1
|
Raha JR, Kim KH, Bhatnagar N, Liu R, Le CTT, Park BR, Grovenstein P, Pal SS, Ko EJ, Shin CH, Wang BZ, Kang SM. Supplementation of seasonal vaccine with multi-subtype neuraminidase and M2 ectodomain virus-like particle improves protection against homologous and heterologous influenza viruses in aged mice. Antiviral Res 2024; 225:105877. [PMID: 38561077 PMCID: PMC11023748 DOI: 10.1016/j.antiviral.2024.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The conventional inactivated split seasonal influenza vaccine offers low efficacy, particularly in the elderly and against antigenic variants. Here, to improve the efficacy of seasonal vaccination for the elderly population, we tested whether supplementing seasonal bivalent (H1N1 + H3N2) split (S) vaccine with M2 ectodomain repeat and multi-subtype consensus neuraminidase (NA) proteins (N1 NA + N2 NA + flu B NA) on a virus-like particle (NA-M2e) would induce enhanced cross-protection against different influenza viruses in aged mice. Immunization with split vaccine plus NA-M2e (S + NA-M2e) increased vaccine-specific IgG antibodies towards T-helper type 1 responses and hemagglutination inhibition titers. Aged mice with NA-M2e supplemented vaccination were protected against homologous and heterologous viruses at higher efficacies, as evidenced by preventing weight loss, lowering lung viral loads, inducing broadly cross-protective humoral immunity, and IFN-γ+ CD4 and CD8 T cell responses than those with seasonal vaccine. Overall, this study supports a new strategy of NA-M2e supplemented vaccination to enhance protection against homologous and antigenically different viruses in the elderly.
Collapse
Affiliation(s)
- Jannatul Ruhan Raha
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Rong Liu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Chau Thuy Tien Le
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Phillip Grovenstein
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Surya Sekhar Pal
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Eun-Ju Ko
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Chong Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
2
|
Pershina AG, Demin AM, Perekucha NA, Brikunova OY, Efimova LV, Nevskaya KV, Vakhrushev AV, Zgoda VG, Uimin MA, Minin AS, Malkeyeva D, Kiseleva E, Zima AP, Krasnov VP, Ogorodova LM. Peptide ligands on the PEGylated nanoparticle surface and human serum composition are key factors for the interaction between immune cells and nanoparticles. Colloids Surf B Biointerfaces 2023; 221:112981. [DOI: 10.1016/j.colsurfb.2022.112981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
3
|
Nuwarda RF, Alharbi AA, Kayser V. An Overview of Influenza Viruses and Vaccines. Vaccines (Basel) 2021; 9:1032. [PMID: 34579269 PMCID: PMC8473132 DOI: 10.3390/vaccines9091032] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
Influenza remains one of the major public health concerns because it causes annual epidemics and can potentially instigate a global pandemic. Numerous countermeasures, including vaccines and antiviral treatments, are in use against seasonal influenza infection; however, their effectiveness has always been discussed due to the ongoing resistance to antivirals and relatively low and unpredictable efficiency of influenza vaccines compared to other vaccines. The growing interest in vaccines as a promising approach to prevent and control influenza may provide alternative vaccine development options with potentially increased efficiency. In addition to currently available inactivated, live-attenuated, and recombinant influenza vaccines on the market, novel platforms such as virus-like particles (VLPs) and nanoparticles, and new vaccine formulations are presently being explored. These platforms provide the opportunity to design influenza vaccines with improved properties to maximize quality, efficacy, and safety. The influenza vaccine manufacturing process is also moving forward with advancements relating to egg- and cell-based production, purification processes, and studies into the physicochemical attributes and vaccine degradation pathways. These will contribute to the design of more stable, optimized vaccine formulations guided by contemporary analytical testing methods and via the implementation of the latest advances in the field.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia; (R.F.N.); (A.A.A.)
| |
Collapse
|
4
|
Shanko A, Shuklina M, Kovaleva A, Zabrodskaya Y, Vidyaeva I, Shaldzhyan A, Fadeev A, Korotkov A, Zaitceva M, Stepanova L, Tsybalova L, Kordyukova L, Katlinski A. Comparative Immunological Study in Mice of Inactivated Influenza Vaccines Used in the Russian Immunization Program. Vaccines (Basel) 2020; 8:vaccines8040756. [PMID: 33322762 PMCID: PMC7768547 DOI: 10.3390/vaccines8040756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
A series of commercial inactivated influenza vaccines (IIVs) used in the Russian National Immunization Program were characterized to evaluate their protective properties on an animal model. Standard methods for quantifying immune response, such as hemagglutination inhibition (HAI) assay and virus neutralization (VN) assay, allowed us to distinguish the immunogenic effect of various IIVs from that of placebo. However, these standard approaches are not suitable to determine the role of various vaccine components in immune response maturation. The expanded methodological base including an enzyme-linked immunosorbent assay (ELISA) and a neuraminidase ELISA (NA-ELISA) helped us to get wider characteristics and identify the effectiveness of various commercial vaccines depending on the antigen content. Investigations conducted showed that among the IIVs tested, Ultrix®, Ultrix® Quadri and VAXIGRIP® elicit the most balanced immune response, including a good NA response. For Ultrix®, Ultrix® Quadri, and SOVIGRIPP® (FORT LLC), the whole-virus specific antibody subclass IgG1, measured in ELISA, seriously prevailed over IgG2a, while, for VAXIGRIP® and SOVIGRIPP® (NPO Microgen JSC) preparations, the calculated IgG1/IgG2a ratio was close to 1. So, the immune response varied drastically across different commercial IIVs injected in mice.
Collapse
Affiliation(s)
- Andrei Shanko
- Research and Development Department, FORT LLC, 119435 Moscow, Russia
- N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, 123098 Moscow, Russia
- Correspondence: ; Tel.: +7-916-196-24-21
| | - Marina Shuklina
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Anna Kovaleva
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Yana Zabrodskaya
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
- Peter the Great Saint-Petersburg Polytechnical University, 194064 Saint-Petersburg, Russia
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Inna Vidyaeva
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Aram Shaldzhyan
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Artem Fadeev
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Alexander Korotkov
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Marina Zaitceva
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Liudmila Stepanova
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Liudmila Tsybalova
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (M.S.); (A.K.); (Y.Z.); (I.V.); (A.S.); (A.F.); (A.K.); (M.Z.); (L.S.); (L.T.)
| | - Larisa Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|