1
|
Balbi T, Bozzo M, Auguste M, Montagna M, Miglioli A, Drouet K, Vezzulli L, Canesi L. Impact of ocean warming on early development of the Mediterranean mussel Mytilus galloprovincialis: Effects on larval susceptibility to potential vibrio pathogens. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109937. [PMID: 39357629 DOI: 10.1016/j.fsi.2024.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected. The effects of temperature on larval susceptibility to infection were evaluated using Vibrio coralliilyticus, a coral pathogen increasingly associated with bivalve mortalities, whose ecology is affected by global warming. Malformations and mortalities at 48 hpf were observed at higher temperature and vibrio concentrations, with interactive effects. In non-lethal conditions, interactions on gene expression at 24 and 48 hpf were also detected. Although temperature is the main environmental driver affecting M. galloprovincialis early larvae, warming may increase the susceptibility to vibrio infection, with consequences on mussel populations.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Angelica Miglioli
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Kévin Drouet
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
2
|
Anjos C, Duarte D, Fatsini E, Matias D, Cabrita E. Comparative transcriptome analysis reveals molecular damage associated with cryopreservation in Crassostrea angulata D-larvae rather than to cryoprotectant exposure. BMC Genomics 2024; 25:591. [PMID: 38867206 PMCID: PMC11167747 DOI: 10.1186/s12864-024-10473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.
Collapse
Affiliation(s)
- Catarina Anjos
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
- Portuguese Institute for Sea and Atmosphere-IPMA, Av. 5 de Outubro, Olhão, 8700-305, Portugal
| | - Daniel Duarte
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
| | - Domitília Matias
- Portuguese Institute for Sea and Atmosphere-IPMA, Av. 5 de Outubro, Olhão, 8700-305, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal.
| |
Collapse
|
3
|
Junaid M, Lu H, Din AU, Yu B, Liu Y, Li Y, Liu K, Yan J, Qi Z. Deciphering Microbiome, Transcriptome, and Metabolic Interactions in the Presence of Probiotic Lactobacillus acidophilus against Salmonella Typhimurium in a Murine Model. Antibiotics (Basel) 2024; 13:352. [PMID: 38667028 PMCID: PMC11047355 DOI: 10.3390/antibiotics13040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-β) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.
Collapse
Affiliation(s)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Bin Yu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China
| | - Kefei Liu
- Tianjin Shengji Group., Co., Ltd., No. 2, Hai Tai Development 2nd Road, Huayuan Industrial Zone, Tianjin 300384, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Hesser J, Mueller RS, Langdon C, Schubiger CB. Immunomodulatory effects of a probiotic combination treatment to improve the survival of Pacific oyster ( Crassostrea gigas) larvae against infection by Vibrio coralliilyticus. Front Immunol 2024; 15:1380089. [PMID: 38650950 PMCID: PMC11033467 DOI: 10.3389/fimmu.2024.1380089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction The culture of Pacific oysters (Crassostrea gigas) is of significant socio-economic importance in the U.S. Pacific Northwest and other temperate regions worldwide, with disease outbreaks acting as significant bottlenecks to the successful production of healthy seed larvae. Therefore, the current study aims to describe the mechanisms of a probiotic combination in improving the survival of C. gigas larvae. Specifically, we investigate changes in C. gigas larval gene expression in response to V. coralliilyticus infection with or without a pre-treatment of a novel probiotic combination. Methods Treatment groups consisted of replicates of Pacific oyster larvae exposed to a) a combination of four probiotic bacteria at a total concentration of 3.0 x 105 CFU/mL at 18 hours post-fertilization (hpf), b) pathogenic V. coralliilyticus RE22 at a concentration of 6.0 x 103 CFU/mL at 48 hpf, and c) the probiotic combination at 18 hpf and V. coralliilyticus RE22 at 48 hpf. RNA was extracted from washed larvae after 72 hpf, and transcriptome sequencing was used to identify significant differentially expressed genes (DEGs) within each treatment. Results Larvae challenged with V. coralliilyticus showed enhanced expression of genes responsible for inhibiting immune signaling (i.e., TNFAIP3, PSMD10) and inducing apoptosis (i.e., CDIP53). However, when pre-treated with the probiotic combination, these genes were no longer differentially expressed relative to untreated control larvae. Additionally, pre-treatment with the probiotic combination increased expression of immune signaling proteins and immune effectors (i.e., IL-17, MyD88). Apparent immunomodulation in response to probiotic treatment corresponds to an increase in the survival of C. gigas larvae infected with V. coralliilyticus by up to 82%. Discussion These results indicate that infection with V. coralliilyticus can suppress the larval immune response while also prompting cell death. Furthermore, the results suggest that the probiotic combination treatment negates the deleterious effects of V. coralliilyticus on larval gene expression while stimulating the expression of genes involved in infection defense mechanisms.
