1
|
Zhou S, Hu X, Li H, Yuan Z, Li Z, Liu A, Jiang Y, Cao J. Molecular identification and subtyping of Cryptosporidium spp. in laboratory mice and rats. Parasite 2024; 31:75. [PMID: 39637311 PMCID: PMC11620727 DOI: 10.1051/parasite/2024073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Cryptosporidium species can infect humans and more than 260 animal species, including 54 rodent species. However, data on the occurrence and genetic characterizations of Cryptosporidium spp. in laboratory rodents are limited. The present study aimed to determine the occurrence rate and genetic characterizations of Cryptosporidium spp. in laboratory mice and rats. We collected 506 fresh combined fecal pellet specimens (457 from mice and 49 from rats) of more than 2,000 laboratory rodents in Heilongjiang Province and Shanghai City, China. Cryptosporidium spp. were identified and subtyped by DNA sequencing of the SSU rRNA and the gp60 genes, respectively. By sequence analysis of the SSU rRNA gene, the occurrence rate of Cryptosporidium spp. was 16.6% (84/506) in combined fecal specimens, with 18.2% (83/457) for mice and 2.0% (1/49) for rats. Cryptosporidium parvum (n = 39), C. tyzzeri (n = 33), and C. parvum + C. tyzzeri (n = 11) were identified in mice. Cryptosporidium parvum was only detected in one rat fecal specimen. At the gp60 locus, 71.4% (60/84) of the Cryptosporidium-positive specimens were successfully amplified, and they all came from mice. We identified five C. parvum subtypes (IIaA14G2R1, IIaA16G2R1, IIaA17G1R1, IIaA17G2R1, and IIaA18G2R1) and two C. tyzzeri subtypes (IXaA6R1 and IXbA8). Based on the identification in laboratory mice of C. parvum subtypes that have been reported previously in humans, the mice infected with this species may threaten human health, especially for people who have contact with the animals and their feces.
Collapse
Affiliation(s)
- Shanshan Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory on Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research Shanghai 200025 China
- World Health Organization Centre for Tropical Diseases Shanghai 200025 China
| | - Xinyu Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory on Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research Shanghai 200025 China
- World Health Organization Centre for Tropical Diseases Shanghai 200025 China
| | - He Li
- Department of Parasitology, Harbin Medical University Harbin 150081 Heilongjiang China
| | - Zhongying Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory on Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research Shanghai 200025 China
- World Health Organization Centre for Tropical Diseases Shanghai 200025 China
| | - Zhen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory on Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research Shanghai 200025 China
- World Health Organization Centre for Tropical Diseases Shanghai 200025 China
| | - Aiqin Liu
- Department of Parasitology, Harbin Medical University Harbin 150081 Heilongjiang China
| | - Yanyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory on Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research Shanghai 200025 China
- World Health Organization Centre for Tropical Diseases Shanghai 200025 China
| | - Jianping Cao
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory on Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research Shanghai 200025 China
- World Health Organization Centre for Tropical Diseases Shanghai 200025 China
| |
Collapse
|
2
|
White AE, Jervis RH, Wilson E, Scallan Walter E. Improving occupational health surveillance for enteric infections. Zoonoses Public Health 2024; 71:381-391. [PMID: 38195823 DOI: 10.1111/zph.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
AIMS Enteric pathogens with a livestock reservoir pose a unique risk to people in occupations with regular contact with animals. However, public health surveillance of occupational exposures is inadequate, with surveillance for occupation typically focusing on the risk of transmission and the need for worker exclusion, rather than workplace exposures. To improve surveillance for occupational zoonoses, the Colorado Integrated Food Safety Center of Excellence convened a group of subject matter experts who developed a set of variables on occupation, industry, and exposures, which were integrated into Colorado's surveillance system in 2017. We evaluated the quality and completeness of these new occupational fields for interviewed cases with laboratory-confirmed zoonotic infections and compared occupations to cases with a non-zoonotic infection (Shigella) and to employment data from the Bureau of Labor Statistics. METHODS AND RESULTS From March 2017 through December 2019, 3668 domestically acquired, laboratory-confirmed sporadic infections of Campylobacter, Cryptosporidium, Shiga toxin-producing Escherichia coli, and non-typhoidal Salmonella among individuals ≥14 years of age were interviewed by public health. We found asking explicitly about occupational exposure risks and focusing on animal exposures, improved data quality and accuracy. Of the cases who stated that they were employed, 262 (13%) reported working in an occupation with regular animal exposure, and 254 (14%) reported an industry with regular animal exposure. Cases with an animal exposure occupation were more likely to be male and live in a rural or frontier county compared to other occupations. All occupations with regular animal contact were reported at a higher frequency than among Shigella cases or the general population. CONCLUSIONS Public health efforts, both in occupational health and communicable disease sectors, should be made to improve surveillance for enteric zoonoses and identify opportunities for prevention strategies.
