1
|
Hou X, Li J, Li H, Du S, Liu S, Jiao S, Niu F, Tu J, Zong Y, Wang X, Liu X. Microplastics distribution, ecological risk and outflows of rivers in the Bohai Rim region of China - A flux model considering small and medium-sized rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176035. [PMID: 39236832 DOI: 10.1016/j.scitotenv.2024.176035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Microplastics (MPs) pollution and its ecological risks have attracted increasing global attention. The Bohai Rim region (BRR), as the economic and population center of the entire northern China, still lacks a precise assessment of MPs pollution. Although current attention on MPs pollution mainly focuses on large rivers, small and medium-sized rivers are more numerous and more closely connected to human activities. In this study, measurement data of MPs from 11 estuaries in the BRR was collected to understand MPs distribution and ecological risk. The results indicate that the overall MPs pollution in these estuaries is still at a low level, with an average abundance of 1254.3 particles m-3. While the pollution load index (1.85) is relatively low, the potential ecological risk of PVC in some area (S8, EPVC = 1433.78, III) warrants further attention. Then we integrated data from 22 relevant rivers (covering all size rivers) in this region from the literature to fit a MPs flux model and assessed the MPs outflow from the four provinces and cities in the region. A strong correlation is achieved between modeled estimates and field measurements (r2 = 0.74), which can well estimate the river MPs outflows in northern China such as the Nanfei River. The MPs outflow from the four provinces (cities) is calculated to be 123.235 (range 44.415-242.314) T year-1, of which Shandong accounted for >80 % (104.066 T year-1). The small and medium-sized rivers accounted for 47 % (58.08 T year-1), whose contribution to MPs outflows should not be underestimated. This study can help us to accurately assess MPs pollution in different coastal areas in northern China, benefiting the formulation of precise control measures and policies for marine MPs pollution.
Collapse
Affiliation(s)
- Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Jiayao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Hongyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Shuyun Du
- School of Earth and Environmental Science, University of Queensland, Brisbane 4067, Australia
| | - Sitong Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Fuxin Niu
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, PR China
| | - Jianbo Tu
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, PR China
| | - Yanping Zong
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin 300450, PR China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 264000, PR China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
2
|
Trusler MM, Moss-Hayes VL, Cook S, Lomax BH, Vane CH. Microplastics pollution in sediments of the Thames and Medway estuaries, UK: Organic matter associations and predominance of polyethylene. MARINE POLLUTION BULLETIN 2024; 208:116971. [PMID: 39278174 DOI: 10.1016/j.marpolbul.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Microplastics at 10 sites along a 77 km transect of the river Thames estuary (UK) and 5 sites along 29 km of the Medway estuary were separated from sediment and analysed by ATR-FTIR spectroscopy. Microplastics were observed at all sites. Highest Thames concentrations were in urban London between Chelsea and West Thurrock (average 170.80 particles kg-1 ± 46.64, 3.36 mg kg-1 ± 1.79 by mass), mid-outer estuary sites were two to three times lower. Microplastics were slightly dominated by particles (54 %) over fibres (45 %), including polymer types ranked: polyethylene > PET > polypropylene > polyamide. Medway microplastics decreased seaward, with one urban-municipal site impacted by a combined-sewer-overflow containing a high proportion of fibres (Rochester, 484 particles kg-1, 7.39 mg kg-1 by mass). Microplastic abundance was correlated to organic carbon (TOC %) (R2 of 0.71 Thames and 0.96 Medway), but not sediment particle size. Sedimentary microplastics accumulation in the Thames was controlled by urbanisation-distance, and site hydrodynamics.
Collapse
Affiliation(s)
- Megan M Trusler
- British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham NG12 5GG, United Kingdom; School of Biosciences, University of Nottingham Sutton Bonnington Campus, Loughborough LE12 5RD, United Kingdom
| | - Vicky L Moss-Hayes
- British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Sarah Cook
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Barry H Lomax
- School of Biosciences, University of Nottingham Sutton Bonnington Campus, Loughborough LE12 5RD, United Kingdom
| | - Christopher H Vane
- British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham NG12 5GG, United Kingdom.
| |
Collapse
|
3
|
Cheng Y, Yang Y, Bai L, Cui J. Microplastics: an often-overlooked issue in the transition from chronic inflammation to cancer. J Transl Med 2024; 22:959. [PMID: 39438955 PMCID: PMC11494930 DOI: 10.1186/s12967-024-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of microplastics within the human body has raised significant concerns about their potential health implications. Numerous studies have supported the hypothesis that the accumulation of microplastics can trigger inflammatory responses, disrupt the microbiome, and provoke immune reactions due to their physicochemical properties. Chronic inflammation, characterized by tissue damage, angiogenesis, and fibrosis, plays a crucial role in cancer development. It influences cancer progression by altering the tumor microenvironment and impairing immune surveillance, thus promoting tumorigenesis and metastasis. This review explores the fundamental properties and bioaccumulation of microplastics, as well as their potential role in the transition from chronic inflammation to carcinogenesis. Additionally, it provides a comprehensive overview of the associated alterations in signaling pathways, microbiota disturbances, and immune responses. Despite this, the current understanding of the toxicity and biological impacts of microplastics remains limited. To mitigate their harmful effects on human health, there is an urgent need to improve the detection and removal methods for microplastics, necessitating further research and elucidation.
Collapse
Affiliation(s)
- Yicong Cheng
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
| | - Ling Bai
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| |
Collapse
|
4
|
Skalska K, Ockelford A, Ebdon J, Cundy A, Horton AA. Spatio-temporal trends in microplastic presence in the sediments of the River Thames catchment (UK). MARINE POLLUTION BULLETIN 2024; 207:116881. [PMID: 39236492 DOI: 10.1016/j.marpolbul.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
This study investigated the spatio-temporal variability of microplastics (MPs) in the sediments of the River Thames (UK) catchment over 30 months (July 2019 - Dec 2021). The average MP concentration was 61 items kg-1 d.w., with fragments <1 mm being dominant and polyethylene (PE) the most common polymer. Adjacent land use influenced MP concentrations and types, with industrial sites showing particularly high levels and a prevalence of small beads and industrial polymers. MP concentrations generally decreased after higher winter flows, likely due to sediment rearrangement or winnowing. This study describes the seasonal concentrations and characteristics of MPs present in sediment from the River Thames catchment, and attempts to identify their likely origin. Further, the study provides new insights into the mobility and fate of MPs in riverine settings under varying flow conditions, which is vital given the predicted increases in flooding under various global heating scenarios.
Collapse
Affiliation(s)
- Karolina Skalska
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, UK; Environment Agency, Guildbourne Centre, Chatsworth Rd, Worthing, UK
| | - Annie Ockelford
- School of Engineering, University of Liverpool, Liverpool, UK
| | - James Ebdon
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, UK.
| | - Andrew Cundy
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK
| | - Alice A Horton
- National Oceanography Centre, European Way, Southampton, UK
| |
Collapse
|
5
|
Xia W, Rao Q, Liu J, Chen J, Xie P. Occurrence and characteristics of microplastics across the watershed of the world's third-largest river. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135998. [PMID: 39357362 DOI: 10.1016/j.jhazmat.2024.135998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
While rivers as primary conduits for land-based plastic particles transferring to their "ultimate" destination, the ocean, have garnered increasing attention, research on microplastic pollution at the scale of whole large river basins remains limited. Here we conducted a large-scale investigation of microplastic contamination in water and sediment of the world's third-largest river, the Yangtze River. We found concentrations of microplastics in water and sediment to be 5.13 items/L and 113.9 items/kg (dry weight), respectively. Moreover, microplastic pollution levels exhibited a clear decreasing trend from upstream to downstream. The detected microplastics were predominantly transparent in color, with fibrous shapes predominating, sizes mainly concentrated below 1 mm and composed primarily of PP and PE polymers. Our analysis results indicated that compared to geographical and water quality parameters, anthropogenic factors primarily determined the spatial distribution pattern of microplastics. Moreover, the microplastic abundance in sediment upstream of the dam was significantly higher than that in the downstream sediment, while the trend of microplastic concentrations in water was opposite. Therefore, more effort is needed to monitor microplastic contamination and their ecological environmental effects of sediment before dams in future research.
Collapse
Affiliation(s)
- Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qingyang Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
6
|
Saikia KK, Handique S. Microplastics abundance and potential ecological risk assessment in sediment, water and fish of Deepor Beel-a Ramsar Wetland of the Brahmaputra plain, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:977. [PMID: 39316144 DOI: 10.1007/s10661-024-13138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs) are increasingly recognized as environmental contaminants with complex impacts on fish and other aquatic organisms. This study determined the microplastics abundance and the induced-ecological risks of microplastics in water, sediment, and commonly harvested fishes of a Ramsar site, Deepor Beel of Assam, India. Six samples of water and sediment were collected with nine individuals of two commonly harvested fish species Puntius sophore (Pool Barb) and Gudusia chapra (Indian River Shad). The abundance of microplastics in water and sediments were analyzed through organic matter digestion using hydrogen peroxide (H2O2, 30%) and sodium chloride (NaCl) for density separation. Potassium hydroxide (KOH, 10%) was used for digestion of fish gut. The microplastics were identified visually and chemically characterized through micro-Raman spectroscopy. Total 467 microplastic particles in water and sediment, and 62 particles in fish were identified. An average concentration of 0.55 ± 0.06 particles/L in water, 4.03 ± 0.41 particles/100 g in sediment samples, 3.83 ± 2.26 particles/individual in Puntius sophore, and 6.5 ± 3.40 particles/individual in Gudusia chapra were detected. Fibers accounted to the major shape of microplastic in water (54%) and sediment (50%), whereas fragments (65%) were the major shapes detected in both fishes. The color composition includes blue, black, red, green, brown, yellow, and transparent. Fiber particles size ranged between 150 and 1782 µm, fragments within 85-325 µm, and sphere within 85-220 µm. Chemical characterization of microplastics revealed polymer types including polypropylene (PP = 27%), polyvinyl chloride (PVC = 25%), acrylonitrile-butadiene-styrene (ABS = 18%), polycarbonate (PC = 13%), polyethylene (12%), and polystyrene (PS = 5%). PHI levels were at hazard level III and V for water and sediment samples and at level IV for both fish species. The PLI at hazard level I indicated low pollution levels, whereas the PERI were within danger and extreme danger levels. This study is the first report in abundances of microplastics and the ecological risk assessment of microplastics in surface waters, sediments and fishes of Deepor Beel wetland.
Collapse
Affiliation(s)
- Kundil Kumar Saikia
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Sumi Handique
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
7
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
8
|
Tavşanoğlu ÜN, Koraltan İ, Basaran Kankılıç G, Çırak T, Ertürk Ş, Ürker O, Güçlü P, Ünlü H, Çağan AS, Deniz Yağcıoğlu K, Akyürek Z. Assessing microplastic pollution in a river basin: A multidisciplinary study on circularity, sustainability, and socio-economic impacts. ENVIRONMENTAL RESEARCH 2024; 262:119819. [PMID: 39173820 DOI: 10.1016/j.envres.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Plastic pollution has emerged as a significant environmental challenge worldwide, posing serious threats to ecosystems and human health. This study seeks to explore the interplay among circularity, sustainability, and the release of microplastics within the freshwater ecosystems situated along the western Black Sea coast- Düzce, Türkiye. Employing a multidisciplinary approach that integrates environmental science, economics, and policy analysis, the research examines the current state of plastic pollution in the region, considering diverse land uses and socio-economic lifestyles. Conducted over four different seasons, the current study identifies the prevailing types of microplastics in the region. Fibers dominate, comprising 86.7% in each season, followed by film and fragments at 7.7% and 7.0%, respectively. Notably, polyethylene (PE) and polypropylene (PP) emerges as the primary polymer types. The distribution of polymer types varies across different land uses within the region, emphasizing the influential role of land use in shaping the abundance polymer composition. The comprehensive assessment of pollution, as reflected in the overall pollution load index (PLI) of the Melen River indicating a concerning level of pollution (PLI>1). Finally, the study unveiled the relationship between socio-economic activities as well as the seasonal precipitation patterns, and microplastic contamination in the region. This underscored the importance of site-specific mitigation measures on reducing the amount of microplastics. Lastly, incorporating sustainable practices within the circular economy framework fosters a harmonious balance between economic development and environmental protection in Türkiye.