Collapse
Affiliation(s)
- Jennifer Hesser
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Ryan S. Mueller
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Chris Langdon
- Coastal Oregon Marine Experiment Station and Department of Fisheries, Wildlife, and Conservation Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Carla B. Schubiger
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
5
|
Zheng YD, Huang BW, Zhang X, Liu CF, Xin LS, Wang CM, Bai CM. The Probiotic Bacillus hwajinpoensis Colonizes the Digestive System of Crassostrea gigas Larvae and Protects Them from Vibrio alginolyticus Infection. Microorganisms 2023; 11:2918. [PMID: 38138062 PMCID: PMC10745402 DOI: 10.3390/microorganisms11122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The Pacific oyster Crassostrea gigas is one of the most important cultured marine species around the world. Production of Pacific oysters in China has depended primarily on hatchery produced seeds since 2016, with the successful introduction and development of triploid oysters. However, the seed supply of Pacific oysters is threatened by recurring mass mortality events in recent years. Vibriosis is the most commonly encountered disease associated with intensive oyster culture in hatcheries and nurseries. Vibrio alginolyticus and Bacillus hwajinpoensis were the two strains with pathogenic and probiotic effects, respectively, identified during the Pacific oyster larvae production. To monitor their colonization process in Pacific oyster larvae, green fluorescent protein (GFP) and red fluorescent protein (RFP) were labeled to the pathogenic V. alginolyticus and the probiotic B. hwajinpoensis stain, respectively. The pathogenic and probiotic effects of the two strains during the colonization process were then assessed. Stabile expression of GFP and RFP were observed in corresponding stains, and the capabilities of growth, biofilm formation and in vitro adhesion of GFP- and RFP- tagged stains were not significantly different from those of the wild-type strains. Usage of probiotics of 105 CFU/mL significantly inhibited the growth of pathogenic V. alginolyticus and reduced the mortality of D-sharped larvae. Both the pathogenic and probiotic strains employed a similar route to enter and colonize the oyster larvae, which indicates that competing with pathogens for binding and spreading sites were one of the mechanisms of B. hwajinpoensis to provide the probiotic effects to oyster larvae. In summary, employment of fluorescence-tagged pathogenic and probiotic strains simultaneously provides us with an excellent bioassay model to investigate the potential mechanisms of probiotics.
Collapse
Affiliation(s)
- Yu-Dong Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bo-Wen Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Xiang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chen-Feng Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lu-Sheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Chong-Ming Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Chang-Ming Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| |
Collapse
|
6
|
Dai W, Ye J, Xue Q, Liu S, Xu H, Liu M, Lin Z. Changes in Bacterial Communities of Kumamoto Oyster Larvae During Their Early Development and Following Vibrio Infection Resulting in a Mass Mortality Event. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:30-44. [PMID: 36370246 DOI: 10.1007/s10126-022-10178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Vibrio and Ostreid herpesvirus 1 are responsible for mass mortalities of oyster larvae in hatcheries. Relevant works have focused on their relationships with the disease when larval mortality occurs. On the contrary, little is known about how the resident microbiota in oyster larvae responds to Vibrio-infected disease causing mortality as the disease progressed, whereas this knowledge is fundamental to unveil the etiology of the disease. Here, we analyzed the temporal succession of the microbiome of Kumamoto oyster (Crassostrea sikamea) larvae during their early development, accompanied by a Vibrio-caused mortality event that occurred at the post D-stage of larval development in a shellfish hatchery in Ningbo, China, on June 2020. The main causative agent of larval mortality was attributable to Vibrio infection, which was confirmed by linearly increased Vibrio abundance over disease progression. Larval bacterial communities dramatically changed over host development and disease progression, as highlighted by reduced α-diversity and less diverse core taxa when the disease occurred. Null model and phylogenetic-based mean nearest taxon distance analyses showed that the relative importance of deterministic processes governing larval bacterial assembly initially increased over host development, whereas this dominance was depleted over disease progression. Furthermore, we screened the disease-discriminatory taxa with a significant change in their relative abundances, which could be indicative of disease progression. In addition, network analysis revealed that disease occurrence remodeled the co-occurrence patterns and niche characteristics of larval microbiota. Our findings demonstrate that the dysbiosis of resident bacterial communities and the shift of microecological mechanisms in the larval microbiome may contribute to mortality during oyster early development.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| |