Collapse
Affiliation(s)
- Alice E White
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Rachel H Jervis
- Communicable Disease Branch, Division of Disease Control and Public Health Response, Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Elisha Wilson
- Communicable Disease Branch, Division of Disease Control and Public Health Response, Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | | |
Collapse
|
3
|
Humblet MF, Saegerman C. Internal audits as a tool to assess the compliance with biosecurity rules in a veterinary faculty. Front Vet Sci 2023; 10:960051. [PMID: 36937021 PMCID: PMC10018162 DOI: 10.3389/fvets.2023.960051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The present paper proposes a tool to follow up the compliance of staff and students with biosecurity rules, as enforced in a veterinary faculty, i.e., animal clinics, teaching laboratories, dissection rooms, and educational pig herd and farm. Methods Starting from a generic list of items gathered into several categories (personal dress and equipment, animal-related items, infrastructures, waste management, management of material/equipment and behavior), a checklist was created for each sector/activity mentioned above, based on the rules and procedures compiled in the Faculty biosecurity standard operating procedures. Checklists were created as Excel™ files. For each sector, several sheets were elaborated, i.e., one per specific activity: for example, the following sheets were created for the equine clinic: class 1-2 hospitalization (class 1 = non-infectious conditions; class 2 = infectious disease with a low or non-existent risk of transmission), class 3 hospitalization (class 3 = infectious disease with a moderate risk of transmission; these patients are suspected of having an infectious disease and being contagious for other patients and/or for humans) and consultation. Results Class 4 area, which corresponds to the isolation unit and aims at housing patients suffering from infectious diseases with a significant risk of transmission (including notifiable conditions), was not audited at that period, as it was undergoing renovation works. The audit relied on observations performed by a unique observer to ensure standardization. Observed items were presented as yes/no and multiple-choice questions. A scale from 0 to 3 or 4 (depending on the item) allowed scoring each item, i.e., 0 corresponding to 100% compliance with the procedure and the highest score to the worst situation. A median and average global score was also estimated by category and by activity. Discussion The methodology described in the present paper allows estimating the compliance with biosecurity standard operating procedures in a specific sector and/or for a given activity. The identification of criteria needing improvement is a key point: it helps prioritizing actions to be implemented and awareness raising among people concerned. Regular internal auditing is an essential part of a biosecurity plan, the frequency being conditioned by the risk linked to a specific activity or area (i.e., more frequent audits in risky situations).