Collapse
Affiliation(s)
- Ülkü Nihan Tavşanoğlu
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye.
| | - İdris Koraltan
- Institute of Natural and Applied Sciences, Akdeniz University, Dumlupınar Avenue, 07258, Antalya, Türkiye
| | | | - Tamer Çırak
- Alternative Energy Sources Technology Program, Aksaray University, Bahçesaray, 68100, Aksaray, Türkiye
| | - Şeyma Ertürk
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye
| | - Okan Ürker
- Department of Environmental Health, Çankırı Karatekin University, Taşmescit Street, 18200, Çankırı, Türkiye
| | - Pembe Güçlü
- Department of Business Administration, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Hülya Ünlü
- Department of Economics, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Ali Serhan Çağan
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye; Wildlife Programme, Kastamonu University, Mehmet Yetkin Street, 37800, Araç, Kastamonu, Türkiye
| | - Kıymet Deniz Yağcıoğlu
- Department of Geology Engineering, Ankara University, Dögol Street, 0600, Ankara, Türkiye
| | - Zuhal Akyürek
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye; Department of Civil Engineering, Üniversiteliler Street, 06800, Ankara, Türkiye Ankara, Türkiye
| |
Collapse
|
9
|
Forsythe K, Egermeier M, Garcia M, Liu R, Campen M, Minghetti M, Jilling A, Gonzalez-Estrella J. Viability of elutriation for the extraction of microplastics from environmental soil samples. ENVIRONMENTAL SCIENCE. ADVANCES 2024; 3:1039-1047. [PMID: 38957706 PMCID: PMC11215803 DOI: 10.1039/d4va00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
In this study, we evaluated the suitability of elutriation, a method successfully employed in the extraction of microplastics from marine sediments, for the extraction of microplastics from freshwater and terrestrial soils. Five soils were sampled throughout Oklahoma, USA in order to capture a range of sand, silt, clay, and organic matter composition. Each soil was subjected to microplastic extraction with and without elutriation, followed by digestion in 7.5% NaOCl, and then flotation in 6 M ZnCl2. The mass of each soil was measured after elutriation to determine sample mass reduction, and multiple methods including fluorescence imaging and automated particle counting through ImageJ, Attenuated Total Reflectence-Fourier Transfor Infrared Spectroscopy (ATR-FTIR), and Pyrolysis-coupled Gas Chromatography/Mass Spectrometry (py-GC/MS) were used to determine microplastic quantity, mass, and characteristics. T-test was used to check for statistically-significant differences between methods in terms of mass or particle quantity. For all tested soils, elutriation resulted in greater sample mass reduction than non-elutriated samples, and was between 59.0-97.3% for the tested soils. Furthermore, no statistically significant (p < 0.05) differences were observed in particle quantification or polymer mass between methods, and no differences were observed for polymer or size distribution. Additionally, 33% more polymers were positively identified (R 2 = 70%) by ATR-FTIR analysis in elutriated samples compared to non-elutriated soils. The mass reduction provided by elutriation allows for the processing of larger sample volumes, leading to greater accuracy and sensitivity in detecting microplastics. As such, we recommend elutriation be performed as a pretreatment step to extract microplastics from soils.
Collapse
Affiliation(s)
- Kyle Forsythe
- School of Civil and Environmental Engineering, Oklahoma State University Stillwater OK USA +1405-744-8257
| | - Mason Egermeier
- School of Civil and Environmental Engineering, Oklahoma State University Stillwater OK USA +1405-744-8257
| | - Marcus Garcia
- College of Pharmacy, University of New Mexico Albuquerque NM 87131 USA
| | - Rui Liu
- College of Pharmacy, University of New Mexico Albuquerque NM 87131 USA
| | - Matthew Campen
- College of Pharmacy, University of New Mexico Albuquerque NM 87131 USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University USA
| | - Andrea Jilling
- Department of Environmental Health Sciences, University of South Carolina USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, Oklahoma State University Stillwater OK USA +1405-744-8257
| |
Collapse
|
10
|
Kurzweg L, Hauffe M, Schirrmeister S, Adomat Y, Socher M, Grischek T, Fery A, Harre K. Microplastic analysis in sediments of the Elbe River by electrostatic separation and differential scanning calorimetry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172514. [PMID: 38641120 DOI: 10.1016/j.scitotenv.2024.172514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
This study presents the most extensive investigation of microplastic (MP) contents in sediment from the Elbe River. We employed electrostatic separation (ES) and differential scanning calorimetry (DSC) to overcome limitations of sample throughput and time-consuming analysis. In total 43 sediment samples were collected using a Van-Veen grab. Subsequently, coarse materials (d10 > 100 μm) and fine materials (d10 ≤ 100 μm) were enriched using ES and density separation. DSC was utilized for MP identification and quantification, based on the phase-transition signals of eight different polymers. MP presence was detected in 25 samples, with successful quantification in 12 samples. The MP content in coarse material samples from shoreline areas ranged from 0.52 to 1.30 mg/kg, while in fine material samples from harbor basins, it ranged from 5.0 to 44.6 mg/kg. The most prevalent polymers identified were LD-PE, HD-PE, PP, and PCL. These findings confirmed the suitability of DSC for analyzing MP in complex environmental samples. MP hotspots were identified in harbor basins, where natural sedimentation processes and increased anthropogenic activities contribute to MP accumulation. Additionally, industrial sewage potentially contributed to MP content in sediment samples. The highest pollution levels were observed in the middle Elbe, between the confluences of Mulde and Havel. Lowest MP contents were found in the lower Elbe, potentially influenced by tides. Future studies should focus on holistic investigations of selected river sections, encompassing sediment, water, and biota samples, rather than the entire catchment area. This approach would facilitate the generation of spatiotemporal data on MP distribution in freshwater streams. In addition, more research is needed to explore potential interactions between different MP and sediment types during DSC measurements.
Collapse
Affiliation(s)
- Lucas Kurzweg
- Faculty of Agriculture, Environment and Chemistry, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany; Technical University Dresden, Faculty of Chemistry and Food Chemistry, Department for Physical Chemistry of Polymeric Materials, Mommsenstraße 6, 01069 Dresden, Germany
| | - Maurice Hauffe
- Faculty of Agriculture, Environment and Chemistry, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Sven Schirrmeister
- Faculty of Agriculture, Environment and Chemistry, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany; Technical University Dresden, Faculty of Chemistry and Food Chemistry, Department for Physical Chemistry of Polymeric Materials, Mommsenstraße 6, 01069 Dresden, Germany
| | - Yasmin Adomat
- Faculty of Civil Engineering, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Martin Socher
- Faculty of Agriculture, Environment and Chemistry, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Thomas Grischek
- Faculty of Civil Engineering, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Andreas Fery
- Technical University Dresden, Faculty of Chemistry and Food Chemistry, Department for Physical Chemistry of Polymeric Materials, Mommsenstraße 6, 01069 Dresden, Germany; Leibniz Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Kathrin Harre
- Faculty of Agriculture, Environment and Chemistry, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany.
| |
Collapse
|
11
|
Li N, Wang X, Li X, Yi S, Guo Y, Wu N, Lin H, Zhong B, Wu WM, He Y. Anthropogenic and biological activities elevate microplastics pollution in headwater ecosystem of Yangtze tributaries in Hindu Kush-Himalayan region. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134395. [PMID: 38663293 DOI: 10.1016/j.jhazmat.2024.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Microplastic (MP) pollution is widely spread in oceans, freshwater, and terrestrial environments but MPs in mountainous headwater ecosystem are rarely reported. This study focuses on the headwater of Yangtze tributaries of the Hindu Kush-Himalayan (HKH) region. Five streams at elevations of 900 to 3300 m were selected to investigate the distribution of MPs in water and sediments across altitudes. MPs were found in all water and sediment samples from top stream zone nearly in absence of anthropogenic activity, low anthropogenic zone, and high anthropogenic zone, increased from 12-54, 81-185 to 334-847 items/L, and 2-35, 26-84 to 124-428 items/kg, respectively. This elevation-dependent MP distribution indicated that as elevation decreased, anthropogenic activities intensified and increased MPs input and their abundance, size, and diversity. Notably, hydraulic projects, such as damming, were identified as potential barriers to the migration of MPs downstream. Microbiome analyses revealed the presence of bacterial genes associated with plastic biodegradation in all sediment samples. The study indicates that Shangri-la mountainous streams have been polluted with MPs for years with potential risk of generation of nano-sized particles via natural fragmentation and biodegradation, and thus raises concern on MPs pollution in headwaters streams in mountainous regions.
Collapse
Affiliation(s)
- Naying Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaofeng Wang
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xianxiang Li
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Shaoliang Yi
- International Centre for Integrated Mountain Development, GPO Box, Kathmandu 3226, Nepal
| | - Yun Guo
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ning Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; International Centre for Integrated Mountain Development, GPO Box, Kathmandu 3226, Nepal
| | - Honghui Lin
- School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bo Zhong
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Research Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States.
| | - Yixin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
12
|
Guimarães GDA, Pereira SA, de Moraes BR, Ando RA, Martinelli Filho JE, Perotti GF, Sant'Anna BS, Hattori GY. The retention of plastic particles by macrophytes in the Amazon River, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42750-42765. [PMID: 38877194 DOI: 10.1007/s11356-024-33961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study evaluated the presence of plastics and microplastics in macrophytes in an urbanized sector of the Amazon River. A total of 77 quadrats in 23 macrophyte banks were sampled during the dry (September 2020) and rainy (June 2021) season. Five species were identified: Paspalum repens, Pontederia rotundifolia, Pistia stratiotes, Salvinia auriculata and Limnobium laevigatum, with P. repens being dominant during the dry season (47.54%) and P. rotundifolia during the rainy season (78.96%). Most of the plastic particles accumulated in Paspalum repens (49.3%) and P. rotundifolia (32.4%), likely due to their morphological structure and volume. The dry season showed a higher accumulation of plastic particles than the rainy season. Microplastics were found in most samples, during both the dry (75.98%) and rainy seasons (74.03%). The upstream macrophyte banks retained more plastic particles compared to the downstream banks. A moderate positive correlation was observed between the presence of plastic particles and macrophyte biomass, and a weak positive correlation between the occurrence of microplastics and mesoplastics. White and blue fragments, ranging from 1 to 5 mm were the most common microplastics found in the macrophyte banks. Green fragments and green and blue fibers were identified as polypropylene, blue and red fragments as polyethylene, and white fragments as polystyrene. Therefore, the results of this study highlight the first evidence of the retention of plastic particles in macrophytes of the Amazon and highlight a significant risk due to the harmful effects that this type of plastic can cause to the fauna and flora of aquatic ecosystems.