Collapse
|
7
|
Hines IS, Markov Madanick J, Smith SA, Kuhn DD, Stevens AM. Analysis of the core bacterial community associated with consumer-ready Eastern oysters (Crassostrea virginica). PLoS One 2023; 18:e0281747. [PMID: 36812164 PMCID: PMC9946220 DOI: 10.1371/journal.pone.0281747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Shellfish, such as the Eastern oyster (Crassostrea virginica), are an important agricultural commodity. Previous research has demonstrated the importance of the native microbiome of oysters against exogenous challenges by non-native pathogens. However, the taxonomic makeup of the oyster microbiome and the impact of environmental factors on it are understudied. Research was conducted quarterly over a calendar year (February 2020 through February 2021) to analyze the taxonomic diversity of bacteria present within the microbiome of consumer-ready-to-eat live Eastern oysters. It was hypothesized that a core group of bacterial species would be present in the microbiome regardless of external factors such as the water temperature at the time of harvest or post-harvesting processing. At each time point, 18 Chesapeake Bay (eastern United States) watershed aquacultured oysters were acquired from a local grocery store, genomic DNA was extracted from the homogenized whole oyster tissues, and the bacterial 16S rRNA gene hypervariable V4 region was PCR-amplified using barcoded primers prior to sequencing via Illumina MiSeq and bioinformatic analysis of the data. A core group of bacteria were identified to be consistently associated with the Eastern oyster, including members of the phyla Firmicutes and Spirochaetota, represented by the families Mycoplasmataceae and Spirochaetaceae, respectively. The phyla Cyanobacterota and Campliobacterota became more predominant in relation to warmer or colder water column temperature, respectively, at the time of oyster harvest.
Collapse
Affiliation(s)
- Ian S. Hines
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Justin Markov Madanick
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephen A. Smith
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David D. Kuhn
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ehsannia S, Ahari H, Kakoolaki S, Anvar SA, Yousefi S. Effects of probiotics on Zebrafish model infected with Aeromonas hydrophila: spatial distribution, antimicrobial, and histopathological investigation. BMC Microbiol 2022; 22:167. [PMID: 35761217 PMCID: PMC9235220 DOI: 10.1186/s12866-022-02491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/11/2022] [Indexed: 11/11/2022] Open
Abstract
Usage of “probiotics” for treatment of food-borne pathogens associated diseases, makes a significant reduction in transmission of resistant bacteria, and antimicrobial resistance genes from aquaculture environments to humans. In this research, the authors aim to evaluate the immunomodulatory, and histological effects of two probiotic strains on the Zebrafish model. Fish models were treated with Lactobacillus delbrueckii (G2), Lactobacillus acidophilus (G3) and both probiotics (G4) and compared with the control group (G1) (only infected by pathogen and receiving no probiotic). Biometric tests, height, weight, and mortality rate of the fishes were assessed. Afterward, RT-PCR was conducted for bacterial existence of probiotic strains, and quantitative assessment of alterations in targeted immune genes. Subsequently, histological sampling was done for investigation of spatial distribution, and villus length in proximal, middle, and distal sections of intestinal tissues. Based on the results, G4 showed the highest gene expression for Lactobacillus acidophilus after 28 days (P < 0.05). G4 also showed an increase in the number of goblet cells and villus length in the middle and distal sections of intestinal tissue after 56 days. Furthermore, after 56 days, the highest number of intraepithelial cells was observed in the proximal sections of intestinal tissue in G4. G2 and G3 showed significant differences in comparison with G1 (P < 0.05). After 60 days, the highest gene expression for Lactobacillus bulgaricus was found in group treated with only this probiotic bacteria. The highest expression level of IL-1β and TNF-α were found in G1. The highest survival rate was in the case of groups only treated with Lactobacillus bulgaricus (G2). To sum up, it seems that usage of probiotics for the improvement of public health and fisheries industries can be helpful.