Collapse
Affiliation(s)
- Marie-France Humblet
- Unit Biosafety, Biosecurity and Environmental Licenses, Department for Occupational Protection and Hygiene, University of Liège, Liège, Belgium
| | - Claude Saegerman
- Veterinary Science Epidemiology and Risk Analysis Research Unit (UREAR-ULiège), Fundamental and Applied Research for Animals and Health Center (FARAH), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- *Correspondence: Claude Saegerman
| |
Collapse
|
4
|
Guo Y, Ryan U, Feng Y, Xiao L. Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Front Microbiol 2022; 12:810142. [PMID: 35082774 PMCID: PMC8784678 DOI: 10.3389/fmicb.2021.810142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Animal farming has intensified significantly in recent decades, with the emergence of concentrated animal feeding operations (CAFOs) in industrialized nations. The congregation of susceptible animals in CAFOs can lead to heavy environmental contamination with pathogens, promoting the emergence of hyper-transmissible, and virulent pathogens. As a result, CAFOs have been associated with emergence of highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7, Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus, and Cryptosporidium parvum in farm animals. This has led to increased transmission of zoonotic pathogens in humans and changes in disease patterns in general communities. They are exemplified by the common occurrence of outbreaks of illnesses through direct and indirect contact with farm animals, and wide occurrence of similar serotypes or subtypes in both humans and farm animals in industrialized nations. Therefore, control measures should be developed to slow down the dispersal of zoonotic pathogens associated with CAFOs and prevent the emergence of new pathogens of epidemic and pandemic potential.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Small ruminants and zoonotic cryptosporidiosis. Parasitol Res 2021; 120:4189-4198. [PMID: 33712929 DOI: 10.1007/s00436-021-07116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Sheep and goats are commonly infected with three Cryptosporidium species, including Cryptosporidium parvum, Cryptosporidium ubiquitum, and Cryptosporidium xiaoi, which differ from each in prevalence, geographic distribution, and public health importance. While C. parvum appears to be a dominant species in small ruminants in European countries, its occurrence in most African, Asian, and American countries appear to be limited. As a result, zoonotic infections due to contact with lambs and goat kids are common in European countries, leading to frequent reports of outbreaks of cryptosporidiosis on petting farms. In contrast, C. xiaoi is the dominant species elsewhere, and mostly does not infect humans. While C. ubiquitum is another zoonotic species, it occurs in sheep and goats at much lower frequency. Host adaptation appears to be present in both C. parvum and C. ubiquitum, consisting of several subtype families with different host preference. The host-adapted nature of C. parvum and C. ubiquitum has allowed the use of subtyping tools in tracking infection sources. This has led to the identification of geographic differences in the importance of small ruminants in epidemiology of human cryptosporidiosis. These tools have also been used effectively in linking zoonotic transmission of C. parvum between outbreak cases and the suspected animals. Further studies should be directly elucidating the reasons for differences in the distribution and public health importance of major Cryptosporidium species in sheep and goats.
Collapse
|
6
|
Occupations at risk of contracting zoonoses of public health significance in Québec. ACTA ACUST UNITED AC 2021; 47:47-58. [PMID: 33679248 DOI: 10.14745/ccdr.v47i01a08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Introduction Climate change plays an important role in the geographic spread of zoonotic diseases. Knowing which populations are at risk of contracting these diseases is critical to informing public health policies and practices. In Québec, 14 zoonoses have been identified as important for public health to guide the climate change adaptation efforts of decision-makers and researchers. A great deal has been learned about these diseases in recent years, but information on at-risk workplaces remains incomplete. The objective of this study is to paint a portrait of the occupations and sectors of economic activity at risk for the acquisition of these zoonoses. Methods A rapid review of the scientific literature was conducted. Databases on the Ovid and EBSCO research platforms were searched for articles published between 1995 and 2018, in English and French, on 14 zoonoses (campylobacteriosis, cryptosporidiosis, verocytotoxigenic Escherichia coli, giardiasis, listeriosis, salmonellosis, Eastern equine encephalitis, Lyme disease, West Nile virus, food botulism, Q fever, avian and swine influenza, rabies, hantavirus pulmonary syndrome) and occupational health. The literature search retrieved 12,558 articles and, after elimination of duplicates, 6,838 articles were evaluated based on the title and the abstract. Eligible articles had to address both concepts of the research issue (prioritized zoonoses and worker health). Of the 621 articles deemed eligible, 110 were selected following their full reading. Results Of the diseases under study, enteric zoonoses were the most frequently reported. Agriculture, including veterinary services, public administration services and medical and social services were the sectors most frequently identified in the literature. Conclusion The results of our study will support public health authorities and decision-makers in targeting those sectors and occupations that are particularly at risk for the acquisition of zoonoses. Doing so will ultimately optimize the public health practices of those responsible for the health of workers.