Collapse
Affiliation(s)
- Gabriel Dos Anjos Guimarães
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil.
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil.
| | - Samantha Aquino Pereira
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Beatriz Rocha de Moraes
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - Rômulo Augusto Ando
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - José Eduardo Martinelli Filho
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil
| | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Bruno Sampaio Sant'Anna
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Gustavo Yomar Hattori
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| |
Collapse
|
13
|
Kukkola A, Schneidewind U, Haverson L, Kelleher L, Drummond JD, Sambrook Smith G, Lynch I, Krause S. Snapshot Sampling May Not Be Enough to Obtain Robust Estimates for Riverine Microplastic Loads. ACS ES&T WATER 2024; 4:2309-2319. [PMID: 38752202 PMCID: PMC11091885 DOI: 10.1021/acsestwater.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Wastewater treatment plants (WWTPs) have been described as key contributors of microplastics (MPs) to aquatic systems, yet temporal fluctuations in MP concentrations and loads downstream are underexplored. This study investigated how different sampling frequencies (hourly, weekly, and monthly) affect MP estimates in a stream linked to a single WWTP. Utilizing fluorescence microscopy and Raman spectroscopy, considerable hourly variations in MP concentrations were discovered, while the polymer composition remained consistent. This temporal variability in MP loads was influenced by MP concentration, discharge rates, or a mix of both. These results show a high uncertainty, as relying on sparse snapshot samples combined with annual discharge data led to significant uncertainties in MP load estimates (over- and/or underestimation of emissions by 3.8 billion MPs annually at this site). Our findings stress the necessity of higher-frequency sampling for better comprehending the hydrodynamic factors influencing MP transport. This improved understanding enables a more accurate quantification of MP dynamics, crucial for downstream impact assessments. Therefore, preliminary reconnaissance campaigns are essential for designing extended, representative site-monitoring programs and ensuring more precise trend predictions on a larger scale.
Collapse
Affiliation(s)
- Anna Kukkola
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Uwe Schneidewind
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Lee Haverson
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Liam Kelleher
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Jennifer D. Drummond
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Gregory Sambrook Smith
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Stefan Krause
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
- LEHNA
- Laboratoire d’ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France
- Institute
of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
14
|
Shokunbi OS, Idowu GA, Aiyesanmi AF, Davidson CM. Assessment of Microplastics and Potentially Toxic Elements in Surface Sediments of the River Kelvin, Central Scotland, United Kingdom. ENVIRONMENTAL MANAGEMENT 2024; 73:932-945. [PMID: 38367028 DOI: 10.1007/s00267-024-01947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Contamination of the environment by microplastics (MPs), polymer particles of <5 mm in diameter, is an emerging concern globally due to their ubiquitous nature, interactions with pollutants, and adverse effects on aquatic organisms. The majority of studies have focused on marine environments, with freshwater systems only recently attracting attention. The current study investigated the presence, abundance, and distribution of MPs and potentially toxic elements (PTEs) in sediments of the River Kelvin, Scotland, UK. Sediment samples were collected from eight sampling points along the river and were extracted by density separation with NaCl solution. Extracted microplastics were characterised for shape and colour, and the polymer types were determined through attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Pollution status and ecological risks were assessed for both the microplastics and PTEs. Abundance of MPs generally increased from the most upstream location (Queenzieburn, 50.0 ± 17.3 particles/kg) to the most downstream sampling point (Kelvingrove Museum, 244 ± 19.2 particles/kg). Fibres were most abundant at all sampling locations, with red, blue, and black being the predominant colours found. Larger polymer fragments were identified as polypropylene and polyethylene. Concentrations of Cr, Cu, Ni, Pb and Zn exceeded Scottish background soil values at some locations. Principal component and Pearson's correlation analyses suggest that As, Cr, Pb and Zn emanated from the same anthropogenic sources. Potential ecological risk assessment indicates that Cd presents a moderate risk to organisms at one location. This study constitutes the first co-investigation of MPs and PTEs in a river system in Scotland.
Collapse
Affiliation(s)
- Oluwatosin Sarah Shokunbi
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
- Department of Basic Sciences, Babcock University, P. M. B. 4003, Ilishan Remo, Ogun State, Nigeria
| | - Gideon Aina Idowu
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria.
| | - Ademola Festus Aiyesanmi
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria
| | - Christine Margaret Davidson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
| |
Collapse
|
15
|
Wilkens JL, Calomeni-Eck AJ, Boyda J, Kennedy A, McQueen AD. Microplastic in Dredged Sediments: From Databases to Strategic Responses. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:72. [PMID: 38689078 PMCID: PMC11061003 DOI: 10.1007/s00128-024-03878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Microplastics (MPs) accumulate in sediments, yet guidelines for evaluating MP risks in dredged sediments are lacking. The objective of this study was to review existing literature on MPs in sediments to improve fundamental knowledge of MP exposures and develop a publicly available database of MPs in sediments. Twelve percent of the reviewed papers (nine studies) included sediment core samples with MP concentrations generally decreasing with depth, peaking in the top 15 cm. The remaining papers evaluated surficial grab samples (0 to 15 cm depth) from various water bodies with MPs detected in almost every sample. Median MP concentrations (items/kg dry sediment) increased in this order: lakes and reservoirs (184), estuarine (263), Great Lakes nearshore areas and tributaries (290), riverine (410), nearshore marine areas (487), dredge activities (817), and harbors (948). Dredging of recurrent shoaling sediments could be expected to contain MPs at various depths with concentrations influenced by the time elapsed since the last dredging event. These results offer key insights into the presence and variability of MPs in dredged sediments, informing environmental monitoring and risk assessment strategies.
Collapse
Affiliation(s)
- J L Wilkens
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA.
| | - A J Calomeni-Eck
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - J Boyda
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - A Kennedy
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - A D McQueen
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| |
Collapse
|
16
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. CHEMOSPHERE 2024; 353:141557. [PMID: 38417495 DOI: 10.1016/j.chemosphere.2024.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Microplastics (MPs) are a serious threat in freshwater environments. The ecological risk and abundance level of MPs in abiotic and biotic compartments of the Nile River haven't been systematically reported. Thus, these issues were highlighted in the present study during different seasons of the sampling year. The results showed that MP concentrations in the river ranged from 2.24 ± 0.6 to 3.76 ± 1.1 particles/L, 298 ± 63 to 520 ± 80 particles/kg dry weight, and 0.081 ± 0.051 to 4.95 ± 2.6 particles/individual in surface water, sediment, and different species of aquatic insects, respectively. All the extracted MPs are colored blue, red, and black. Fiber-shaped polyesters (<500-1500 μm) were the most common MPs in all the river compartments. MPs' dominance was observed during the summer in comparison with that in the other seasons. Environmental risk indicators indicate the high ecological risk of MPs, which are widely distributed in the Nile River. In conclusion, MP consumption by aquatic insects may not only be related to levels of environmental contamination, since other variables, such as taxon size, weight, and particular feeding behavior, may also be significant. Additionally, the presence of MPs in insects (at lower trophic levels) creates the potential for predation-based inter-trophic level transmission. Thus, higher trophic-level investigations of various feeding groups should be carried out to identify any possible harm that MPs cause to various aquatic organisms.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| |
Collapse
|
17
|
He Y, Lu J, Li C, Wang X, Jiang C, Zhu L, Bu X, Jabeen K, Vo TT, Li D. From pollution to solutions: Insights into the sources, transport and management of plastic debris in pristine and urban rivers. ENVIRONMENTAL RESEARCH 2024; 245:118024. [PMID: 38151151 DOI: 10.1016/j.envres.2023.118024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
River systems are important recipients of environmental plastic pollution and have become key pathways for the transfer of mismanaged waste from the land to the ocean. Understanding the sources and fate of plastic debris, including plastic litter (>5 mm) and microplastics (MPs) (<5 mm), entering different riverine systems is essential to mitigate the ongoing environmental plastic pollution crisis. We comprehensively investigated the plastic pollution in the catchments of two rivers in the Yangtze River basin: an urban river, the Suzhou section of the Beijing-Hangzhou Grand Canal (SZ); and a pristine rural river, the Jingmen section of the Hanjiang River (JM). The abundance of plastic pollutants in SZ was significantly higher than in JM: 0.430 ± 0.450 items/m3 and 0.003 ± 0.003 items/m3 of plastic litter in the water; 23.47 ± 25.53 n/m3 and 2.78 ± 1.55 n/m3 MPs in the water; and 218.82 ± 77.40 items/kg and 5.30 ± 1.99 items/kg of MPs in the sediment, respectively. Plastic litter and MPs were closely correlated in abundance and polymer composition. Overall, the polymer type, shape and color of MPs were dominant by polypropylene (42.5%), fragment (60.4%) and transparent (40.0%), respectively. Source tracing analysis revealed that packaging, shipping, and wastewater were the primary sources of plastic pollutants. The mantel analysis indicated that socio-economic and geospatial factors play crucial roles in driving the hotspot formation of plastic pollution in river networks. The composition of the MP communities differed significantly between the sediments and the overlying water. The urban riverbed sediments had a more pronounced pollutant 'sink' effect compared with the pristine rivers. These findings suggested that the modification of natural streams during urbanization may influence the transport and fate of plastic pollutants in them. Our results offer pivotal insights into effective preventive measures.
Collapse
Affiliation(s)
- Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Jungang Lu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Changjun Li
- Ocean School, Yantai University, Yantai 264005, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Chunhua Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Xinyu Bu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - TuanLinh Tran Vo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Institute of Oceanography, Viet Nam Academy of Science and Technology (VAST), 1 Cau Da Street, Nha Trang, Khanh Hoa 650000, Viet Nam
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China.
| |
Collapse
|
18
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
19
|
Maisto M, Ranauda MA, Zuzolo D, Tartaglia M, Postiglione A, Prigioniero A, Falzarano A, Scarano P, Castelvetro V, Corti A, Modugno F, La Nasa J, Biale G, Sciarrillo R, Guarino C. Effects of microplastics on microbial community dynamics in sediments from the Volturno River ecosystem, Italy. CHEMOSPHERE 2024; 349:140872. [PMID: 38056715 DOI: 10.1016/j.chemosphere.2023.140872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, the sources, abundance, and ecological implications of microplastic (MP) pollution in Volturno, one of the main rivers in southern Italy, were explored by investigating the MP concentration levels in sediments collected along the watercourse. The samples were sieved through 5- and 2-mm sieves and treated with selective organic solvents. The polymer classes polystyrene (PS), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), nylon 6 (PA6), and nylon 6,6 (PA66) were quantified using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and high-performance liquid chromatography (HPLC). Furthermore, a 16S rRNA metagenomic analysis was performed using next-generation sequencing in Ion Torrent™ to explore the bacterial taxonomy and ecological dynamics of sediment samples. The MPs were detected in all samples collected from the study area. PP and PET were the most abundant and frequently detected polymer types in the analysed samples. The total MP concentration ranged from 1.05 to 14.55 ppm (parts per million), identifying two distinct data populations: high- and low-MP-contaminated sediments. According to the Polymer Hazard Index (PHI), MP pollution was categorised as hazard levels III and IV (corresponding to the danger category). Metagenomic data revealed that the presence of MPs significantly affected the abundance of bacterial taxa; Flavobacteraceae and Nocardiaceae, which are known to degrade polymeric substances, were present in high-MP-contaminated sediments. This study provides new insights into the ecological relevance of MP pollution and suggests that microorganisms may serve as biomarkers of MP pollution.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy.
