1
|
Jou-Claus S, Rodríguez-Escales P, Martínez-Landa L, Diaz-Cruz MS, Carrera J, Sunyer-Caldú A, Quintana G, Valhondo C. Assessing the Fate of Benzophenone-Type UV Filters and Transformation Products during Soil Aquifer Treatment: The Biofilm Compartment as Bioaccumulator and Biodegrader in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5472-5482. [PMID: 38466321 DOI: 10.1021/acs.est.3c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4'-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds.
Collapse
Affiliation(s)
- Sònia Jou-Claus
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Paula Rodríguez-Escales
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Lurdes Martínez-Landa
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Jesús Carrera
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
- Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Cristina Valhondo
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| |
Collapse
|
2
|
Sanz C, Sunyer-Caldú A, Casado M, Mansilla S, Martinez-Landa L, Valhondo C, Gil-Solsona R, Gago-Ferrero P, Portugal J, Diaz-Cruz MS, Carrera J, Piña B, Navarro-Martín L. Efficient removal of toxicity associated to wastewater treatment plant effluents by enhanced Soil Aquifer Treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133377. [PMID: 38237439 DOI: 10.1016/j.jhazmat.2023.133377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024]
Abstract
The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Sylvia Mansilla
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Lurdes Martinez-Landa
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Dept. of Civil and Environmental Engineering. Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Valhondo
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Geosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Ruben Gil-Solsona
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jose Portugal
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| |
Collapse
|
3
|
Contreras-Llin A, Diaz-Cruz MS. Microplastic removal in managed aquifer recharge using wastewater effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122967. [PMID: 38030113 DOI: 10.1016/j.envpol.2023.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Microplastic (MP) pollution has emerged as a pressing environmental issue, with its impacts on ecosystems and human health yet to be fully understood. This study aims to investigate the presence and distribution of MPs in the soil of a managed aquifer recharge (MAR) system, built with different reactive barriers of natural materials and irrigated with the secondary effluent of a wastewater treatment plant (WWTP). MPs were extracted from reactive barrier material following an approach based on the density separation of MPs with posterior oxidant digestion, combined with visual and chemical characterisation by Fourier-Transform Infrared Spectroscopy (FTIR). The results revealed the widespread occurrence of MPs in the MAR soil samples. MPs concentration in the different barrier materials ranged from 60 to 236 n kg-1. The most dominant morphologies were fragments (60%) and fibers (17%), and the most abundant colour was white (51%), followed by transparent MPs (20%). Polypropylene (PP) was detected in all the samples with an abundance of 47%, followed by polyethylene (PE, 34%). The interplay of barrier composition significantly influences the retention of MPs, with compost (T5) and woodchips (T4) exhibiting the most notable retention rates. Remarkably, the outer layers of the reactive barriers display superior retention compared to the deeper layers. The findings of this study demonstrate the good performance of the MAR system in retaining MPs and contribute to the growing body of knowledge on MPs pollution in freshwater systems while providing insights into the dynamics of MPs transport and accumulation in soil. Such information can inform the development of effective wastewater management strategies to mitigate the impacts of these pollutants on water resources and safeguard the environment.
Collapse
Affiliation(s)
- Albert Contreras-Llin
- ENFOCHEM, Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- ENFOCHEM, Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Huidobro-López B, Martínez-Hernández V, Barbero L, Meffe R, Nozal L, de Bustamante I. Evaluation of contaminants of emerging concern attenuation through a vegetation filter managed using different operating conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132217. [PMID: 37544173 DOI: 10.1016/j.jhazmat.2023.132217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
In wastewater treatment using Vegetation Filters (VFs), natural processes reduce contaminants present in water although some of them can reach the environment. In this study, 39 contaminants of emerging concern (CECs) are evaluated in a pilot VF under different operating conditions during almost four years. The use of woodchip amendments and the change from surface irrigation through furrows to drip irrigation (and from weekly to daily water application) provide CEC concentration reductions in the water infiltrating through the vadose zone. Biodegradation is the main process taking place and has been favoured mainly by woodchip soil amendments and the increased residence. Median attenuation percentages of the CECs most frequently detected with highest concentrations in applied wastewater vary between 52% and 100% at the end of the study (at 45 cm depth). Among targeted CECs, caffeine, and its transformation product paraxanthine are the most attenuated. Flecainide and venlafaxine show a persistent behaviour. However, their leaching concentrations are very low (< 31 ng/L). Concerning the underlying aquifer, the groundwater quality in terms of CEC concentrations is conditioned by the surrounding area rather than the operation of the VF. Levels in groundwater are always below those in wastewater and infiltrating water.