Collapse
|
7
|
Veterinary Students Have a Higher Risk of Contracting Cryptosporidiosis when Calves with High Fecal Cryptosporidium Loads Are Used for Fetotomy Exercises. Appl Environ Microbiol 2020; 86:AEM.01250-20. [PMID: 32709724 PMCID: PMC7499042 DOI: 10.1128/aem.01250-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022] Open
Abstract
Cryptosporidium spp. can cause severe diarrhea in infected individuals. Cryptosporidium parvum is zoonotic, and cattle are the main reservoir. In several countries, outbreaks of cryptosporidiosis have occurred in veterinary students after handling calves. We carried out a 1-year-long prospective study to investigate the occurrence of these recurrent cryptosporidiosis outbreaks in Denmark. Our investigation used a One Health approach and combined comprehensive epidemiological approaches and laboratory methods applied to both students and calves in the setting of the fetotomy exercises. Two outbreaks took place during the study period; additionally, we retrospectively identified two more suspected outbreaks prior to the study period. The results illustrated a high risk of contracting cryptosporidiosis among veterinary students in the setting of the fetotomy exercises, especially when using calves with high fecal Cryptosporidium loads. Our data can be used to inform future efforts to prevent transmission of Cryptosporidium parvum to students during fetotomy exercises. An outbreak of cryptosporidiosis among veterinary students performing fetotomy exercises on euthanized calves took place in September 2018 in Denmark. A prospective cohort investigation was performed to identify risk factors and provide guidance for preventing outbreaks of cryptosporidiosis in this setting. Ninety-seven students attended the fetotomy exercises and completed a questionnaire about symptoms and potential risk behavior. Real-time PCR was used to detect Cryptosporidium spp. in stool samples from students and to quantify the fecal parasite load in the calves used for the exercises. gp60 subtyping was carried out for the Cryptosporidium-positive samples. Our case definition was based on participation in a fetotomy exercise, reported symptoms, and laboratory results. Eleven laboratory-confirmed or probable cases (11%) were identified in two outbreaks during the prospective study period, with attack rates of 4/10 (40%) and 7/9 (78%), respectively. The risk factors for cryptosporidiosis we identified were performing the exercise on a diarrheic calf, reporting visible fecal contamination on the personal protective equipment (PPE), and reporting problems with PPE during the exercise. Cryptosporidium parvum IIaA15G2R1 was detected in both cases and calves. A significantly higher proportion of the calves aged 7 days old and above were positive compared with younger calves. Furthermore, a high fecal Cryptosporidium load in a calf was associated with a higher probability of an outbreak among the students. Based on our results, using noninfected calves for the exercises, appropriate use of PPE, and thorough hand hygiene are recommended to reduce the risk of contracting cryptosporidiosis in connection with fetotomy exercises. IMPORTANCECryptosporidium spp. can cause severe diarrhea in infected individuals. Cryptosporidium parvum is zoonotic, and cattle are the main reservoir. In several countries, outbreaks of cryptosporidiosis have occurred in veterinary students after handling calves. We carried out a 1-year-long prospective study to investigate the occurrence of these recurrent cryptosporidiosis outbreaks in Denmark. Our investigation used a One Health approach and combined comprehensive epidemiological approaches and laboratory methods applied to both students and calves in the setting of the fetotomy exercises. Two outbreaks took place during the study period; additionally, we retrospectively identified two more suspected outbreaks prior to the study period. The results illustrated a high risk of contracting cryptosporidiosis among veterinary students in the setting of the fetotomy exercises, especially when using calves with high fecal Cryptosporidium loads. Our data can be used to inform future efforts to prevent transmission of Cryptosporidium parvum to students during fetotomy exercises.
