1
|
Ahmad Fajri FA, Mukherjee A, Naskar S, Ahmad Noorden AF, Abass A. A scattered volume emitter micropixel architecture for ultra efficient light extraction from DUV LEDs. Sci Rep 2024; 14:14108. [PMID: 38898079 PMCID: PMC11187205 DOI: 10.1038/s41598-024-64689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Deep ultraviolet light-emitting diodes (DUV LEDs) typically suffer from strong parasitic absorption in the p-epitaxial layer and rear metal contact/mirror. This problem is exacerbated by a substantial portion of the multiple quantum well (MQW) emissions having a strong out-of-plane dipole component, contributing to emission in widely oblique directions outside the exit cone of the front semiconductor emitting surface. To address this, we propose an architecture that leverages such a heavily oblique angular emission profile by utilizing spaced-apart or scattered volume emitter micropixels that are embedded in a low-index dielectric buffer film with a patterned top surface. This approach achieves high light extraction efficiency at the expense of enlarging the effective emission area, however, it does not require a high-index (e.g., sapphire) substrate or a lens or a nanotextured epi for outcoupling purposes. Hybrid wave and ray optical simulations demonstrated a remarkable larger than three to sixfold increase in light extraction efficiency as compared to that of a conventional planar LED design with a sapphire substrate depending on the assumed epi layer absorption, pixel size, and ratio of light emission area to the MQW active area. An extraction efficiency three times greater than that of a recent nanotextured DUV LED design was also demonstrated. This architecture paves the way for DUV LEDs to have a plug efficiency comparable to that of mercury lamps while being significantly smaller.
Collapse
Affiliation(s)
- Faris Azim Ahmad Fajri
- ams OSRAM Group, Leibnizstraße 2, Regensburg, Germany.
- Centre for Advanced Optoelectronics Research, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.
| | | | - Suraj Naskar
- ams OSRAM Group, Leibnizstraße 2, Regensburg, Germany
| | - Ahmad Fakhrurrazi Ahmad Noorden
- Centre for Advanced Optoelectronics Research, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Aimi Abass
- ams OSRAM Group, Leibnizstraße 2, Regensburg, Germany
| |
Collapse
|
2
|
Abdelraouf OAM, Anthur AP, Wang XR, Wang QJ, Liu H. Modal Phase-Matched Bound States in the Continuum for Enhancing Third Harmonic Generation of Deep Ultraviolet Emission. ACS NANO 2024; 18:4388-4397. [PMID: 38258757 DOI: 10.1021/acsnano.3c10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Coherent deep ultraviolet (DUV) light sources are crucial for various applications such as nanolithography, biomedical imaging, and spectroscopy. DUV light sources can be generated by using conventional nonlinear optical crystals (NLOs). However, NLOs are limited by their bulky size, inadequate transparency at the DUV regime, and stringent phase-matching requirements for harmonic generation. Recently, dielectric metasurfaces support high Q-factor resonances and offer a promising approach for efficient harmonic generation at short wavelengths. In this study, we demonstrated a crystalline silicon (c-Si) metasurface simultaneously exciting modal phase-matched bound states in the continuum (BIC) resonance at the fundamental wavelength of 840 nm with a higher degree of freedom for precise control of the BIC resonance and a plasmonic resonance at the wavelength of 280 nm in the DUV to enhance third harmonic generation (THG). We experimentally achieved a Q-factor of ∼180 owing to the relatively large refractive index of the c-Si and the geometric symmetry breaking of the structure. We realized THG at a wavelength of 280 nm with a power of 14.5 nW by using a peak power density of 15 GW/cm2 excitation. The measured THG power is 14 times higher than the state-of-the-art THG dielectric metasurfaces using the same peak power density in the DUV regime, and the maximum obtained THG power enhancement factor is up to 48. This approach relies on the significant third-order nonlinear susceptibility of c-Si, the interband plasmonic nature of the c-Si in the DUV, and the strong field confinement of BIC resonance to boost overall nonlinear conversion efficiency to 5.2 × 10-6% in the DUV regime. Our work shows the potential of c-Si BIC metasurfaces for developing efficient and ultracompact DUV light sources using high-efficacy nonlinear optical devices.