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | | | - Lucía Barbero
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain
| | - Raffaella Meffe
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain
| | - Leonor Nozal
- Alcalá University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, E-28871 Madrid, Spain
| | - Irene de Bustamante
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain; Alcalá University, Department of Geology, Geography and Environment, A-II km 33,0, 28805 Madrid, Spain
| |
Collapse
|
5
|
Dawi MA, Sanchez-Vila X. Simulating degradation of organic compounds accounting for the growth of microorganisms (Monod kinetics) in a fully Lagrangian framework. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104074. [PMID: 36126368 DOI: 10.1016/j.jconhyd.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Biologically mediated degradation of organic compounds in porous media is a complex mathematical problem, described by a non-linear differential equation. The organic compound gets in contact with the biomass, and an enzyme-catalysed reaction takes place. The net result is that part of the parent compound degrades into some daughter product, while some of the organic carbon is used for microbial growth. The rate of biomass growth in the presence of a limiting nutrient supply is usually modelled with the experimentally derived Monod equation, i.e., it is proportional to the actual existing biomass multiplied by a factor that is non-linear in terms of available organic matter. This non-linearity in the degradation equation implies a strong difficulty in directly implementing a numerical solution within a fully Lagrangian framework, and thus, numerical solutions have traditionally been sought in either an Eulerian, or else an Eulerian-Lagrangian framework. Here we pursue a fully Lagrangian solution to the problem. First, the Monod empirical equation is formulated as the outcome of a two-step reaction; while the approach is less general than other derivations existing in the literature based on a full understanding of the thermodynamics of the process, it allows two things: 1) providing some physical meaning to the actual parameters in the Monod equation, and more interestingly, 2) formulating a methodology for the solution of the degradation equation incorporating Monod kinetics by means of a particle tracking formulation. For the latter purpose, both reactants and biomass are represented by particles, and their location at any given time is represented by a kernel that accounts for the uncertainty in the actual physical location. By solving the reaction equation in a kernel framework, we can reproduce the Monod kinetics and, as a particular result in the case no biomass growth is allowed, the Michaelis-Menten kinetics. The methodology proposed is then successfully applied to reproduce two studies of microbially induced degradation of organic compounds in porous media, first, the observed kinetics of Pseudomonas putida F1 in batch reactors while growing on benzene, toluene and phenol, and second, the column study of carbon tetrachloride biodegradation by the denitrifying bacterium Pseudomonas Stutzeri KC.
Collapse
Affiliation(s)
- Malik A Dawi
- International Centre for Numerical Methods in Engineering (CIMNE), Barcelona, Spain.
| | - Xavier Sanchez-Vila
- Hydrogeology Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
6
|
Abu A, Carrey R, Valhondo C, Domènech C, Soler A, Martínez-Landa L, Diaz-Cruz S, Carrera J, Otero N. Pathways and efficiency of nitrogen attenuation in wastewater effluent through soil aquifer treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115927. [PMID: 35994957 DOI: 10.1016/j.jenvman.2022.115927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Soil Aquifer Treatment (SAT) is used to increase groundwater resources and enhance the water quality of wastewater treatment plant (WWTP) effluents. The resulting water quality needs to be assessed. In this study, we investigate attenuation pathways of nitrogen (N) compounds (predominantly NH4+) from a secondary treatment effluent in pilot SAT systems: both a conventional one (SAT-Control system) and one operating with a permeable reactive barrier (PRB) to provide extra dissolved organic carbon to the recharged water. The goal is to evaluate the effectiveness of the two systems regarding N compounds by means of chemical and isotopic tools. Water chemistry (NO3-, NH4+, Non-Purgeable Dissolved Organic Carbon (NPDOC), and O2) and isotopic composition of NO3- (ẟ15N-NO3- and ẟ18O-NO3-) and NH4+ (ẟ15N-NH4+) were monitored in the inflow and at three different sections and depths along the aquifer flow path. Chemical and isotopic results suggest that coupled nitrification-denitrification were the principal mechanisms responsible for the migration and distribution of inorganic N in the systems and that nitrification rate decreased with depth. At the end of the study period, 66% of the total N in the solution was removed in the SAT-PRB system and 69% in the SAT-Control system, measured at the outlet of the systems. The residual N in solution in the SAT-PRB system had an approximately equal proportion of N-NH4+ and N-NO3- while in the SAT-Control system, the residual N in solution was primarily N-NO3-. Isotopic data also confirmed complete NO3- degradation in the systems from July to September with the possibility of mixing newly generated NO3- with the residual NO3- in the substrate pool.