Collapse
|
8
|
Garcia-R JC, Pita AB, Velathanthiri N, French NP, Hayman DTS. Species and genotypes causing human cryptosporidiosis in New Zealand. Parasitol Res 2020; 119:2317-2326. [PMID: 32494897 DOI: 10.1007/s00436-020-06729-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/25/2020] [Indexed: 01/03/2023]
Abstract
Cryptosporidium is one of the most common causes of diarrhoea around the world. Successful management and prevention of this infectious disease requires knowledge of the diversity of species and subtypes causing human disease. We use sequence data from 2598 human faecal samples collected during an 11-year period (2009-2019) to better understand the impact of different species and subtypes on public health and to gain insights into the variation of human cryptosporidiosis in New Zealand. Human cryptosporidiosis in New Zealand is caused by a high diversity of species and subtypes. Six species cause human disease in New Zealand: C. hominis, C. parvum, C. cuniculus, C. erinacei, C. meleagridis and C. tyzzeri. Sequence analysis of the gp60 gene identified 16 subtype families and 101 subtypes. Cryptosporidium hominis IbA10G2 and C. parvum IIaA18G3R1 were the most frequent causes of human cryptosporidiosis with 27% and 29% of infections, respectively. Cryptosporidium hominis presented a peak of notified human cases during autumn (March-May) whereas most cases of human cryptosporidiosis caused by C. parvum are found during the calving and lambing season in spring (September-November). We also reported some subtypes that have been rarely detected in other countries such as IbA20G2 and IIoA13G1 and a low prevalence of the hypertransmissible and virulent IIaA15G2R1. This study provides insight into the variability of cryptosporidiosis in New Zealand essential for disease management and surveillance to prevent the introduction or spread of new species and subtypes in the country.
Collapse
Affiliation(s)
- Juan C Garcia-R
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - Anthony B Pita
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Niluka Velathanthiri
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Nigel P French
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
9
|
Hatam-Nahavandi K, Ahmadpour E, Carmena D, Spotin A, Bangoura B, Xiao L. Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasit Vectors 2019; 12:453. [PMID: 31521186 PMCID: PMC6744657 DOI: 10.1186/s13071-019-3704-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cryptosporidium spp. are causative agents of gastrointestinal diseases in a wide variety of vertebrate hosts. Mortality resulting from the disease is low in livestock, although severe cryptosporidiosis has been associated with fatality in young animals. Methods The goal of this systematic review and meta-analysis was to review the prevalence and molecular data on Cryptosporidium infections in selected terrestrial domestic and wild ungulates of the families Bovidae (bison, buffalo, cattle, goat, impala, mouflon sheep, sheep, yak), Cervidae (red deer, roe deer, white-tailed deer), Camelidae (alpaca, camel), Suidae (boar, pig), Giraffidae (giraffes) and Equidae (horses). Data collection was carried out using PubMed, Scopus, Science Direct and Cochran databases, with 429 papers being included in this systematic analysis. Results The results show that overall 18.9% of ungulates from the investigated species were infected with Cryptosporidium spp. Considering livestock species (cattle, sheep, goats, pigs, horses and buffaloes), analysis revealed higher Cryptosporidium infection prevalence in ungulates of the Cetartiodactyla than in those of the Perissodactyla, with cattle (29%) being the most commonly infected farm animal. Conclusions Overall, the investigated domestic ungulates are considered potential sources of Cryptosporidium contamination in the environment. Control measures should be developed to reduce the occurrence of Cryptosporidium infection in these animals. Furthermore, literature on wild populations of the named ungulate species revealed a widespread presence and potential reservoir function of wildlife.
Collapse
Affiliation(s)
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Carlos III Health Institute, Ctra Majadahonda-Pozuelo Km 2, 28220, Majadahonda, Madrid, Spain
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Berit Bangoura
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
10
|
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, Rosenthal PJ. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 2018; 12:e0006512. [PMID: 30138453 PMCID: PMC6107107 DOI: 10.1371/journal.pntd.0006512] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, including cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion or modulation of the host immune response, making them attractive chemotherapeutic and vaccine targets. This review highlights current knowledge on clan CA cysteine proteases, the best-characterized group of cysteine proteases, from 7 protozoan organisms causing human diseases with significant impact: Entamoeba histolytica, Leishmania species (sp.), Trypanosoma brucei, T. cruzi, Cryptosporidium sp., Plasmodium sp., and Toxoplasma gondii. Clan CA proteases from three organisms (T. brucei, T. cruzi, and Plasmodium sp.) are well characterized as druggable targets based on in vitro and in vivo models. A number of candidate inhibitors are under development. CPs from these organisms and from other protozoan parasites should be further characterized to improve our understanding of their biological functions and identify novel targets for chemotherapy.
Collapse
Affiliation(s)
- Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jean A. Bernatchez
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Momar Ndao
- National Reference Centre for Parasitology, The Research Institute of the McGill University Health Center, Montreal, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sharon L. Reed
- Departments of Pathology and Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|