1
|
Gordhan BG, Liebenberg D, Scarlatti G, Herrera C, Chiodi F, Martinson N, Fox J, Kana BD. Ex vivo challenge models for infectious diseases. Crit Rev Microbiol 2024; 50:785-804. [PMID: 37909097 DOI: 10.1080/1040841x.2023.2274855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Dale Liebenberg
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, UK
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Neil Martinson
- Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Fox
- Guys and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bavesh Davandra Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
2
|
Proteomic Analysis of Mucosal and Systemic Responses to SARS-CoV-2 Antigen. Vaccines (Basel) 2023; 11:vaccines11020334. [PMID: 36851212 PMCID: PMC9960779 DOI: 10.3390/vaccines11020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The mucosal environment of the upper respiratory tract is the first barrier of protection against SARS-CoV-2 transmission. However, the mucosal factors involved in viral transmission and potentially modulating the capacity to prevent such transmission have not fully been identified. In this pilot proteomics study, we compared mucosal and systemic compartments in a South African cohort of vaccinated and unvaccinated individuals undergoing maxillofacial surgery with previous history of COVID-19 or not. Inflammatory profiles were analyzed in plasma, nasopharyngeal swabs, and nasal and oral tissue explant cultures, using Olink and Luminex technologies. SARS-CoV-2-specific antibody levels were measured in serum and tissue explants. An increased pro-inflammatory proteomic profile was measured in the nasal compartment compared to plasma. However, IP-10 and MIG levels were higher in secretions than in nasal tissue, and the opposite was observed for TGF-β. Nasal anti-SARS-CoV-2 spike IgG correlated with mucosal MIG expression for all participants. A further positive correlation was found with IP-10 in BioNTech/Pfizer-vaccinated individuals. Systemic levels of anti-SARS-CoV-2 spike IgG elicited by this vaccine correlated with plasma IL-10, IL-6 and HBD4. Proteomic profiles measured in mucosal tissues and secretions using combined technologies could reveal correlates of protection at the mucosal portals of viral entry.
Collapse
|
3
|
Herrera C, Olejniczak N, Noël-Romas L, Plummer F, Burgener A. Pre-clinical evaluation of antiproteases as potential candidates for HIV-1 pre-exposure prophylaxis. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:998913. [DOI: 10.3389/frph.2022.998913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies on highly HIV-1-exposed, yet persistently seronegative women from the Punwami Sex Worker cohort in Kenya, have shed light on putative protective mechanisms, suggesting that mucosal immunological factors, such as antiproteases, could be mediating resistance to HIV-1 transmission in the female reproductive tract. Nine protease inhibitors were selected for this study: serpin B4, serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin B13, serpin B1 and α-2-macroglobulin-like-protein 1. We assessed in a pilot study, the activity of these antiproteases with cellular assays and an ex vivo HIV-1 challenge model of human ecto-cervical tissue explants. Preliminary findings with both models, cellular and tissue explants, established an order of inhibitory potency for the mucosal proteins as candidates for pre-exposure prophylaxis when mimicking pre-coital use. Combination of all antiproteases considered in this study was more active than any of the individual mucosal proteins. Furthermore, the migration of cells out of ecto-cervical explants was blocked indicating potential prevention of viral dissemination following amplification of the founder population. These findings constitute the base for further development of these mucosal protease inhibitors for prevention strategies.