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Alessia Postiglione
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Alessandra Falzarano
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| |
Collapse
|
20
|
Ali M, Mahmood S. Geo-spatial assessment of pluvial floods in city district Lahore, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:189. [PMID: 38261140 DOI: 10.1007/s10661-023-12291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
This study is an effort of geo-spatial assessment of pluvial floods in District Lahore, Pakistan, caused by urban expansion and the growing frequency and intensity of high-intensity rainfall events. The use of geospatial techniques such as watershed modeling, maximum likelihood image classification, and weighted overlay analysis based on secondary data has enabled the researchers to assess the extent and severity of pluvial floods in the study area. The study's findings highlight the high risk of pluvial floods in the central part of the study area, which is dominated by built-up land and concrete roads. The increase in the area of built-up land from 34.913 km2 in 2018 to 37.442 km2 in 2022 has further intensified the risk of pluvial floods. The findings of this study can assist policymakers in developing effective strategies to reduce the risks associated with pluvial floods. Alongside, it also highlights the importance of geospatial techniques to better understand and address the complex challenges of urbanization and climate change. Flood risk zone-specific strategies are recommended to reduce the risk of pluvial floods.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Geography, Government College University Lahore, Lahore, Pakistan
| | - Shakeel Mahmood
- Department of Geography, Government College University Lahore, Lahore, Pakistan.
| |
Collapse
|
21
|
Pinto RB, Bogerd L, van der Ploeg M, Duah K, Uijlenhoet R, van Emmerik THM. Catchment scale assessment of macroplastic pollution in the Odaw river, Ghana. MARINE POLLUTION BULLETIN 2024; 198:115813. [PMID: 38016204 DOI: 10.1016/j.marpolbul.2023.115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Catchment-scale plastic pollution assessments provide insights in its sources, sinks, and pathways. We present an approach to quantify macroplastic transport and density across the Odaw catchment, Ghana. We divided the catchment into the non-urban riverine, urban riverine, and urban tidal zones. Macroplastic transport and density on riverbanks and land were monitored at ten locations in December 2021. The urban riverine zone had the highest transport, and the urban tidal zone had the highest riverbank and land macroplastic density. Water sachets, soft fragments, and foam fragments were the most abundant items. Our approach aims to be transferable to other catchments globally.
Collapse
Affiliation(s)
- Rose Boahemaa Pinto
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands.
| | - Linda Bogerd
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands
| | - Martine van der Ploeg
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands
| | - Kwame Duah
- Trans-African Hydro-Meteorological Observatory (TAHMO), Accra, Ghana
| | - Remko Uijlenhoet
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands; Department of Water Management, Faculty of Civil Engineering & Geosciences, Delft University of Technology, Netherlands
| | - Tim H M van Emmerik
- Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
22
|
Jabeen K, Xu J, Liu K, Zhu L, Li D. Monthly variation and transport of microplastics from the Soan River into the Indus River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166877. [PMID: 37689211 DOI: 10.1016/j.scitotenv.2023.166877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
The presence of plastic and microplastic pollution in freshwater systems receives extensive concerns for its accumulative trend and potential ecological impacts. This is the first annual study that investigated the monthly profile of plastic pollution in the mouth of the Soan River. Plastic pollutants comprising microplastic content up to 91.7 % were abundantly found during different seasons around the year, ranging from 132.7 items/m3 to 641.3 items/m3. The average abundance of plastics was significantly higher in August (641.3 ± 23.7 items/m3) than in other months. Overall, fibers, large microplastics (L-MPs), and transparent items were dominant by shape (57.7 %), size (61.9 %), and color (24.6 %), respectively. The highest average number of fibers (374.3/m3) and L-MPs (396 items/m3) were recorded during May and remained higher in the surface water from December to May. Fragments (432.3/m3) and S-MPs were observed higher (362.3 items/m3) during the peak rainy month of the summer monsoon season (August). Variations in the abundance and morphotypes were seemingly not only influenced by the seasonal change but also might be due to hydromorphological characteristics of the river, especially riverbed morphology, and the flow of the water. Only 5.2 % of the total items found were identified using μ-FTIR (micro-Fourier Transformed Infrared Spectroscope) which consisted of 70.7 % plastic items. Spectroscopy revealed that polyethylene terephthalate was an abundantly found polymer that largely prevailed in the form of fibers, followed by polypropylene and polyethylene. Most of the fragments, foams, and films were composed of polypropylene, polystyrene, and rayon respectively. Being an urban river, the polymeric profile demonstrated that anthropogenic activities had a significant impact on polluting the river. These findings are a very important source to understand the profile of plastic pollution in the Soan River and also a significant reference for policy-making in controlling plastic pollution among the riverine networks.
Collapse
Affiliation(s)
- Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Institute of Plastic Cycle and Innovation, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Institute of Plastic Cycle and Innovation, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Institute of Plastic Cycle and Innovation, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Institute of Plastic Cycle and Innovation, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Institute of Plastic Cycle and Innovation, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China.
| |
Collapse
|
23
|
Zhao X, Qiang M, Yuan Y, Zhang M, Wu W, Zhang J, Gao Z, Gu X, Ma S, Liu Z, Cai L, Han J. Distribution of microplastic contamination in the major tributaries of the Yellow River on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167431. [PMID: 37774863 DOI: 10.1016/j.scitotenv.2023.167431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Microplastic pollution in rivers had gained increased attention worldwide. However, the differences in microplastic characteristics among major tributaries of large rivers and the environmental factors influencing these characteristics remain uncertain. Through field investigation and indoor experiments, the distribution of microplastics and their driving factors were investigated at 96 sampling sites along the three main tributaries (Huangfuchuan, Wuding and Yan River) of the Yellow River in the Loess Plateau. The results revealed that the average microplastic abundance followed this order: Yan River (430.30 items kg-1) > Wuding River (145.09 items kg-1) > Huangfuchuan River (253.33 items kg-1). The abundance was lower than that in most parts of the world. There was a generally increasing trend in average microplastic abundance from upstream to downstream in the three rivers. The most frequently observed microplastic colors observed were black and white, and the most common polymer type were PE and PS in all three rivers. The dominant shape and size in the three rivers were fiber and particles measuring 0.5-5.0 mm, all accounting for more than half of the total microplastic content. The microplastic abundance, shape, and size were primarily influenced by mean annual precipitation and population density. This relationship can be attributed to the fact that increased population density driven by higher demand and consumption of plastic products, while augmented rainfall aggravated the occurrence of floods and provided conditions for plastic degradation and accumulation. This study will provide fundamental data for pollution assessing and ecological protection of the Yellow River, and provide a certain reference for future management and protection on the Loess Plateau.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China; Changjiang River Scientific Research Institute, Wuhan, Hubei, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Minmin Qiang
- Power China Northwest Survey Design and Research Institute Co. Ltd., Xi'an, Shaanxi, China
| | - Yuan Yuan
- Changjiang River Scientific Research Institute, Wuhan, Hubei, China
| | - Man Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China; Changjiang River Scientific Research Institute, Wuhan, Hubei, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Wenjing Wu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaocheng Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Zesen Gao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinmei Gu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Sitian Ma
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihan Liu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Cai
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianqiao Han
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China; Changjiang River Scientific Research Institute, Wuhan, Hubei, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling, Shaanxi, China.
| |
Collapse
|
24
|
Duong TT, Nguyen-Thuy D, Phuong NN, Ngo HM, Doan TO, Le TPQ, Bui HM, Nguyen-Van H, Nguyen-Dinh T, Nguyen TAN, Cao TTN, Pham TMH, Hoang THT, Gasperi J, Strady E. Microplastics in sediments from urban and suburban rivers: Influence of sediment properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166330. [PMID: 37591389 DOI: 10.1016/j.scitotenv.2023.166330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Although sediments are considered to be a major sink for microplastics (MP), there is still a relative lack of knowledge on the factors that influence the occurrence and abundance of MP in riverine sediments. The present study investigated the occurrence and distribution of MP in riverine sediments collected at twelve sites representative of different populated and urbanized rivers (To Lich, Nhue and Day Rivers) located in the Red River Delta (RRD, Vietnam, during dry and rainy seasons. MP concentrations ranged from 1600 items kg-1 dw to 94,300 items kg-1dw. Fiber shape dominated and MP were made of polypropylene (PP) and polyethylene (PE) predominantly. An absence of seasonal effect was observed for both fragments and fibers for each rivers. Decreasing MP concentrations trend was evidenced from the To Lich River, to the Nhue River and to the Day River, coupled with a decreasing fiber length and an increasing fragment area in the surface sediment from upstream to downstream. Content of organic matter was correlated to MP concentrations suggesting that, high levels of organic matter could be MP hotspots in urban rivers. Also, high population density as well as in highly residential areas are related to higher MP concentrations in sediments. Finally, a MP high ecological risk (RI: 866 to 4711) was calculated in the RDD.
Collapse
Affiliation(s)
- Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Duong Nguyen-Thuy
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Ngoc Nam Phuong
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, Viet Nam; GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Ha My Ngo
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Oanh Doan
- Faculty of Environment, Hanoi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong St., District 5, Ho Chi Minh City, Viet Nam
| | - Huong Nguyen-Van
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thai Nguyen-Dinh
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thi Anh Nguyet Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Thanh Nga Cao
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Institute of Human Geography - Vietnam Academy of Social Sciences, 1 Lieu Giai Street Ba Dinh District, Hanoi, Viet Nam
| | - Thi Minh Hanh Pham
- Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi, Viet Nam
| | - Thu-Huong Thi Hoang
- Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam; School of Chemistry and Life Science, Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam
| | - Johnny Gasperi
- GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Emilie Strady
- Aix-Marseille Univ., Toulon University, CNRS, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
25
|
Mohsen A, Balla A, Kiss T. High spatiotemporal resolution analysis on suspended sediment and microplastic transport of a lowland river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166188. [PMID: 37567280 DOI: 10.1016/j.scitotenv.2023.166188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The suspended sediment (SS) and microplastic (MP) transport in rivers is quite a complex process, influenced by several spatially and temporally changing factors (e.g., hydrology, sediment availability, human impact). Researchers usually investigate these factors individually and based on limited repetition in space and time. Therefore, this study aims to compare the driving factors of SS and MP transport by applying dense temporal (72 measurements) and spatial monitoring (at 26 sites). This study was performed on the medium-sized Tisza River, Central Europe. The suspended sediment concentration (SSC) was measured by water sampling and estimated based on Sentinel-2 images, while MP concentration was measured by pumping of water (1 m3). The SSC of the Tisza varied between 12.6 and 322.5 g/m3, whereas the MP concentration ranged 0-129 item/m3. Most of the transported particles were fibers (81-98 %), thus, it was assumed that MPs originated from wastewater. The results reflect that the hydrological conditions basically influence the SS and MP concentrations, as a strong positive correlation was found (ρSSC-MP = 0.6) between them during a year; however, the correlation during floods (minor floods: ρ = 0.63; medium floods: ρ = 0.41) was higher than at low stages (ρ = 0.1). It was assumed that run-off and mobilization of channel materials both contribute to increased SS and MP transport during floods. In contrary, the importance of mobilization of channel materials and wastewater input increase during low stages. The repeated measurements revealed that slope and velocity conditions, proximity of sources, tributaries, and dams influence the longitudinal changes in SS and MP concentrations. However, the effects of tributaries and dams are ambiguous (especially for MP) and require further research. The longitudinal measurements were conducted at low stages; hence, moderate negative correlations (ρ2021 = -0.35; ρ2022 = -0.41) were found between the SS and MP concentrations. Therefore, additional monitoring during (overbank) floods and denser spatial sampling are required to precisely reveal the spatiotemporal changes of SS and MP concentrations in rivers.
