1
|
Cui J, Eddaoudi A, Purton S, Jayasinghe SN. Bio-Sprayed/Threaded Microalgae Remain Viable and Indistinguishable from Controls. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402611. [PMID: 39031806 DOI: 10.1002/smll.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/24/2024] [Indexed: 07/22/2024]
Abstract
Microalgae are increasingly playing a significant role in many areas of research and development. Recent studies have demonstrated their ability to aid wound healing by their ability to generate oxygen, aiding the healing process. Bearing this in mind, the capability to spray/spin deposit microalgae in suspension (solution) or compartmentalize living microalgae within architectures such as fibers/scaffolds and beads, would have significance as healing mechanisms for addressing a wide range of wounds. Reconstructing microalgae-bearing architectures as either scaffolds or beads could be generated via electric field (bio-electrospraying and cell electrospinning) and non-electric field (aerodynamically assisted bio-jetting/threading) driven technologies. However, before studying the biomechanical properties of the generated living architectures, the microalgae exposed to these techniques must be interrogated from a molecular level upward first, to establish these techniques, have no negative effects brought on the processed microalgae. Therefore these studies, demonstrate the ability of both these jetting and threading technologies to directly handle living microalgae, in suspension or within a polymeric suspension, safely, and form algae-bearing architectures such as beads and fibers/scaffolds.
Collapse
Affiliation(s)
- Jing Cui
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
- Algal Research Group, Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ayad Eddaoudi
- Flow Cytometry Core Facility, University College London, Great Ormond Street, Institute of Child Health/Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London, WC1N 1DZ, UK
| | - Saul Purton
- Algal Research Group, Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Suwan N Jayasinghe
- BioPhysics Group, Centre for Stem Cells and Regenerative Medicine, Institute of Healthcare Engineering, UCL Department of Mechanical Engineering, Torrington Place, London, WC1E 7JE, UK
| |
Collapse
|
2
|
Abstract
Whole-cell microalgae biomass and their specific metabolites are excellent sources of renewable and alternative feedstock for various products. In most cases, the content and quality of whole-cell biomass or specific microalgal metabolites could be produced by both fresh and marine microalgae strains. However, a large water footprint for freshwater microalgae strain is a big concern, especially if the biomass is intended for non-food applications. Therefore, if any marine microalgae could produce biomass of desired quality, it would have a competitive edge over freshwater microalgae. Apart from biofuels, recently, microalgal biomass has gained considerable attention as food ingredients for both humans and animals and feedstock for different bulk chemicals. In this regard, several technologies are being developed to utilize marine microalgae in the production of food, feed, and biofuels. Nevertheless, the production of suitable and cheap biomass feedstock using marine microalgae has faced several challenges associated with cultivation and downstream processing. This review will explore the potential pathways, associated challenges, and future directions of developing marine microalgae biomass-based food, feed, and fuels (3F).
Collapse
|
3
|
Sivakumar R, Sachin S, Priyadarshini R, Ghosh S. Sustainable production of EPA-rich oil from microalgae: Towards an algal biorefinery. J Appl Microbiol 2022; 132:4170-4185. [PMID: 35238451 DOI: 10.1111/jam.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Utilization of sustainable natural resources such as microalgae has been considered for the production of biofuels, aquaculture feed, high-value bioactives such as omega-3 fatty acids, carotenoids, etc. Eicosapentaenoic acid (EPA) is an omega-3 fatty acid present in fish oil, which is of physiological importance to both humans and fishes. Marine microalgae are sustainable sources of lipid rich in EPA and different species have been explored for the production of EPA as a single product. There has been a rising interest in the concept of a multi-product biorefinery, focusing on maximum valorization of the algal biomass. Targeting one or more value-added compounds in a biorefinery scenario can improve the commercial viability of low-value products like triglycerides for biofuel. This approach has been viewed by technologists and experts as a sustainable and economically feasible possibility for the large-scale production of microalgae for its potential applications in biodiesel and jet fuel production, nutraceuticals, animal and aquaculture feeds, etc. In this review paper, we describe the recent developments in the production of high-value EPA-rich oil from microalgae, emphasizing on the upstream and downstream bioprocess techniques, and the advantages of considering an EPA-rich oil based biorefinery.