Collapse
|
4
|
Berry N, Stein M, Ferguson D, Ham C, Hall J, Giles E, Kempster S, Adedeji Y, Almond N, Herrera C. Mucosal Responses to Zika Virus Infection in Cynomolgus Macaques. Pathogens 2022; 11:1033. [PMID: 36145466 PMCID: PMC9503824 DOI: 10.3390/pathogens11091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Zika virus (ZIKV) cases continue to be reported, and no vaccine or specific antiviral agent has been approved for the prevention or treatment of infection. Though ZIKV is primarily transmitted by mosquitos, cases of sexual transmission and prolonged viral RNA presence in semen have been reported. In this observational study, we report the mucosal responses to sub-cutaneous and mucosal ZIKV exposure in cynomolgus macaques during acute and late chronic infection. Subcutaneous challenge induced a decrease in the growth factor VEGF in colorectal and cervicovaginal tissues 100 days post-challenge, in contrast to the observed increase in these tissues following vaginal infection. This different pattern was not observed in the uterus, where VEGF was upregulated independently of the challenge route. Vaginal challenge induced a pro-inflammatory profile in all mucosal tissues during late chronic infection. Similar responses were already observed during acute infection in a vaginal tissue explant model of ex vivo challenge. Non-productive and productive infection 100 days post-in vivo vaginal challenge induced distinct proteomic profiles which were characterized by further VEGF increase and IL-10 decrease in non-infected animals. Ex vivo challenge of mucosal explants revealed tissue-specific modulation of cytokine levels during the acute phase of infection. Mucosal cytokine profiles could represent biosignatures of persistent ZIKV infection.
Collapse
Affiliation(s)
- Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Monja Stein
- Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Claire Ham
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Jo Hall
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Elaine Giles
- Division of Analytical and Biological Sciences, NIBSC, Potters Bar EN6 3QC, UK
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Yemisi Adedeji
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
5
|
Else L, Penchala SD, Pillay AD, Seiphetlo TB, Lebina L, Callebaut C, Minhas S, Morley R, Rashid T, Martinson N, Fox J, Khoo S, Herrera C. Pre-Clinical Evaluation of Tenofovir and Tenofovir Alafenamide for HIV-1 Pre-Exposure Prophylaxis in Foreskin Tissue. Pharmaceutics 2022; 14:pharmaceutics14061285. [PMID: 35745857 PMCID: PMC9227286 DOI: 10.3390/pharmaceutics14061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Background: HIV-1 pre-exposure prophylaxis (PrEP) has focused predominantly on protective efficacy in receptive sex, with limited research on the dosing requirements for insertive sex. We pre-clinically assessed the ex vivo pharmacokinetic–pharmacodynamic (PK–PD) profile of tenofovir (TFV) and tenofovir alafenamide (TAF) in foreskin tissue. Methods: Inner and outer foreskin explants were exposed to serial dilutions of TFV or TAF prior to addition of HIV-1BaL at a high (HVT) or a low viral titer (LVT). Infection was assessed by measurement of p24 in foreskin culture supernatants. TFV, TAF and TFV–diphosphate (TFV–DP) concentrations were measured in tissues, culture supernatants and dosing and washing solutions. Results: Dose–response curves were obtained for both drugs, with greater potency observed against LVT. Inhibitory equivalency mimicking oral dosing was defined between 1 mg/mL of TFV and 15 µg/mL of TAF against HVT challenge. Concentrations of TFV–DP in foreskin explants were approximately six-fold higher after ex vivo dosing with TAF than with TFV. Statistically significant negative linear correlations were observed between explant levels of TFV or TFV–DP and p24 concentrations following HVT. Conclusions: Pre-clinical evaluation of TAF in foreskin explants revealed greater potency than TFV against penile HIV transmission. Clinical evaluation is underway to support this finding.
Collapse
Affiliation(s)
- Laura Else
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Sujan D. Penchala
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Azure-Dee Pillay
- Division of Immunology, University of Cape Town, Cape Town 7935, South Africa; (A.-D.P.); (T.B.S.)
| | - Thabiso B. Seiphetlo
- Division of Immunology, University of Cape Town, Cape Town 7935, South Africa; (A.-D.P.); (T.B.S.)
| | - Limakatso Lebina
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa; (L.L.); (N.M.)
| | | | - Suks Minhas
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Roland Morley
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Tina Rashid
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Neil Martinson
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa; (L.L.); (N.M.)