Collapse
|
9
|
Evans TG, Bible JM, Maynard A, Griffith KR, Sanford E, Kültz D. Proteomic changes associated with predator-induced morphological defenses in oysters. Mol Ecol 2022; 31:4254-4270. [PMID: 35754098 DOI: 10.1111/mec.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Inducible prey defenses occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co-occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defenses. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defenses. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with up-regulation of calcium transport proteins that could influence biomineralization. Inducible defenses evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were down-regulated by both oyster populations after exposure to drills, implying a trade-off between biomineralization and immune function. Following drill exposure, oysters from the population that co-occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform-specific protein expression. This trend suggests that a stronger inducible defense response evolved in oysters that co-occur with drills through modification of an existing mechanism.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Jillian M Bible
- Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, USA
| | - Ashley Maynard
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Kaylee R Griffith
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Variation in Survival and Gut Microbiome Composition of Hatchery-Grown Native Oysters at Various Locations within the Puget Sound. Microbiol Spectr 2022; 10:e0198221. [PMID: 35536036 PMCID: PMC9241838 DOI: 10.1128/spectrum.01982-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Olympia oyster (Ostrea lurida) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass (Zostera marina) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance.
Collapse
|
11
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
12
|
Bacteriophages against Vibrio coralliilyticus and Vibrio tubiashii: Isolation, Characterization, and Remediation of Larval Oyster Mortalities. Appl Environ Microbiol 2021; 87:AEM.00008-21. [PMID: 33674441 DOI: 10.1128/aem.00008-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Vibrio coralliilyticus and Vibrio tubiashii are pathogens responsible for high larval oyster mortality rates in shellfish hatcheries. Bacteriophage therapy was evaluated to determine its potential to remediate these mortalities. Sixteen phages against V. coralliilyticus and V. tubiashii were isolated and characterized from Hawaiian seawater. Fourteen isolates were members of the Myoviridae family, and two were members of the Siphoviridae In proof-of-principle trials, a cocktail of five phages reduced mortalities of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) by up to 91% 6 days after challenge with lethal doses of V. coralliilyticus Larval survival depended on the oyster species, the quantities of phages and vibrios applied, and the species and strain of Vibrio A later-generation cocktail, designated VCP300, was formulated with three lytic phages subsequently named Vibrio phages vB_VcorM-GR7B, vB_VcorM-GR11A, and vB_VcorM-GR28A (abbreviated 7B, 11A, and 28A, respectively). Together, these three phages displayed host specificity toward eight V. coralliilyticus strains and a V. tubiashii strain. Larval C. gigas mortalities from V. coralliilyticus strains RE98 and OCN008 were significantly reduced by >90% (P < 0.0001) over 6 days with phage treatment compared to those of untreated controls. Genomic sequencing of phages 7B, 11A, and 28A revealed 207,758-, 194,800-, and 154,046-bp linear DNA genomes, respectively, with the latter showing 92% similarity to V. coralliilyticus phage YC, a strain from the Great Barrier Reef, Australia. Phage 7B and 11A genomes showed little similarity to phages in the NCBI database. This study demonstrates the promising potential for phage therapy to reduce larval oyster mortalities in oyster hatcheries.IMPORTANCE Shellfish hatcheries encounter episodic outbreaks of larval oyster mortalities, jeopardizing the economic stability of hatcheries and the commercial shellfish industry. Shellfish pathogens like Vibrio coralliilyticus and Vibrio tubiashii have been recognized as major contributors of larval oyster mortalities in U.S. East and West Coast hatcheries for many years. This study isolated, identified, and characterized bacteriophages against these Vibrio species and demonstrated their ability to reduce mortalities from V. coralliilyticus in larval Pacific oysters and from both V. coralliilyticus and V. tubiashii in larval Eastern oysters. Phage therapy offers a promising approach for stimulating hatchery production to ensure the well-being of hatcheries and the commercial oyster trade.
Collapse
|
13
|
Memon FU, Yang Y, Leghari IH, Lv F, Soliman AM, Zhang W, Si H. Transcriptome Analysis Revealed Ameliorative Effects of Bacillus Based Probiotic on Immunity, Gut Barrier System, and Metabolism of Chicken under an Experimentally Induced Eimeria tenella Infection. Genes (Basel) 2021; 12:genes12040536. [PMID: 33917156 PMCID: PMC8067821 DOI: 10.3390/genes12040536] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, we performed transcriptome analysis in the cecum tissues of negative control untreated non-challenged (NC), positive control untreated challenged (PC), and Bacillus subtilis (B. subtilis) fed challenged chickens (BS + ET) in order to examine the underlying potential therapeutic mechanisms of Bacillus based probiotic feeding under an experimental Eimeria tenella (E. tenella) infection. Our results for clinical parameters showed that birds in probiotic diet decreased the bloody diarrhea scores, oocyst shedding, and lesion scores compared to positive control birds. RNA-sequencing (RNA-seq) analysis revealed that in total, 2509 up-regulated and 2465 down-regulated differentially expressed genes (DEGs) were detected in the PC group versus NC group comparison. In the comparison of BS + ET group versus PC group, a total of 784 up-regulated and 493 down-regulated DEGs were found. Among them, several DEGs encoding proteins involved in immunity, gut barrier integrity, homeostasis, and metabolism were up-regulated by the treatment of probiotic. Functional analysis of DEGs also revealed that some gene ontology (GO) terms related with immunity, metabolism and cellular development were significantly affected by the exposure of probiotic. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the DEGs in the cecum of B. subtilis-fed challenged group were mainly participated in the pathways related with immunity and gut barrier integrity, included mitogen-activated protein kinase (MAPK) signaling pathway, toll-like receptor (TLR) signaling pathway, extracellular matrix (ECM)–receptor interaction, tight junction, and so on. Taken together, these results suggest that Bacillus based probiotic modulate the immunity, maintain gut homeostasis as well as barrier system and improve chicken metabolism during E. tenella infection.