Collapse
Affiliation(s)
- Ahmed Mohsen
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem str. 2-6, 6722 Szeged, Hungary; Department of Irrigation and Hydraulics Engineering, Tanta University, Tanta, Egypt
| | - Alexia Balla
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem str. 2-6, 6722 Szeged, Hungary
| | - Tímea Kiss
- Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem str. 2-6, 6722 Szeged, Hungary.
| |
Collapse
|
26
|
Aytan Ü, Esensoy FB, Arifoğlu E, Ipek ZZ, Kaya C. Plastics in an endemic fish species (Alburnus sellal) and its parasite (Ligula intestinalis) in the Upper Tigris River, Türkiye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165604. [PMID: 37482361 DOI: 10.1016/j.scitotenv.2023.165604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Occurrence of micro-, meso- and macroplastics in Alburnus sellal and its parasite Ligula intestinalis is reported for the first time in the Tigris River, one of the two large rivers that defines Mesopotamia. Plastic occurrence was assessed from museum fish materials collected in the upper Tigris River between 2007 and 2021. Plastics were found in 57 % of A. sellal specimens (536 individuals) and in 74 % of L. intestinalis specimens (57 individuals). Mean plastic ingestion was 1.27 ± 1.30 items. fish-1 and 1.77 ± 1.79 items. parasite-1 considering all the fish and parasites analysed. Fibres were the most common types of plastics, comprising 96.2 % and 81 % of plastics in A. sellal and L. intestinalis, respectively. Black was the most common colour of plastics found in both fish (37 %) and parasite specimens (58 %). Microplastics comprised 95.5 % and 100 % of plastics found in A. sellal and L. intestinalis, respectively. In both specimens acrylic (PAN) was the most common polymer as confirmed by FTIR spectroscopy. Differences in plastic ingestion were not significantly over time and among regions. No significant correlation was found between plastics ingestion by fish and by parasites. The present assessment shows that native fish species of the Tigris River have been contaminated by plastics by more than a decade. Our results contribute to a better understanding of the status of plastic pollution in fish and parasites, provide plastic pollution baseline data for the Tigris River and highlight the urgent need to elucidate on the distribution and fate of plastics in freshwater environments and their effects on the ecosystem and humans.
Collapse
Affiliation(s)
- Ülgen Aytan
- Recep Tayyip Erdogan University, Faculty of Fisheries, 53100 Rize, Turkiye.
| | - F Basak Esensoy
- Recep Tayyip Erdogan University, Faculty of Fisheries, 53100 Rize, Turkiye
| | - Esra Arifoğlu
- Recep Tayyip Erdogan University, Faculty of Fisheries, 53100 Rize, Turkiye
| | - Zeynep Z Ipek
- Recep Tayyip Erdogan University, Faculty of Fisheries, 53100 Rize, Turkiye
| | - Cüneyt Kaya
- Recep Tayyip Erdogan University, Faculty of Fisheries, 53100 Rize, Turkiye
| |
Collapse
|
27
|
Lloyd-Jones T, Dick JJ, Lane TP, Cunningham EM, Kiriakoulakis K. Occurrence and sources of microplastics on Arctic beaches: Svalbard. MARINE POLLUTION BULLETIN 2023; 196:115586. [PMID: 37832496 DOI: 10.1016/j.marpolbul.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023]
Abstract
Plastic pollution is recognised as a major global environmental concern, especially within marine environments. The small size of microplastics (< 5 mm) make them readily available for ingestion by organisms in all trophic levels. Here, four beach sites in Adventfjorden on the west coast of Svalbard, were sampled with the aim of investigating the occurrence and abundance of microplastics on beaches to assess potential sources of microplastic pollution. High variability in microplastic amount, type and polymers were found at all sites ranging from means of 0.7 n/g (number) at the remotest site and 2.2 n/g (number) at the site closest to Longyearbyen. Statistical analyses suggested that patterns observed were linked to direct proximity to human activities through land uses and effluent discharge. These findings point to an increased importance of localised factors on driving elevated microplastic pollution in beach sediments over oceanic controls in remote but inhabited Arctic locations and have important implications for our understanding and future assessments of microplastic pollution in such settings.
Collapse
Affiliation(s)
- Tesni Lloyd-Jones
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jonathan J Dick
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | - Timothy P Lane
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Eoghan M Cunningham
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry BT22 1PF, Northern Ireland, UK
| | - Konstadinos Kiriakoulakis
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
28
|
Geng X, Boufadel MC, Lopez EP. Modeling impacts of river hydrodynamics on fate and transport of microplastics in riverine environments. MARINE POLLUTION BULLETIN 2023; 196:115602. [PMID: 37806015 DOI: 10.1016/j.marpolbul.2023.115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Microplastics pose a significant and growing threat to marine ecosystems and human health. Rivers serve as critical pathways for the entry of inland-produced microplastics into marine environments. In this paper, we developed a numerical modeling scheme using OpenFOAM to investigate the fate and transport of microplastics in a river system. Our simulation results show that microplastics undergo significant aggregation and breakage as they are transported downstream by river flows. This significantly alters the particle size distribution of microplastics. The aggregation-breakage process is mainly controlled by river hydrodynamics and pollution scale. Our findings suggest that a significant extent of particle aggregation occurs at an early stage of the release of microplastics in the river, while the aggregation-breakage process becomes limited as the microplastic plume is gradually dispersed and diluted downstream. Eddy diffusivity drives the dispersion of the microplastic plume in the river, and its spatial patterns affect the aggregation-breakage process.
Collapse
Affiliation(s)
- Xiaolong Geng
- Department of Earth Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; Water Resources Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Michel C Boufadel
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.
| | - Edward P Lopez
- Department of Earth Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
29
|
Sullivan E, Cole M, Atwood EC, Lindeque PK, Chin PT, Martinez-Vicente V. In situ correlation between microplastic and suspended particulate matter concentrations in river-estuary systems support proxies for satellite-derived estimates of microplastic flux. MARINE POLLUTION BULLETIN 2023; 196:115529. [PMID: 37776743 DOI: 10.1016/j.marpolbul.2023.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Rivers are key pathways for transporting microplastics from land to the oceans, yet microplastic flux estimates remain uncertain. Remote sensing allows repeated broad-scale measurements and can be used to extrapolate limited in situ observations. This study investigated the relationship between suspended particulate matter (SPM), a satellite-observable water quality parameter, and microplastic concentration in a partially mixed estuary (Tamar, UK). Microplastic concentrations ranged from 0.04 to 0.99 microplastics/m3, decreasing downstream. A significant correlation was found between SPM and microplastic concentration over two seasons. This relationship was used to compute a multiyear timeseries of proxy microplastic concentration from satellite imagery and produce estimates of annual proxy microplastic flux. This approach could be applied to investigate microplastic flux in other major rivers worldwide where such a relationship between microplastics and SPM exists. To apply this workflow elsewhere, the establishment of local SPM-to-microplastic relationships from in situ observations and local validation of remote sensing SPM algorithms are essential.
Collapse
Affiliation(s)
- Emma Sullivan
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH , United Kingdom of Great Britain and Northern Ireland.
| | - Matthew Cole
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH , United Kingdom of Great Britain and Northern Ireland
| | - Elizabeth C Atwood
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH , United Kingdom of Great Britain and Northern Ireland
| | - Penelope K Lindeque
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH , United Kingdom of Great Britain and Northern Ireland
| | - Pham Thi Chin
- Department of Natural Resources and Environment, Da Nang, Viet Nam
| | - Victor Martinez-Vicente
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
30
|
Johnson J, Peer N, Sershen, Rajkaran A. Microplastic abundance in urban vs. peri-urban mangroves: The feasibility of using invertebrates as biomonitors of microplastic pollution in two mangrove dominated estuaries of southern Africa. MARINE POLLUTION BULLETIN 2023; 196:115657. [PMID: 37864863 DOI: 10.1016/j.marpolbul.2023.115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
Microplastic (MP) prevalence has been well documented, however, knowledge gaps exist for African mangrove forests. This research is the first to compare MP pollution (using FT-IR analysis) in an urban (Durban Bay) and peri-urban (Mngazana Estuary) mangrove forest in South Africa, across different compartments. MP pollution (typology, abundance, and distribution) was quantified in estuarine surface water, sediment and the soft tissue of three keystone species (Austruca occidentalis, Chiromantes eulimene and Cerithidea decollata) in relation to disturbances acting on these systems. MP averages ranged from 99 to 82 MPs/kg sediment, 177 to 76 MPs/L water and 82 to 59 MP/g-1 DW in biota. Overall fibres were the dominant MP type across all compartments. The three invertebrate species exhibited MP bioaccumulation, however, significant differences were observed between MP concentrations in the soft body tissue of invertebrates and abiotic compartments, providing evidence that they are not effective biomonitors of MP pollution.
Collapse
Affiliation(s)
- Jaime Johnson
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Way, Bellville, Cape Town 7530, South Africa.
| | - Nasreen Peer
- Department of Botany and Zoology, Stellenbosch University, Natural Sciences Building, Merriman Avenue, Stellenbosch Central, Stellenbosch, 7600, South Africa
| | - Sershen
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Way, Bellville, Cape Town 7530, South Africa
| | - Anusha Rajkaran
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Way, Bellville, Cape Town 7530, South Africa; South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa
| |
Collapse
|
31
|
Bertoli M, Lesa D, Pastorino P, Mele A, Anselmi S, Barceló D, Prearo M, Renzi M, Pizzul E. Microplastic patterns in riverine waters and leaf litter: Leaf bag technique to investigate the microplastic accumulation trends in lotic ecosystems. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104253. [PMID: 39492377 DOI: 10.1016/j.jconhyd.2023.104253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 10/01/2023] [Indexed: 11/05/2024]
Abstract
Microplastics (MPs) are one of the major ecological concerns of the last years and despite the increasing interest and the rise of many studies regarding freshwater habitats, many aspects about distribution patterns, transport pathways and impacts of MPs in those systems need to be investigated. The present study characterizes the temporal trends of MP concentrations in waters of a riverine stretch of the northeastern Italy, subject to flow rate variations and investigates the MP accumulations patterns in the leaf litter, simulated in situ via leaf bag technique. MP concentrations in the water were significantly and negatively correlated to the flow rate regimes, with higher concentrations observed during low discharge periods. MPs accumulation in leaf bags agreed with trends observed in the water and the presence of wastewater discharge points positively affects the levels of MP contaminations within the leaf bags. These findings seem to suggest that the maintenance of a hydrological regime at relatively high levels in the investigated system could allow to maintain the self-purifying riverine processes and the disposal of microplastics like any other polluting substance. The use of leaf bag technique for the purpose to investigate MP accumulation trends on field provided useful information, is easy to modulate in terms of time periods and allow to record the evolution of the MP patterns also in relation to high flow rate episodes. Our results suggest that the method can be employed in new a perspective, to improve the knowledge about one of the major threats of the Anthropocene.