| | - Julie Fox
- Guys and St. Thomas’ NHS Foundation Trust and King’s College London, London SE1 9RT, UK;
| | - Saye Khoo
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Carolina Herrera
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, UK
- Correspondence: ; Tel.: +44-207-594-2545
| |
Collapse
|
6
|
Herrera C, Veazey R, Lemke MM, Arnold K, Kim JH, Shattock RJ. Ex Vivo Evaluation of Mucosal Responses to Vaccination with ALVAC and AIDSVAX of Non-Human Primates. Vaccines (Basel) 2022; 10:187. [PMID: 35214645 PMCID: PMC8879115 DOI: 10.3390/vaccines10020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
Non-human primates (NHPs) remain the most relevant challenge model for the evaluation of HIV vaccine candidates; however, discrepancies with clinical trial results have emphasized the need to further refine the NHP model. Furthermore, classical evaluation of vaccine candidates is based on endpoints measured systemically. We assessed the mucosal responses elicited upon vaccination with ALVAC and AIDSVAX using ex vivo Rhesus macaque mucosal tissue explant models. Following booster immunization with ALVAC/AIDSVAX, anti-gp120 HIV-1CM244-specific IgG and IgA were detected in culture supernatant cervicovaginal and colorectal tissue explants, as well as systemically. Despite protection from ex vivo viral challenge, no neutralization was observed with tissue explant culture supernatants. Priming with ALVAC induced distinct cytokine profiles in cervical and rectal tissue. However, ALVAC/AIDSVAX boosts resulted in similar modulations in both mucosal tissues with a statistically significant decrease in cytokines linked to inflammatory responses and lymphocyte differentiation. With ALVAC/AIDSVAX boosts, significant correlations were observed between cytokine levels and specific IgA in cervical explants and specific IgG and IgA in rectal tissue. The cytokine secretome revealed differences between vaccination with ALVAC and ALVAC/AIDSVAX not previously observed in mucosal tissues and distinct from the systemic response, which could represent a biosignature of the vaccine combination.
Collapse
Affiliation(s)
- Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK;
| | - Ronald Veazey
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, GA 70433, USA;
| | - Melissa M. Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (M.M.L.); (K.A.)
| | - Kelly Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (M.M.L.); (K.A.)
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MA 20817, USA;
| | | |
Collapse
|
7
|
Taylor RA, Xiao S, Carias AM, McRaven MD, Thakkar DN, Araínga M, Allen EJ, Rogers KA, Kumarapperuma SC, Gong S, Fought AJ, Anderson MR, Thomas Y, Schneider JR, Goins B, Fox P, Villinger FJ, Ruprecht RM, Hope TJ. PET/CT targeted tissue sampling reveals virus specific dIgA can alter the distribution and localization of HIV after rectal exposure. PLoS Pathog 2021; 17:e1009632. [PMID: 34061907 PMCID: PMC8195437 DOI: 10.1371/journal.ppat.1009632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus (HIV) vaccines have not been successful in clinical trials. Dimeric IgA (dIgA) in the form of secretory IgA is the most abundant antibody class in mucosal tissues, making dIgA a prime candidate for potential HIV vaccines. We coupled Positron Emission Tomography (PET) imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-GFP HIV (PA-GFP-BaL) and fluorescently labeled dIgA to determine how dIgA antibodies influence virus interaction with mucosal barriers and viral penetration in colorectal tissue. Our results show that HIV virions rapidly disseminate throughout the colon two hours after exposure. The presence of dIgA resulted in an increase in virions and penetration depth in the transverse colon. Moreover, virions were found in the mesenteric lymph nodes two hours after viral exposure, and the presence of dIgA led to an increase in virions in mesenteric lymph nodes. Taken together, these technologies enable in vivo and in situ visualization of antibody-virus interactions and detailed investigations of early events in HIV infection.
Collapse
Affiliation(s)
- Roslyn A. Taylor
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Sixia Xiao
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ann M. Carias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Divya N. Thakkar
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Edward J. Allen
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Sidath C. Kumarapperuma
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Siqi Gong
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Angela J. Fought
- Department of Preventative Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Meegan R. Anderson
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yanique Thomas
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jeffrey R. Schneider
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Beth Goins
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Peter Fox
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Francois J. Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Ruth M. Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|