Collapse
Affiliation(s)
- Omar A M Abdelraouf
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Aravind P Anthur
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - X Renshaw Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qi Jie Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
3
|
Matsumoto T, Tatsuno I, Yoshida Y, Tomita M, Hasegawa T. Time-dose reciprocity mechanism for the inactivation of Escherichia coli explained by a stochastic process with two inactivation effects. Sci Rep 2022; 12:22588. [PMID: 36585428 PMCID: PMC9801147 DOI: 10.1038/s41598-022-26783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
There is a great demand for developing and demonstrating novel disinfection technologies for protection against various pathogenic viruses and bacteria. In this context, ultraviolet (UV) irradiation offers an effective and convenient method for the inactivation of pathogenic microorganisms. The quantitative evaluation of the efficacy of UV sterilization relies on the simple time-dose reciprocity law proposed by Bunsen-Roscoe. However, the inactivation rate constants reported in the literature vary widely, even at the same dose and wavelength of irradiation. Thus, it is likely that the physical mechanism of UV inactivation cannot be described by the simple time-dose reciprocity law but requires a secondary inactivation process, which must be identified to clarify the scientific basis. In this paper, we conducted a UV inactivation experiment with Escherichia coli at the same dose but with different irradiances and irradiation durations, varying the irradiance by two to three orders of magnitude. We showed that the efficacy of inactivation obtained by UV-light emitting diode irradiation differs significantly by one order of magnitude at the same dose but different irradiances at a fixed wavelength. To explain this, we constructed a stochastic model introducing a second inactivation rate, such as that due to reactive oxygen species (ROS) that contribute to DNA and/or protein damage, together with the fluence-based UV inactivation rate. By solving the differential equations based on this model, the efficacy of inactivation as a function of the irradiance and irradiation duration under the same UV dose conditions was clearly elucidated. The proposed model clearly shows that at least two inactivation rates are involved in UV inactivation, where the generally used UV inactivation rate does not depend on the irradiance, but the inactivation rate due to ROS does depend on the irradiance. We conclude that the UV inactivation results obtained to date were simply fitted by one inactivation rate that superimposed these two inactivation rates. The effectiveness of long-term UV irradiation at a low irradiance but the same dose provides useful information for future disinfection technologies such as the disinfection of large spaces, for example, hospital rooms using UV light, because it can reduce the radiation dose and its risk to the human body.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| | - Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yukiya Yoshida
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| |
Collapse
|
4
|
Action Spectra of Bacteria and Purification of Pollutant Water at Faucets Using a Water Waveguide Method. WATER 2022. [DOI: 10.3390/w14091394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ultraviolet (UV) radiation treatment is an effective method for purifying pollutant water contaminated with bacteria and/or chemicals. As an emerging technology, purification by deep ultraviolet light-emitting diodes (DUV-LEDs) is promising. Few studies have used the point-source characteristics of LEDs and have instead replaced mercury vapor lamps with LEDs. Here, we show our recent progress in the instantaneous purification of contaminated water by combining the point-source characteristics of DUV-LEDs with a water waveguide (WW). Before the demonstration, we determined the efficacy of disinfection as a function of irradiation wavelength (action spectra) by constructing a wavelength tunable DUV light source. We found that, as a function of irradiation wavelength, there is a strong correlation between the dose-based inactivation rate constants and deoxyribonucleic acid (DNA) absorbance. Based on this correlation, the emission wavelength of 265 nm was determined as the most effective wavelength for disinfecting water contaminated with bacteria. Instantaneous 2-log disinfection levels of water contaminated with Escherichia coli O1 or Pseudomonas aeruginosa were demonstrated by using the DUV-LED WW method. We also discuss how far-UVC radiation shorter than 230 nm, which has recently been attracting attention and is known as a safe and effective disinfection wavelength for the human body, cannot give a higher-dose-based inactivation rate constant compared to that of 265 nm irradiation due to the larger absorption coefficient of water with a wavelength shorter than 230 nm.
