosomi
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
| | - Naoko Shibata
- Faculty of Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Kazuya Kabayama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Project Research Center for Fundamental Sciences Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yukari Fujimoto
- Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Alba Silipo
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Jun Kunisawa
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science The University of Tokyo 4–6-1 Shirokanedai, Minato-ku Tokyo 108-8639 Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science The University of Tokyo 4–6-1 Shirokanedai, Minato-ku Tokyo 108-8639 Japan
| | - Antonio Molinaro
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Sciences and Task Force on Microbiome Studies University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Project Research Center for Fundamental Sciences Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
14
|
Chemically Synthesized Alcaligenes Lipid A Shows a Potent and Safe Nasal Vaccine Adjuvant Activity for the Induction of Streptococcus pneumoniae-Specific IgA and Th17 Mediated Protective Immunity. Microorganisms 2020; 8:microorganisms8081102. [PMID: 32718009 PMCID: PMC7464877 DOI: 10.3390/microorganisms8081102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Effective and safe vaccine adjuvants are needed to appropriately augment mucosal vaccine effects. Our previous study demonstrated that lipopolysaccharide (LPS) from Peyer’s patch resident Alcaligenes stimulated dendritic cells to promote the production of mucosal immunity-enhancing cytokines (e.g., IL-6 and BAFF), thus enhancing antigen-specific immune responses (including IgA production and Th17 responses) without excessive inflammation. Here, we chemically synthesized Alcaligenes lipid A, the biologically active part of LPS, and examined its efficacy as a nasal vaccine adjuvant for the induction of protectively immunity against Streptococcus pneumoniae infection. Mice were nasally immunized with pneumococcal surface protein A (PspA) as a vaccine antigen for S. pneumoniae, together with Alcaligenes lipid A. Alcaligenes lipid A supported the generation of high levels of PspA-specific IgA and IgG responses through the augmentation of germinal center formation in the nasopharynx-associated lymphoid tissue and cervical lymph nodes (CLNs). Moreover, Alcaligenes lipid A promoted PspA-specific CD4+ Th17 responses in the CLNs and spleen. Furthermore, neutrophils were recruited to infection sites upon nasal infection and synchronized with the antigen-specific T and B cell responses, resulting in the protection against S. pneumoniae infection. Taken together, Alcaligenes lipid A could be applied to the prospective adjuvant to enhance nasal vaccine efficacy by means of augmenting both the innate and acquired arms of mucosal immunity against respiratory bacterial infection.
Collapse
|