Collapse
Affiliation(s)
- Fareed Uddin Memon
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan;
| | - Yunqiao Yang
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Imdad Hussain Leghari
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan;
| | - Feifei Lv
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Ahmed M. Soliman
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Agricultural Research Center, Biotechnology Department, Animal Health Research Institute, Giza 12618, Egypt
| | - Weiyu Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Correspondence:
| |
Collapse
|
14
|
Merselis LC, Rivas ZP, Munson GP. Breaching the Bacterial Envelope: The Pivotal Role of Perforin-2 (MPEG1) Within Phagocytes. Front Immunol 2021; 12:597951. [PMID: 33692780 PMCID: PMC7937864 DOI: 10.3389/fimmu.2021.597951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system and Perforin-1 are well characterized innate immune effectors. MAC is composed of C9 and other complement proteins that target the envelope of gram-negative bacteria. Perforin-1 is deployed when killer lymphocytes degranulate to destroy virally infected or cancerous cells. These molecules polymerize with MAC-perforin/cholesterol-dependent cytolysin (MACPF/CDC) domains of each monomer deploying amphipathic β-strands to form pores through target lipid bilayers. In this review we discuss one of the most recently discovered members of this family; Perforin-2, the product of the Mpeg1 gene. Since their initial description more than 100 years ago, innumerable studies have made macrophages and other phagocytes some of the best understood cells of the immune system. Yet remarkably it was only recently revealed that Perforin-2 underpins a pivotal function of phagocytes; the destruction of phagocytosed microbes. Several studies have established that phagocytosed bacteria persist and in some cases flourish within phagocytes that lack Perforin-2. When challenged with either gram-negative or gram-positive pathogens Mpeg1 knockout mice succumb to infectious doses that the majority of wild-type mice survive. As expected by their immunocompromised phenotype, bacterial pathogens replicate and disseminate to deeper tissues of Mpeg1 knockout mice. Thus, this evolutionarily ancient gene endows phagocytes with potent bactericidal capability across taxa spanning sponges to humans. The recently elucidated structures of mammalian Perforin-2 reveal it to be a homopolymer that depends upon low pH, such as within phagosomes, to transition to its membrane-spanning pore conformation. Clinical manifestations of Mpeg1 missense mutations further highlight the pivotal role of Perforin-2 within phagocytes. Controversies and gaps within the field of Perforin-2 research are also discussed as well as animal models that may be used to resolve the outstanding issues. Our review concludes with a discussion of bacterial counter measures against Perforin-2.
Collapse
Affiliation(s)
- Leidy C Merselis
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Zachary P Rivas
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George P Munson
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
15
|
The Roseobacter-Group Bacterium Phaeobacter as a Safe Probiotic Solution for Aquaculture. Appl Environ Microbiol 2021; 87:e0258120. [PMID: 33310713 DOI: 10.1128/aem.02581-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phaeobacter inhibens has been assessed as a probiotic bacterium for application in aquaculture. Studies addressing the efficacy and safety indicate that P. inhibens maintains its antagonistic activity against pathogenic vibrios in aquaculture live cultures (live feed and fish egg/larvae) while having no or a positive effect on the host organisms and a minor impact on the host microbiomes. While P. inhibens produces antibacterial and algicidal compounds, no study has so far found a virulent phenotype of P. inhibens cells against higher organisms. Additionally, an in silico search for antibiotic resistance genes using published genomes of representative strains did not raise concerns regarding the risk for antimicrobial resistance. P. inhibens occurs naturally in aquaculture systems, supporting its safe usage in this environment. In conclusion, at the current state of knowledge, P. inhibens is a "safe-to-use" organism.
Collapse
|