Collapse
|
5
|
Tatsuno I, Niimi Y, Tomita M, Terashima H, Hasegawa T, Matsumoto T. Mechanism of transient photothermal inactivation of bacteria using a wavelength-tunable nanosecond pulsed laser. Sci Rep 2021; 11:22310. [PMID: 34785646 PMCID: PMC8595719 DOI: 10.1038/s41598-021-01543-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
There is a great demand for novel disinfection technologies to inactivate various pathogenic viruses and bacteria. In this situation, ultraviolet (UVC) disinfection technologies seem to be promising because biocontaminated air and surfaces are the major media for disease transmission. However, UVC is strongly absorbed by human cells and protein components; therefore, there are concerns about damaging plasma components and causing dermatitis and skin cancer. To avoid these concerns, in this study, we demonstrate that the efficient inactivation of bacteria is achieved by visible pulsed light irradiation. The principle of inactivation is based on transient photothermal heating. First, we provide experimental confirmation that extremely high temperatures above 1000 K can be achieved by pulsed laser irradiation. Evidence of this high temperature is directly confirmed by melting gold nanoparticles (GNPs). Inorganic GNPs are used because of their well-established thermophysical properties. Second, we show inactivation behaviour by pulsed laser irradiation. This inactivation behaviour cannot be explained by a simple optical absorption effect. We experimentally and theoretically clarify this inactivation mechanism based on both optical absorption and scattering effects. We find that scattering and absorption play an important role in inactivation because the input irradiation is inherently scattered by the bacteria; therefore, the dose that bacteria feel is reduced. This scattering effect can be clearly shown by a technique that combines stained Escherichia coli and site selective irradiation obtained by a wavelength tunable pulsed laser. By measuring Live/Dead fluorescence microscopy images, we show that the inactivation attained by the transient photothermal heating is possible to instantaneously and selectively kill microorganisms such as Escherichia coli bacteria. Thus, this method is promising for the site selective inactivation of various pathogenic viruses and bacteria in a safe and simple manner.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yuna Niimi
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroshi Terashima
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| |
Collapse
|
6
|
Abstract
High-quality epitaxial layers are directly related to internal quantum efficiency. The methods used to design such epitaxial layers are reviewed in this article. The ultraviolet C (UVC) light-emitting diode (LED) epitaxial layer structure exhibits electron leakage; therefore, many research groups have proposed the design of blocking layers and carrier transportation to generate high electron–hole recombination rates. This also aids in increasing the internal quantum efficiency. The cap layer, p-GaN, exhibits high absorption in deep UV radiation; thus, a small thickness is usually chosen. Flip chip design is more popular for such devices in the UV band, and the main factors for consideration are light extraction and heat transportation. However, the choice of encapsulation materials is important, because unsuitable encapsulation materials will be degraded by ultraviolet light irradiation. A suitable package design can account for light extraction and heat transportation. Finally, an atomic layer deposition Al2O3 film has been proposed as a mesa passivation layer. It can provide a low reverse current leakage. Moreover, it can help increase the quantum efficiency, enhance the moisture resistance, and improve reliability. UVC LED applications can be used in sterilization, water purification, air purification, and medical and military fields.
Collapse
|
7
|
Kohmura Y, Igami N, Tatsuno I, Hasegawa T, Matsumoto T. Transient photothermal inactivation of Escherichia coli stained with visible dyes by using a nanosecond pulsed laser. Sci Rep 2020; 10:17805. [PMID: 33082410 PMCID: PMC7576124 DOI: 10.1038/s41598-020-74714-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Efficient inactivation of Escherichia coli (E. coli) under visible (532 nm) pulsed light irradiation was achieved by fusion of a visible light-absorbing dye with E. coli. Inactivation experiments showed that 3-log inactivation of E. coli was obtained within 20 min under a 50 kJ/cm2 dose. This treatment time and dose magnitude were 10 times faster and 100 times lower, respectively, than the values previously obtained by using a visible femtosecond laser. The mechanism of bacterial death was modeled based on a transient photothermal evaporation effect, where a quantitative evaluation of the temperature increase was given based on the heat transfer equation. As a result of this theoretical analysis, the maximum temperature of the bacteria was correlated with the absorption ratio, pulse energy, and surface-to-volume ratio. An increase in the surface-to-volume ratio with the decreasing size of organic structures leads to the possibility of efficient inactivation of viruses and bacteria under low-dose and non-harmful-visible pulsed light irradiation. Hence, this method can be applied in many fields, such as the instantaneous inactivation of pathogenic viruses and bacteria in a safe and simple manner without damaging large organic structures.
Collapse
Affiliation(s)
- Yuji Kohmura
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.,Lucir Incorporated, Tsukuba, Ibaraki, 300-2667, Japan
| | - Natsuho Igami
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan
| | - Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan. .,Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| |
Collapse
|