Collapse
Affiliation(s)
- Marco Bertoli
- University of Trieste, Department of Life Science, Via Giorgieri 10, 34127 Trieste, Italy.
| | - Davide Lesa
- University of Trieste, Department of Life Science, Via Giorgieri 10, 34127 Trieste, Italy
| | - Paolo Pastorino
- Zooprophylactic Insitute of Piemonte, Liguria and Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Antonella Mele
- University of Trieste, Department of Life Science, Via Giorgieri 10, 34127 Trieste, Italy
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, GR, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Marino Prearo
- Zooprophylactic Insitute of Piemonte, Liguria and Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Monia Renzi
- University of Trieste, Department of Life Science, Via Giorgieri 10, 34127 Trieste, Italy; Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, GR, Italy
| | - Elisabetta Pizzul
- University of Trieste, Department of Life Science, Via Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
32
|
Shukur SA, Hassan FM, Fakhry SS, Ameen F, Stephenson SL. Evaluation of microplastic pollution in a lotic ecosystem and its ecological risk. MARINE POLLUTION BULLETIN 2023; 194:115401. [PMID: 37657191 DOI: 10.1016/j.marpolbul.2023.115401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 09/03/2023]
Abstract
This study investigates the microplastics (MPs) pollution in Tigris River, assessing spatial and temporal variations in water and sediment. MPs presence was high during both seasons 3429.2 MPs/m3 (dry season) and 3363.2 MPs/m3 (wet season) in water, and 121.2 MPs/kg (wet season) and 123.2 MPs/kg (dry season) in sediment. MPs morphology mostly consisted of fibers and fragments, with sizes below 0.5 mm. Transparent and white were the most common colors, and they were primarily composed of polyethylene (PE) and polypropylene (PP). Ecological risk assessment, using the plastic hazard index (PHI), pollution load index (PLI), and potential ecological risk index (PERI), categorized the risk from danger to extreme danger based on PHI, while PLI and PERI indicated a minor risk. These findings provide initial evidence of microplastics pollution in the Tigris River's water and sediment, emphasizing the need for action by decision-makers to mitigate these risks.
Collapse
Affiliation(s)
- Shaymaa Arif Shukur
- Department of Biology, College of Science for Women, University of Baghdad, Iraq.
| | - Fikrat M Hassan
- Department of Biology, College of Science for Women, University of Baghdad, Iraq.
| | - Saad Sabah Fakhry
- Ministry of Science and Technology/Food Contamination Research Center, Iraq
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
33
|
Qian Y, Shang Y, Zheng Y, Jia Y, Wang F. Temporal and spatial variation of microplastics in Baotou section of Yellow River, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117803. [PMID: 37027953 DOI: 10.1016/j.jenvman.2023.117803] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Freshwater rivers play the key role in providing drinking water sources and building the bridge of oceans and lands. Hence, environmental pollutants can be transferred into drinking water through a water treatment process and transported land-based microplastics into the ocean. Microplastics are considered a new pollutant that is becoming a threat to freshwater ecosystems. The present study investigated the temporal and spatial variation of microplastics abundance and their characteristics of occurrence in surface water, sediment and soil samples of Baotou section of Yellow River in China in March 2021 and September 2021. According to the LDIR analysis, the average abundances of microplastics in wet season (surface water 2510.83 ± 2971.27n/L, sediment 6166.67 ± 2914.56n/kg) were higher than that in dry season(surface water 432.5 ± 240.54n/L, sediment 3766.67 ± 1625.63n/kg), particularly being significant difference in the dry and wet seasons of surface water. The predominant polymer types in surface water (PBS and PET during the dry season, PP during the wet season) demonstrated that the temporal variation of microplastics abundance in surface water could be attributed to the combined effect of the regional precipitation, fishing activities and improper disposal of plastic waste. And the results of spatial abundances of microplastics showed that the microplastics abundance of soil and sediment was higher than that in river water and microplastics abundance in the river of the south side was the higher than other water sampling sites, revealing the differences of microplastics burden at the different sampling sites. Moreover, it is worth noting that a large amount of PAM was detected in sediments and soil, but not in water, and the biodegradable plastics PBS and PLA were also detected in the Yellow River. It was a very useful information for evaluating environmental impacts and ecological effects of degradable plastics compared to the traditional plastics after the implementation of a new environmental policy in the future. Thus, this study provided insights into the temporal-spatial characteristics of microplastics in an urban river and raised environmental management awareness of the long-term threat to drinking water safety by microplastics.
Collapse
Affiliation(s)
- Yaru Qian
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Yunxu Shang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Yixin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Yuqiao Jia
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, 014040, China.
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China.
| |
Collapse
|
34
|
Islam MS, Karim MR, Islam MT, Oishi HT, Tasnim Z, Das H, Kabir AHME, Sekine M. Abundance, characteristics, and ecological risks of microplastics in the riverbed sediments around Dhaka city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162866. [PMID: 36924967 DOI: 10.1016/j.scitotenv.2023.162866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/06/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Microplastic (MP) pollution has become an escalating problem in Bangladesh due to its rapid urbanization, economic growth, and excessive use of plastics; however, data on MP pollution from fresh water resources in this country are limited. This study investigated microplastics pollution in riverbed sediments in the peripheral rivers of Dhaka, the capital of Bangladesh. Twenty-eight sediment samples were collected from the selected stations of the Buriganga, Turag, and Balu Rivers. Density separation and wet-peroxidation methods were employed to extract MP particles. Attenuated total reflectance-Fourier transform infrared spectroscopy was used to identify the polymers. The results indicated a medium-level abundance of MPs in riverbed sediment in comparison with the findings of other studies in freshwater sediments worldwide. Film shape, white and transparent color, and large-size (1-5 mm) MPs were dominant in the riverbed sediment. The most abundant polymers were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Pollution load index (PLI) values greater than 1 were observed, indicating that all sampling sites were polluted with MPs. An assessment of ecological risks, using the abundance, polymer types, and toxicity of MPs in the sediment samples, suggested a medium to very high ecological risk of MP pollution of the rivers. The increased abundance of MPs and the presence of highly hazardous polymers, namely; polyurethane, acrylonitrile butadiene styrene, polyvinyl chloride, epoxy resin, and polyphenylene sulfide, were associated with higher ecological risks. Scanning electron microscopy (SEM) analysis indicated that the MPs were subjected to weathering actions, reducing the size of MPs, which caused additional potential ecological hazards in these river ecosystems. This investigation provides baseline information on MP pollution in riverine freshwater ecosystems for further in-depth studies of risk assessment and developing strategies for controlling MP pollution in Bangladesh.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh.
| | - Md Rezaul Karim
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
| | - Md Tanvirul Islam
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, USA
| | - Humaira Tasnim Oishi
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
| | - Zarin Tasnim
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
| | - Harinarayan Das
- Materials Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - A H M Enamul Kabir
- Department of Civil & Environmental Engineering, Yamaguchi University, Tokiwadai, Ube, Yamaguchi, Japan
| | - Masahiko Sekine
- Department of Civil & Environmental Engineering, Yamaguchi University, Tokiwadai, Ube, Yamaguchi, Japan
| |
Collapse
|
35
|
Anuar ST, Abdullah NS, Yahya NKEM, Chin TT, Yusof KMKK, Mohamad Y, Azmi AA, Jaafar M, Mohamad N, Khalik WMAWM, Ibrahim YS. A multidimensional approach for microplastics monitoring in two major tropical river basins, Malaysia. ENVIRONMENTAL RESEARCH 2023; 227:115717. [PMID: 36963716 DOI: 10.1016/j.envres.2023.115717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
Microplastics (MPs) with the size of 1 μm-5 mm are pollutants of great concern ubiquitously found in the environment. Existing efforts have found that most of the MPs present in the seas mainly originated from land via riverine inputs. Asian rivers are known to be among the top in microplastic emissions. However, field data are scarce, especially in Malaysia. This study presents the distribution and characteristics of MPs in the surface water of two major river basins of Malaysia, namely Langat River (West Coast/Straits of Malacca) and Kelantan River (East Coast/South China Sea). Water samples were collected at 21-22 locations in Kelantan and Langat rivers, covering the river, estuary and sea. MPs were physically classified based on sizes, shapes, colours and surface morphology (SEM-EDS). The average of 179.6 items/L and 1464.8 items/L of MPs had been quantified from Kelantan and Langat rivers, respectively. Fibre (91.90%) was highly recorded at Kelantan, compared to Langat whereby both fibre (59.21%) and fragment (38.87%) were prevalence. Anthropogenic activities and urbanised areas contribute to high microplastic abundance, especially in the Langat River. Micro-FTIR analysis identified 14 polymers in Kelantan River, whereas 20 polymers were found in Langat River. Polypropylene, polyethylene, polyethylene terephthalate, nylon, phenoxy resins, poly(methyl acrylate), poly(methyl methacrylate), polystyrene, polytetrafluoroethylene, polyurethane and rayon were discovered in both rivers, although only polyethylene was significant (>1 ppm) when further analysed using pyrolysis-GC/MS. Correlation analysis and multiple linear regression were used to explain the relationship between water quality and MP abundance, suggesting only turbidity was positively significant to the microplastic occurrence. This comprehensive study is first to suggest a full-scale monitoring protocol for MPs in Malaysian riverine system and is significant in understanding MPs abundance in correlation to in-situ environmental factors. Consequently, this will allow the right authorities to develop mitigation strategies to address riverine plastic pollution in major river basins in Malaysia and the South East Asia.
Collapse
Affiliation(s)
- Sabiqah Tuan Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Nor Salmi Abdullah
- Water Quality Laboratory, National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia.
| | - Nasehir Khan E M Yahya
- Water Quality Laboratory, National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia.
| | - Teen Teen Chin
- ALS Technichem (M) Sdn Bhd., Wisma ALS, No. 21, Jalan Astaka U8/84, Bukit Jelutong, 40150, Shah Alam, Selangor, Malaysia.
| | - Ku Mohd Kalkausar Ku Yusof
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Yuzwan Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Alyza Azzura Azmi
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Maisarah Jaafar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Noorlin Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Wan Mohd Afiq Wan Mohd Khalik
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| |
Collapse
|
36
|
Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. CHEMOSPHERE 2023; 325:138367. [PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Hafiz Muhammad Umer Aslam
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
37
|
Nantege D, Odong R, Auta HS, Keke UN, Ndatimana G, Assie AF, Arimoro FO. Microplastic pollution in riverine ecosystems: threats posed on macroinvertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27839-9. [PMID: 37248351 DOI: 10.1007/s11356-023-27839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) are pollutants of emerging concern that have been reported in terrestrial and aquatic ecosystems as well as in food items. The increasing production and use of plastic materials have led to a rise in MP pollution in aquatic ecosystems. This review aimed at providing an overview of the abundance and distribution of MPs in riverine ecosystems and the potential effects posed on macroinvertebrates. Microplastics in riverine ecosystems are reported in all regions, with less research in Africa, South America, and Oceania. The abundance and distribution of MPs in riverine ecosystems are mainly affected by population density, economic activities, seasons, and hydraulic regimes. Ingestion of MPs has also been reported in riverine macroinvertebrates and has been incorporated in caddisflies cases. Further, bivalves and chironomids have been reported as potential indicators of MPs in aquatic ecosystems due to their ability to ingest MPs relative to environmental concentration. Fiber and fragments are the most common types reported. Meanwhile, polyethylene, polypropylene, polystyrene, polyethylene terephthalate (polyester), polyamide, and polyvinyl chloride are the most common polymers. These MPs are from materials/polymers commonly used for packaging, shopping/carrier bags, fabrics/textiles, and construction. Ingestion of MPs by macroinvertebrates can physically harm and inhibit growth, reproduction, feeding, and moulting, thus threatening their survival. In addition, MP ingestion can trigger enzymatic changes and cause oxidative stress in the organisms. There is a need to regulate the production and use of plastic materials, as well as disposal of the wastes to reduce MP pollution in riverine ecosystems.
