1
|
Li Y, Quan Y, Chen P, Zhuge X, Qin T, Chen S, Peng D, Liu X. Development of High-Production Bacterial Biomimetic Vesicles for Inducing Mucosal Immunity Against Avian Pathogenic Escherichia coli. Int J Mol Sci 2024; 25:12055. [PMID: 39596124 PMCID: PMC11593933 DOI: 10.3390/ijms252212055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
To evaluate the immunoprotective effect of bacterial biomimetic vesicles (BBVs) against avian pathogenic Escherichia coli (APEC), a ΔtolA J11 mutant strain was generated by deleting the tolA gene in the low pathogenic O78 serotype J11 strain. The total protein content of outer membrane vesicles (OMVs) derived from the ΔtolA J11 strain exhibited a sevenfold increase compared to the wild-type strain. Additionally, high-pressure homogenization technology was employed to produce BBVs, resulting in a sixfold increase in total protein content compared to spontaneously secreted OMVs from ΔtolA J11. The immunogenicity of both OMVs and BBVs was assessed through intranasal or intramuscular immunization in specific pathogen-free (SPF) chickens. Results demonstrated that intranasal immunization with OMVs or BBVs in chickens elicited specific IgY antibodies against APEC outer membrane proteins and specific sIgA antibodies in the nasal cavity and trachea, as well as a significant increase in the proliferation response of chicken peripheral blood lymphocytes. The bacterial load in the blood and various organs of the challenged chickens were significantly reduced, resulting in a 66.67% and 58.30% survival rate against a high pathogenic serotype O78 strain challenge, while the control group exhibited only a 16.67% survival rate. The intramuscular immunization with OMVs or BBVs in chickens only induced specific IgY antibodies, with a survival rate of only 33.33% for challenged chickens during the same period. Therefore, intranasal vaccination of the highly productive BBVs is capable of eliciting an immune response similar to that of OMVs and providing protection against APEC infection, thus offering innovative insights for the advancement of APEC vaccines.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Yuji Quan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Peng Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Xiangkai Zhuge
- School of Public Health, Nantong University, Nantong 226019, China;
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China; (Y.L.); (Y.Q.); (P.C.); (T.Q.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China
| |
Collapse
|
2
|
Nicolas M, Faurie A, Girault M, Lavillatte S, Menanteau P, Chaumeil T, Riou M, Velge P, Schouler C. In ovo administration of a phage cocktail partially prevents colibacillosis in chicks. Poult Sci 2023; 102:102967. [PMID: 37639754 PMCID: PMC10477683 DOI: 10.1016/j.psj.2023.102967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the main bacterial disease in poultry leading to significant economic losses worldwide. Antibiotic treatments favor the emergence of multidrug-resistant bacteria, and preventive measures are insufficient to control the disease. There is increasing interest in using the potential of bacteriophages, not only for phage therapy but also for prevention and biocontrol. This study aimed to evaluate the efficacy of a phage cocktail administered in ovo to prevent avian colibacillosis in chicks. When 4 different phages (REC, ESCO3, ESCO47, and ESCO58), stable under avian physiological conditions, were combined and inoculated at 17 embryogenic days (ED), they were transmitted to the newly hatched chicks. In a second trial, the 4-phage cocktail was inoculated into the allantoic fluid at ED16 and after hatch 1-day-old chicks were challenged with the O2 APEC strain BEN4358 inoculated subcutaneously. Two phages (REC and ESCO3) were still detected in the ceca of surviving chicks at the end of the experiment (7-days postinfection). Chicks that received the phages in ovo did not develop colibacillosis lesions and showed a significant decrease in intestinal BEN4358 load (8.00 × 107 CFU/g) compared to the challenged chicks (4.52 × 108 CFU/g). The majority of the reisolated bacteria from the ceca of surviving chicks had developed full resistance to ESCO3 phage, and only 3 were resistant to REC phage. The partially or complete resistance of REC phage induced a considerable cost to bacterial virulence. Here, we showed that phages inoculated in ovo can partially prevent colibacillosis in 1-wk-old chicks. The reduction in the APEC load in the gut and the decreased virulence of some resistant isolates could also contribute to control the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Philippe Velge
- INRAE, University of Tours, ISP, F-37380 Nouzilly, France
| | | |
Collapse
|
3
|
Yehia N, Salem HM, Mahmmod Y, Said D, Samir M, Mawgod SA, Sorour HK, AbdelRahman MAA, Selim S, Saad AM, El-Saadony MT, El-Meihy RM, Abd El-Hack ME, El-Tarabily KA, Zanaty AM. Common viral and bacterial avian respiratory infections: an updated review. Poult Sci 2023; 102:102553. [PMID: 36965253 PMCID: PMC10064437 DOI: 10.1016/j.psj.2023.102553] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Many pathogens that cause chronic diseases in birds use the respiratory tract as a primary route of infection, and respiratory disorders are the main leading source of financial losses in the poultry business. Respiratory infections are a serious problem facing the poultry sector, causing severe economic losses. Avian influenza virus, Newcastle disease virus, infectious bronchitis virus, and avian pneumovirus are particularly serious viral respiratory pathogens. Mycoplasma gallisepticum, Staphylococcus, Bordetella avium, Pasteurella multocida, Riemerella anatipestifer, Chlamydophila psittaci, and Escherichia coli have been identified as the most serious bacterial respiratory pathogens in poultry. This review gives an updated summary, incorporating the latest data, about the evidence for the circulation of widespread, economically important poultry respiratory pathogens, with special reference to possible methods for the control and prevention of these pathogens.