Collapse
Affiliation(s)
- Rohith Sivakumar
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sharika Sachin
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rajashri Priyadarshini
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjoy Ghosh
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
4
|
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126406. [PMID: 34826565 DOI: 10.1016/j.biortech.2021.126406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram 695 004, Kerala, India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea.
| |
Collapse
|
5
|
Bhatia SK, Mehariya S, Bhatia RK, Kumar M, Pugazhendhi A, Awasthi MK, Atabani AE, Kumar G, Kim W, Seo SO, Yang YH. Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141599. [PMID: 32890799 DOI: 10.1016/j.scitotenv.2020.141599] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 05/05/2023]
Abstract
Treatment of industrial and domestic wastewater is very important to protect downstream users from health risks and meet the freshwater demand of the ever-increasing world population. Different types of wastewater (textile, dairy, pharmaceutical, swine, municipal, etc.) vary in composition and require different treatment strategies. Wastewater management and treatment is an expensive process; hence, it is important to integrate relevant technology into this process to make it more feasible and cost-effective. Wastewater treatment using microalgae-based technology could be a global solution for resource recovery from wastewater and to provide affordable feedstock for bioenergy (biodiesel, biohydrogen, bio-alcohol, methane, and bioelectricity) production. Various microalgal cultivation systems (open or closed photobioreactors), turf scrubber, and hybrid systems have been developed. Although many algal biomass harvesting methods (physical, chemical, biological, and electromagnetic) have been reported, it is still an expensive process. In this review article, resource recovery from wastewater using algal cultivation, biomass harvesting, and various technologies applied in converting algal biomass into bioenergy, along with the various challenges that are encountered are discussed in brief.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Toldrà A, O'Sullivan CK, Diogène J, Campàs M. Detecting harmful algal blooms with nucleic acid amplification-based biotechnological tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141605. [PMID: 32827817 DOI: 10.1016/j.scitotenv.2020.141605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms (HABs) represent a growing threat to aquatic ecosystems and humans. Effective HAB management and mitigation efforts strongly rely on the availability of timely and in-situ tools for the detection of microalgae. In this sense, nucleic acid-based (molecular) methods are being considered for the unequivocal identification of microalgae as an attractive alternative to the currently used time-consuming and laboratory-based light microscopy techniques. This review provides an overview of the progress made on new molecular biotechnological tools for microalgal detection, particularly focusing on those that combine a nucleic acid (DNA or RNA) amplification step with detection. Different types of amplification processes (thermal and isothermal) and detection formats (e.g. microarrays, biosensors, lateral flows) are presented, and a comprehensive overview of their advantages and limitations is provided Although isothermal techniques are an attractive alternative to thermal amplification to reach in-situ analysis, further development is still required. Finally, current challenges, critical steps and future directions of the whole analysis process (from sample procurement to in-situ implementation) are described.
Collapse
Affiliation(s)
- Anna Toldrà
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| |
Collapse
|
7
|
Recent Advances in Magnetic Nanoparticles and Nanocomposites for the Remediation of Water Resources. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water resources are of extreme importance for both human society and the environment. However, human activity has increasingly resulted in the contamination of these resources with a wide range of materials that can prevent their use. Nanomaterials provide a possible means to reduce this contamination, but their removal from water after use may be difficult. The addition of a magnetic character to nanomaterials makes their retrieval after use much easier. The following review comprises a short survey of the most recent reports in this field. It comprises five sections, an introduction into the theme, reports on single magnetic nanoparticles, magnetic nanocomposites containing two of more nanomaterials, magnetic nanocomposites containing material of a biologic origin and finally, observations about the reported research with a view to future developments. This review should provide a snapshot of developments in what is a vibrant and fast-moving area of research.
Collapse
|