Collapse
Affiliation(s)
- Diana Nantege
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria.
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Helen Shnada Auta
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Unique Ndubuisi Keke
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Gilbert Ndatimana
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Attobla Fulbert Assie
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Francis Ofurum Arimoro
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| |
Collapse
|
38
|
Feng S, Lu H, Xue Y, Yan P, Sun T. Fate, transport, and source of microplastics in the headwaters of the Yangtze River on the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131526. [PMID: 37167873 DOI: 10.1016/j.jhazmat.2023.131526] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) in the Yangtze River have been drawn increasing attention recently with most merely concentrating on the plain area. This research focuses on the source area of the Yangtze River on the Qinghai-Tibet Plateau (QTP), revealing the occurrence, drivers, sources, and exposure risks of riverine MPs in the Jinsha River (JSR) basin. The results showed that average MP abundances determined were higher in the tributaries than in the of mainstreams. According to the correlation analysis, MP abundance was consistently negatively related to pH and altitude both in water and sediment. However, MPs in two media showed a contrary relationship with river width, which could be explained by the special terrain of plateau rivers and hydrological conditions. After the tributary river flow into the mainstream, the concentration of MPs in the mainstream near the tributary side were significantly lower than that before confluence temporarily. Based on the conditional fragmentation-based model, the cumulative λ value of fibers in surface water along the river divided the JSR into three stages (upstream, midstream, and downstream). Under certain assumptions, the proportions of MPs sourced from three stages were eventually revealed, respectively. This is conducive to better understanding the plateau environmental impacts of MP distribution in the large river.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Tong Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Nyberg B, Harris PT, Kane I, Maes T. Leaving a plastic legacy: Current and future scenarios for mismanaged plastic waste in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161821. [PMID: 36708835 DOI: 10.1016/j.scitotenv.2023.161821] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Mismanaged plastic waste (MPW) entering the riverine environment is concerning, given that most plastic pollution never reaches the oceans, and it has a severe negative impact on terrestrial ecosystems. However, significant knowledge gaps on the storage and remobilization of MPW within different rivers over varying timescales remain. Here we analyze the exposure of river systems to MPW to better understand the sedimentary processes that control the legacy of plastic waste. Using a conservative approach, we estimate 0.8 million tonnes of MPW enter rivers annually in 2015, affecting an estimated 84 % of rivers by surface area, globally. By 2060, the amount of MPW input to rivers is expected to increase nearly 3-fold, however improved plastic waste strategies through better governance can decrease plastic pollution by up to 72 %. Currently, most plastic input occurs along anthropogenically modified rivers (49 %) yet these represent only 23 % of rivers by surface area. Another 17 % of MPW occur in free-flowing actively migrating meandering rivers that likely retain most plastic waste within sedimentary deposits, increasing retention times and likelihood of biochemical weathering. Active braided rivers receive less MPW (14 %), but higher water discharge will also increase fragmentation to form microplastics. Only 20 % of plastic pollution is found in non-migrating and free-flowing rivers; these have the highest probability of plastics remaining within the water column and being transferred downstream. This study demonstrates the spatial variability in MPW affecting different global river systems with different retention, fragmentation, and biochemical weathering rates of plastics. Targeted mitigation strategies and environmental risk assessments are needed at both international and national levels that consider river system dynamics.
Collapse
Affiliation(s)
- Björn Nyberg
- Department of Earth Sciences, University of Bergen, Allegaten 41, 5020 Bergen, Norway; Bjerknes Centre for Climate Research, Allegaten 70, 5020 Bergen, Norway.
| | | | - Ian Kane
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Thomas Maes
- GRID-Arendal, P.O. Box 183, N-4802 Arendal, Norway
| |
Collapse
|
40
|
Dada OA, Bello JO. Microplastics in carnivorous fish species, water and sediments of a coastal urban lagoon in Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55948-55957. [PMID: 36914928 DOI: 10.1007/s11356-023-26410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Plastic marine debris is a common source of pollution. Recent research has shown that plastic debris has a negative impact on marine organisms and the environment. For the first time, we investigated the presence of microplastics (MPs) in the Nigerian Lagos Lagoon ecosystem water, sediment, and the most important fish species (Hepsetus odoe, Chrysichthys nigrodigitatus, Oreochromis niloticus, and Lachnolaimus maximus). MPs were found in water, sediment, and three carnivorous fish species (H. odoe, C. nigrodigitatus, and L. maximus), except for herbivorous O. niloticus, raising concerns about the health of the Nigerian Lagos Lagoon ecosystem and the human food chain. Across the lagoon, fibres were more concentrated in the water, while fragments predominated in the sediment. Plastic debris from recreational, industrial, and domestic wastes contributed significantly to this contamination. Given the potential dangers of MPs to human health, it is critical to protect the ecosystem and its inhabitants in the Lagoon from plastic pollution. Our findings highlight the need for urgent measures to protect Nigeria's fragile coastal and marine ecosystems.
Collapse
Affiliation(s)
- Olusegun A Dada
- Coastal and Marine Environment Research Group, Department of Marine Science and Technology, Federal University of Technology, Akure, 340252, Nigeria.
| | - Jummai O Bello
- Coastal and Marine Environment Research Group, Department of Marine Science and Technology, Federal University of Technology, Akure, 340252, Nigeria
| |
Collapse
|
41
|
Samandra S, Singh J, Plaisted K, Mescall OJ, Symons B, Xie S, Ellis AV, Clarke BO. Quantifying environmental emissions of microplastics from urban rivers in Melbourne, Australia. MARINE POLLUTION BULLETIN 2023; 189:114709. [PMID: 36821931 DOI: 10.1016/j.marpolbul.2023.114709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
This study aims to understand the amount and type of microplastics flowing into Port Phillip Bay from urban rivers around Melbourne. Water samples were collected from the Patterson, Werribee, Maribyrnong, and Yarra Rivers, which contribute 97 % to the total flow into Port Phillip Bay. On average, the rivers contained a mean of 9 ± 15 microplastics/L and ranged from 4 ± 3 microplastics/L (Patterson) to 22 ± 11 microplastics/L (Werribee). Of the eight polymers investigated, polyamide and polypropylene were the most frequently detected polymers. Using the mean concentration of each river, the flow of microplastics into Port Philip Bay was estimated to be 7.5 × 106 microplastics per day and 3.7 × 1010 microplastics per year. To fully understand the fate and transport of microplastics into Port Phillip Bay, this study would be the foundation for a more in-depth investigation. Here, further samples will be collected at more points along the river and at the midpoint of each season.
Collapse
Affiliation(s)
- Subharthe Samandra
- Australian Laboratory for Emerging Contaminants (ALEC), School of Chemistry, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia; Eurofins Environment Testing Australia & New Zealand, Australia
| | - Jai Singh
- Australian Laboratory for Emerging Contaminants (ALEC), School of Chemistry, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia
| | - Katie Plaisted
- Eurofins Environment Testing Australia & New Zealand, Australia
| | | | - Bob Symons
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Shay Xie
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants (ALEC), School of Chemistry, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
42
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
43
|
Khanashyam AC, Anjaly Shanker M, Nirmal NP. Nano/micro-plastics: Sources, trophic transfer, toxicity to the animals and humans, regulation, and assessment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:141-174. [PMID: 36863834 DOI: 10.1016/bs.afnr.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Being in an era of revolutionized production, consumption, and poor management of plastic waste, the existence of these polymers has resulted in an accumulation of plastic litter in nature. With macro plastics themselves being a major issue, the presence of their derivatives like microplastics which are confined to the size limitations of less than 5mm has ascended as a recent type of emergent contaminant. Even though there is size confinement, their occurrence is not narrowed and is extensively seen in both aquatic and terrestrial extents. The vast incidence of these polymers causing harmful effects on various living organisms through diverse mechanisms such as entanglement and ingestion have been reported. The risk of entanglement is mainly limited to smaller animals, whereas the risk associated with ingestion concerns even humans. Laboratory findings indicate the alignment of these polymers toward detrimental physical and toxicological effects on all creatures including humans. Supplementary to the risk involved with their presence, plastics also proceed as carters of certain toxic contaminants complemented during their industrial production process, which is injurious. Nevertheless, the assessment regarding the severity of these components to all creatures is comparatively restricted. This chapter focuses on the sources, complications, and toxicity associated with the presence of micro and nano plastics in the environment along with evidence of trophic transfer, and quantification methods.
Collapse
Affiliation(s)
- Anandu Chandra Khanashyam
- Department of Food Science and Technology, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand
| | - M Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | | |
Collapse
|
44
|
Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, Sharma P, Kumar S, Singh P, Raizada P. Prevalence and implications of microplastics in potable water system: An update. CHEMOSPHERE 2023; 317:137848. [PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
Collapse
Affiliation(s)
- Vikas Menon
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India; Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges, Landran, 140307, Punjab, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India.
| | - Shreya Gupta
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Anujit Ghosal
- Department of Food & Human Nutritional Sciences, University of Manitoba, MB, R3T 2N2, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, MB, R3T 6C5, Canada
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Rajan Jose
- Center for Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia; Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Sunil Kumar
- Waste Reprocessing Division (WRD), CSIR- National Engineering Environmental Research Institute, Nagpur, 440 020, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
45
|
Dos Anjos Guimarães G, de Moraes BR, Ando RA, Sant'Anna BS, Perotti GF, Hattori GY. Microplastic contamination in the freshwater shrimp Macrobrachium amazonicum in Itacoatiara, Amazonas, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:434. [PMID: 36856928 DOI: 10.1007/s10661-023-11019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The present study analyzed the presence of microplastics (MPs) in the shrimp Macrobrachium amazonicum, which is an economically important food that is consumed in several regions of the Brazilian Amazon. A total of 600 specimens of M. amazonicum were captured at two sampling sites (urban and rural area). A total of 2597 MP particles were recorded in the shrimps, with a significant difference between the two sites. The presence of MPs in the body parts also differed significantly. No significant difference was found between MPs abundance and sex of the shrimps. The size of the MPs did not differ significantly between the collection sites and between the body parts. Dark blue fiber-type MPs were the most abundant. A positive correlation was observed between the abundance of MPs and the total weight of shrimps. Raman spectroscopy identified the dark blue fibers as polypropylene and the FTIR technique identified the light blue fragments as nylon. The results indicate that the presence of MPs in the M. amazonicum shrimp is associated with the capture sites near the urban area and is present in the diet of the Amazonian population that regularly consumes this crustacean in traditional dishes.