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Sara Abdel Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Hend K Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mona A A AbdelRahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha M El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| | - Ali M Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
4
|
Hu J, Afayibo DJA, Zhang B, Zhu H, Yao L, Guo W, Wang X, Wang Z, Wang D, Peng H, Tian M, Qi J, Wang S. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front Microbiol 2022; 13:1049391. [PMID: 36583051 PMCID: PMC9793750 DOI: 10.3389/fmicb.2022.1049391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Although most Escherichia coli (E. coli) strains are commensal and abundant, certain pathogenic strains cause severe diseases from gastroenteritis to extraintestinal infections. Extraintestinal pathogenic E. coli (ExPEC) contains newborn meningitis E. coli (NMEC), uropathogenic E. coli (UPEC), avian pathogenic E. coli (APEC), and septicemic E. coli (SEPEC) based on their original host and clinical symptom. APEC is a heterogeneous group derived from human ExPEC. APEC causes severe respiratory and systemic diseases in a variety of avians, threatening the poultry industries, food security, and avian welfare worldwide. APEC has many serotypes, and it is a widespread pathogenic bacterium in poultry. In addition, ExPEC strains share significant genetic similarities and similar pathogenic mechanisms, indicating that APEC potentially serves as a reservoir of virulence and resistance genes for human ExPEC, and the virulence and resistance genes can be transferred to humans through food animals. Due to economic losses, drug resistance, and zoonotic potential, APEC has attracted heightened awareness. Various virulence factors and resistance genes involved in APEC pathogenesis and drug resistance have been identified. Here, we review the characteristics, epidemiology, pathogenic mechanism zoonotic potential, and drug resistance of APEC, and summarize the current status of diagnosis, alternative control measures, and vaccine development, which may help to have a better understanding of the pathogenesis and resistance of APEC, thereby reducing economic losses and preventing the spread of multidrug-resistant APEC to humans.
Collapse
|
5
|
The Influence of Vaccination of Broiler Chickens and Turkeys with Live E. coli Attenuated Vaccine on E. coli Population Properties and TRT Vaccination Efficacy. Animals (Basel) 2021; 11:ani11072068. [PMID: 34359196 PMCID: PMC8300350 DOI: 10.3390/ani11072068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 07/06/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Escherichia coli infections are considered one of the major causes of economic loss in the poultry industry. The reasons for the magnitude of the problem are the numerous sources of infection with these bacteria for birds and the need for an effective prevention method. Vaccination is one of the strategies for minimizing the consequences of E. coli infection. In this study, we performed three independent experiments at farm level using a live vaccine against E. coli. Antibiotic-free broiler chickens, conventional broiler chickens and broiler turkeys were examined in different experiments. The most meaningful results and conclusions of these experiments are that vaccination against colibacillosis decreases the population count of E. coli, increases the antibiotic susceptibility of field E. coli isolates and has no impact on the efficacy of vaccination against another significant poultry upper respiratory tract disease—TRT. We believe that the vaccination of broiler chickens and turkeys against E. coli can improve bird health and should be considered in terms of routine immunoprophylaxis. Abstract Colibacillosis is one of the major causes of economic losses in the poultry industry. Vaccination against E. coli is attracting increasing interest. The aim of the study was to evaluate the influence of vaccination with live, aroA gene-deleted vaccine on the structure and properties of field E. coli population and its potential impact on TRT vaccination efficacy in broiler chickens and turkeys. We performed three independent experiments on farms: (1) with antibiotic-free broiler chickens, (2) with conventional broiler chickens and (3) with broiler turkeys. In experiment 1, we have recorded an approx. 0–15% prevalence of multi-susceptible E. coli strains in the first production cycle. Starting from production cycle number two, after vaccination introduction, successive significant increases in E. coli susceptibility emerged, reaching 100% of strains at the end of production cycle 3. Increased E. coli susceptibility remained for three production cycles after vaccination withdrawal. In experiments 2 (2 production cycles) and 3 (1 production cycle), we recorded similar tendencies of E. coli susceptibility profile change. In experiments 1 and 2, the E. coli population count was lower after vaccination. In experiments 2 and 3, no negative influence of E. coli vaccination on the level of specific antibodies against TRT was recorded.