Collapse
Affiliation(s)
- Gabriel Dos Anjos Guimarães
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil
| | - Beatriz Rocha de Moraes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748 - B4T, São Paulo, Butantã, 05508-000, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748 - B4T, São Paulo, Butantã, 05508-000, Brazil
| | - Bruno Sampaio Sant'Anna
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil
| | - Gustavo Frigi Perotti
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil
| | - Gustavo Yomar Hattori
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil.
| |
Collapse
|
46
|
André-Marie D, Mohammad W, Manon V, Florian MB, Brice M, Hervé P, Thierry W, Stefan K, Laurent S. Environmental and land use controls of microplastic pollution along the gravel-bed Ain River (France) and its "Plastic Valley". WATER RESEARCH 2023; 230:119518. [PMID: 36584661 DOI: 10.1016/j.watres.2022.119518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Understanding microplastic particles (MPs) accumulation and transport along rivers represents a major task due to the complexity and heterogeneity of rivers, and their interactions with their wider corridor. The identification of MPs hotspots and their potential sources is especially challenging in coarse-bed rivers transporting a wide range of particle sizes with a high degree of variability in time and space. This research focuses on the gravel-bed Ain River (Rhône River tributary, France) which is managed by means of various dams and also hosts one of the major plastic production centres in Europe (Oyonnax and Bienne Plastic Valleys). In this research, (i) Geographical Information Systems (GIS) were used to locate plastic factories and to characterise the land use of the Ain River watershed. (ii) On the field, sediment samples were extracted from the hyporheic zone (HZ) of mobile gravel bar heads, while hydro-sedimentary settings were measured in order to describe site conditions. Sampling sites were especially established in downwelling areas (i.e. where the surface water entered the hyporheic zone), upstream and downstream of dams and plastic factories. (iii) After density separation and organic matter digestion of sediment, MPs were characterised with a µFTIR device followed by data processing via the siMPle software. This work highlighted the trapping efficiency of alluvial bars for MPs. The highest MPs concentrations were found along the Plastic Valleys (up to 4400 MPs/kg), while the lower river was less contaminated by MPs. After grain-size correction, a significant breakpoint was identified in the area of the main dams, revealing their major influence on MPs distribution. The variability in MPs concentrations and types suggested a local origin for most of MPs. A particular feature was the dominance of polypropylene (PP) which appears as a critical industrial heritage as the studied region is specialised in the manufacturing of hard plastics. Indeed, multivariate analyses also revealed that MPs concentrations and types were mostly driven by the vicinity of plastic factories and urban areas. This relationship between the land use, the presence of dams and MPs characteristics provides key results for the MPs assessment and the improvement of management issues along coarse-bed rivers.
Collapse
Affiliation(s)
- Dendievel André-Marie
- Univ Lyon, Université Lyon 1 Claude Bernard, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue M. Audin, 69518 Vaulx-en-Velin Cedex, France; Univ Lyon, Université Lyon 1 Claude Bernard, CNRS, UMR 5023 LEHNA, 3 et 6 Rue R. Dubois, bât. Darwin C et Forel, 69662 Villeurbanne Cedex, France.
| | - Wazne Mohammad
- Univ Lyon, Université Lyon 1 Claude Bernard, CNRS, UMR 5023 LEHNA, 3 et 6 Rue R. Dubois, bât. Darwin C et Forel, 69662 Villeurbanne Cedex, France; School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Vallier Manon
- Univ Lyon, Université Lyon 1 Claude Bernard, CNRS, UMR 5023 LEHNA, 3 et 6 Rue R. Dubois, bât. Darwin C et Forel, 69662 Villeurbanne Cedex, France
| | - Mermillod-Blondin Florian
- Univ Lyon, Université Lyon 1 Claude Bernard, CNRS, UMR 5023 LEHNA, 3 et 6 Rue R. Dubois, bât. Darwin C et Forel, 69662 Villeurbanne Cedex, France
| | - Mourier Brice
- Univ Lyon, Université Lyon 1 Claude Bernard, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue M. Audin, 69518 Vaulx-en-Velin Cedex, France
| | - Piégay Hervé
- Univ Lyon, ENS de Lyon, CNRS, UMR 5600 EVS, 18 Rue Chevreul, Cedex 07, 69362 Lyon, France
| | - Winiarski Thierry
- Univ Lyon, Université Lyon 1 Claude Bernard, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue M. Audin, 69518 Vaulx-en-Velin Cedex, France
| | - Krause Stefan
- Univ Lyon, Université Lyon 1 Claude Bernard, CNRS, UMR 5023 LEHNA, 3 et 6 Rue R. Dubois, bât. Darwin C et Forel, 69662 Villeurbanne Cedex, France; School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Simon Laurent
- Univ Lyon, Université Lyon 1 Claude Bernard, CNRS, UMR 5023 LEHNA, 3 et 6 Rue R. Dubois, bât. Darwin C et Forel, 69662 Villeurbanne Cedex, France
| |
Collapse
|
47
|
Grgić I, Cetinić KA, Karačić Z, Previšić A, Rožman M. Fate and effects of microplastics in combination with pharmaceuticals and endocrine disruptors in freshwaters: Insights from a microcosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160387. [PMID: 36427730 DOI: 10.1016/j.scitotenv.2022.160387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastic contamination of freshwater ecosystems has become an increasing environmental concern. To advance the hazard assessment of microplastics, we conducted a microcosm experiment in which we exposed a simplified aquatic ecosystem consisting of moss and caddisflies to microplastics (polyethylene, polystyrene and polypropylene) and pharmaceuticals and personal care products (1H-benzotriazole, bisphenol A, caffeine, gemfibrozil, ketoprofen, methylparaben, estriol, diphenhydramine, tris (1-chloro-2-propyl) phosphate) over the course of 60 days. We monitored the flux of microplastics within the microcosm, as well as the metabolic and total protein variation of organisms. This study offers evidence highlighting the capacity of moss to act as a sink for free-floating microplastics in freshwater environments. Moss is also shown to serve as a source and pathway for microplastic particles to enter aquatic food webs via caddisflies feeding off of the moss. Although most ingested microparticles were eliminated between caddisflies life stages, a small fraction of microplastics was transferred from aquatic to terrestrial ecosystem by emergence. While moss exhibited a mild response to microplastic stress, caddisflies ingesting microplastics showed stress comparable to that caused by exposure to pharmaceuticals. The molecular responses that the stressors triggered were tentatively identified and related to phenotypic responses, such as the delayed development manifested through the delayed emergence of caddisflies exposed to stress. Overall, our study provides valuable insights into the adverse effects of microplastics on aquatic species, compares the impacts of microplastics on freshwater biota to those of pharmaceuticals and endocrine disrupting compounds, and demonstrates the role aquatic organisms have in redistributing microplastics between aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
48
|
Chen HL, Selvam SB, Ting KN, Gibbins CN. Microplastic concentrations in river water and bed sediments in a tropical river: implications for water quality monitoring. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:307. [PMID: 36652034 DOI: 10.1007/s10661-022-10856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Recent increase in awareness of the extent of microplastic contamination in marine and freshwater systems has heightened concerns over the ecological and human health risks of this ubiquitous material. Assessing risks posed by microplastic in freshwater systems requires sampling to establish contamination levels, but standard sampling protocols have yet to be established. An important question is whether sampling and assessment should focus on microplastic concentrations in the water or the amount deposited on the bed. On three dates, five replicated water and bed sediment samples were collected from each of the eight sites along the upper reach of the Semenyih River, Malaysia. Microplastics were found in all 160 samples, with mean concentrations of 3.12 ± 2.49 particles/L in river water and 6027.39 ± 16,585.87 particles/m2 deposited on the surface of riverbed sediments. Fibres were the dominant type of microplastic in all samples, but fragments made up a greater proportion of the material on the bed than in the water. Within-site variability in microplastic abundance was high for both water and bed sediments, and very often greater than between-site variability. Patterns suggest that microplastic accumulation on the bed is spatially variable, and single samples are therefore inadequate for assessing bed contamination levels at a site. Sites with the highest mean concentrations in samples of water were not those with the highest concentrations on the bed, indicating that monitoring based only on water samples may not provide a good picture of either relative or absolute bed contamination levels, nor the risks posed to benthic organisms.
Collapse
Affiliation(s)
- Hui Ling Chen
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Sivathass Bannir Selvam
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia.
| | - Kang Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Christopher Neil Gibbins
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
49
|
Bauer AL, Ferraz M, Souza VC, Schulz UH. Far from urban areas: plastic uptake in fish populations of subtropical headwater streams. BRAZ J BIOL 2023; 82:e267886. [PMID: 36629546 DOI: 10.1590/1519-6984.267886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
This study investigated the occurrence of plastic particles in the digestive tracts of fish from headwater streams in a human-thinly populated region of the subtropical Sinos River basin in southern Brazil. In total, 258 individuals from 17 species were collected using electric fishing. Thirty-eight percent (38%) of the specimens contained plastic particles. All of them were fibers, with a maximum count of 43 per individual. Plastic fibers were the fourth most abundant food category. Results showed that the uptake of these plastic particles was proportional to the number of ingested food items. Fiber counts in the guts correlated with the uptake of Trichoptera, which are invertebrates using plastic particles to construct their protective cases. No significant difference in plastic uptake was detected between benthic and water column fish. No evidence of bioaccumulation of plastic particles was found in the intestines. The distance from urban areas was not related to the number of ingested plastic particles, concluding that plastics are ubiquitous and available to biota, even in remote locations. The most probable source of these particles is residences close to the streams which discharge the sewage of washing machines without any treatment.
Collapse
Affiliation(s)
- A L Bauer
- Universidade do Vale do Rio dos Sinos, Programa de Pós-graduação em Biologia, Laboratório de Ecologia de Peixes, São Leopoldo, Brasil
| | - M Ferraz
- Universidade do Vale do Rio dos Sinos, Programa de Pós-graduação em Biologia, Laboratório de Ecologia de Peixes, São Leopoldo, Brasil
| | - V C Souza
- Universidade do Vale do Rio dos Sinos, Programa de Pós-graduação em Biologia, Laboratório de Ecologia de Peixes, São Leopoldo, Brasil
| | - U H Schulz
- Universidade do Vale do Rio dos Sinos, Programa de Pós-graduação em Biologia, Laboratório de Ecologia de Peixes, São Leopoldo, Brasil.,Universidade do Vale do Rio dos Sinos, Programa de Pós-graduação em Engenharia Civil, São Leopoldo, Brasil
| |
Collapse
|
50
|
Bhatt V, Chauhan JS. Microplastic in freshwater ecosystem: bioaccumulation, trophic transfer, and biomagnification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9389-9400. [PMID: 36508090 DOI: 10.1007/s11356-022-24529-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Plastic wastes in the environment ultimately reach to the aquatic habitats and become available to aquatic organisms. The pathway of microplastic in aquatic ecosystem is very less investigated specially in freshwater. There have been evidences of MPs ingestion by freshwater biota but the fate of these MPs further in the food chain is unexplored. Thus, we reviewed the status of MPs in freshwater biota and tried to compare the studies to merge the available information, concepts, and perspectives in order to draw a conclusion on bioaccumulation potential, trophic transfer possibilities, biomagnification, and trends of ingesting MPs by the biota. In this review, the previously available information about MPs in aquatic biota is arranged, analyzed, and interpreted to understand all possible routes of MPs in freshwater habitats. The review further provides a better understanding about the lack of information and research gaps that are needed to be explored to develop a solution to the problem of MPs in near future.
Collapse
Affiliation(s)
- Vaishali Bhatt
- Aquatic Ecology Lab, Department of Himalayan Aquatic Biodiversity, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar-Garhwal, Uttarakhand, 246174, India
| | - Jaspal Singh Chauhan
- Aquatic Ecology Lab, Department of Himalayan Aquatic Biodiversity, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar-Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|