Collapse
|
6
|
Swelum AA, Elbestawy AR, El-Saadony MT, Hussein EOS, Alhotan R, Suliman GM, Taha AE, Ba-Awadh H, El-Tarabily KA, Abd El-Hack ME. Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: an updated overview. Poult Sci 2021; 100:101039. [PMID: 33752065 PMCID: PMC8010699 DOI: 10.1016/j.psj.2021.101039] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
On the commercial level, the poultry industry strives to find new techniques to combat bird's infection. During the first week, mortality rate increases in birds because of several bacterial infections of about ten bacterial species, especially colisepticemia. This affects the flock production, uniformity, and suitability for slaughter because of chronic infections. Escherichia coli (E. coli) causes various disease syndromes in poultry, including yolk sac infection (omphalitis), respiratory tract infection, and septicemia. The E. coli infections in the neonatal poultry are being characterized by septicemia. The acute septicemia may cause death, while the subacute form could be characterized through pericarditis, airsacculitis, and perihepatitis. Many E. coli isolates are commonly isolated from commercial broiler chickens as serogroups O1, O2, and O78. Although prophylactic antibiotics were used to control mortality associated with bacterial infections of neonatal poultry in the past, the commercial poultry industry is searching for alternatives. This is because of the consumer's demand for reduced antibiotic-resistant bacteria. Despite the vast and rapid development in vaccine technologies against common chicken infectious diseases, no antibiotic alternatives are commercially available to prevent bacterial infections of neonatal chicks. Recent research confirmed the utility of probiotics to improve the health of neonatal poultry. However, probiotics were not efficacious to minimize death and clinical signs associated with neonatal chicks' bacterial infections. This review focuses on the causes of the increased mortality in broiler chicks during the first week of age and the methods used to minimize death.
Collapse
Affiliation(s)
- Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El Beheira 22511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Śmiałek M, Kowalczyk J, Koncicki A. Influence of vaccination of broiler chickens against Escherichia coli with live attenuated vaccine on general properties of E. coli population, IBV vaccination efficiency, and production parameters-a field experiment. Poult Sci 2020; 99:5452-5460. [PMID: 33142462 PMCID: PMC7647908 DOI: 10.1016/j.psj.2020.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/29/2020] [Accepted: 08/16/2020] [Indexed: 01/31/2023] Open
Abstract
Poultry colibacillosis has been one of the major causes behind economic losses in the poultry production; however, no effective method for its prevention has been developed so far. Vaccination against colibacillosis is capturing increasing interest. The aim of this study was to demonstrate benefits from using a live, aroA gene–deleted vaccine against colibacillosis in broiler chickens and its potential impact on reduced use of antibiotics, the efficacy of vaccination against infectious bronchitis (IB), and the structure and properties of Escherichia coli population in broilers under commercial farm conditions. In 2 experiments, carried out on 3 farms, broiler chickens of one chicken house from each farm were vaccinated against Escherichia coli (E. coli), whereas birds of other chicken houses of each farm were not vaccinated against E. coli. In experiment 1, which was carried out on 2 farms, for 3 consecutive production cycles, spray vaccination of day-old broilers against E. coli decreased the number of E. coli isolates from internal organs but not from the respiratory system in the sixth week of birds' life. In experiment 1, E. coli–vaccinated broilers did not receive the antimicrobials until 14 d after the vaccination. Escherichia coli isolates from the E. coli–vaccinated birds were more susceptible to the antimicrobials. Escherichia coli vaccination had no impact on the IB vaccination efficiency; it has reduced the mean number of days of the antimicrobial treatment and improved broiler production parameters. In experiment 2, chickens of both houses received the antimicrobials for the first 4 d of their life. Birds of chicken house 1 were vaccinated against E. coli on the ninth day of life, whereas birds of chicken house 2 were not vaccinated. In both houses, further antimicrobial usage was the same, and antimicrobials were not used until 14 d after E. coli vaccination. Similar to experiment 1, in experiment 2, vaccination decreased the number of E. coli isolates, and these isolates were more susceptible to the antimicrobials. Vaccination of broilers against E. coli should be considered in terms of routine immunoprophylaxis.
Collapse
Affiliation(s)
- Marcin Śmiałek
- Department of Avian Disease, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland.
| | - Joanna Kowalczyk
- Department of Avian Disease, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Avian Disease, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| |
Collapse
|