Collapse
Affiliation(s)
- Alex Abu
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain.
| | - Raúl Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - Cristina Valhondo
- Université de Montpellier. UMR 5243 Géosciences Montpellier. 300 Avenue Emile Jeanbrau CC MSE. 34095, Montpellier, France; Université de Montpellier. UMR 5569 HydroSciences Montpellier. 15 Avenue Charles Flahault-BP 14491. 34093, Montpellier. France; Institute of Environmental Assessment and Water Research (IDAEA). Severo Ochoa Excellence Center. Spanish National Research Council (CSIC), Jordi Girona 18-24, 08034 Barcelona, Spain
| | - Cristina Domènech
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - Lurdes Martínez-Landa
- Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Hydrogeology Group (UPC-CSIC), Associate Unit, Jordi Girona, 08034 Barcelona, Spain
| | - Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA). Severo Ochoa Excellence Center. Spanish National Research Council (CSIC), Jordi Girona 18-24, 08034 Barcelona, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research (IDAEA). Severo Ochoa Excellence Center. Spanish National Research Council (CSIC), Jordi Girona 18-24, 08034 Barcelona, Spain; Hydrogeology Group (UPC-CSIC), Associate Unit, Jordi Girona, 08034 Barcelona, Spain
| | - Neus Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain; Serra Húnter Fellowship. Generalitat de Catalunya, Catalonia, Spain
| |
Collapse
|
7
|
Zheng Y, Vanderzalm J, Hartog N, Escalante EF, Stefan C. The 21st century water quality challenges for managed aquifer recharge: towards a risk-based regulatory approach. HYDROGEOLOGY JOURNAL 2022; 31:31-34. [PMID: 36185762 PMCID: PMC9512974 DOI: 10.1007/s10040-022-02543-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Sustained environmental and human health protection is threatened by ~350,000 chemicals available in global markets, plus new biological entities including coronaviruses. These water-quality hazards challenge the proponents of managed aquifer recharge (MAR) who seek to ensure the integrity of groundwater. A risk-based regulatory framework accounting for groundwater quality changes, adoption in subsurface attenuation zones, and use of advanced monitoring methods is required to support confidence in the sustainability of MAR.
Collapse
Affiliation(s)
- Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Joanne Vanderzalm
- CSIRO Land and Water, Waite Road, Urrbrae, South Australia 5064 Australia
| | - Niels Hartog
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | | | - Catalin Stefan
- Research Group INOWAS, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
8
|
Hellman M, Valhondo C, Martínez-Landa L, Carrera J, Juhanson J, Hallin S. Nitrogen Removal Capacity of Microbial Communities Developing in Compost- and Woodchip-Based Multipurpose Reactive Barriers for Aquifer Recharge With Wastewater. Front Microbiol 2022; 13:877990. [PMID: 35685927 PMCID: PMC9171435 DOI: 10.3389/fmicb.2022.877990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Global water supplies are threatened by climate changes and the expansion of urban areas, which have led to an increasing interest in nature-based solutions for water reuse and reclamation. Reclaimed water is a possible resource for recharging aquifers, and the addition of an organic reactive barrier has been proposed to improve the removal of pollutants. There has been a large focus on organic pollutants, but less is known about multifunctional barriers, that is, how barriers also remove nutrients that threaten groundwater ecosystems. Herein, we investigated how compost- and woodchip-based barriers affect nitrogen (N) removal in a pilot soil aquifer treatment facility designed for removing nutrients and recalcitrant compounds by investigating the composition of microbial communities and their capacity for N transformations. Secondary-treated, ammonium-rich wastewater was infiltrated through the barriers, and the changes in the concentration of ammonium, nitrate, and dissolved organic carbon (DOC) were measured after passage through the barrier during 1 year of operation. The development and composition of the microbial community in the barriers were examined, and potential N-transforming processes in the barriers were quantified by determining the abundance of key functional genes using quantitative PCR. Only one barrier, based on compost, significantly decreased the ammonium concentration in the infiltrated water. However, the reduction of reactive N in the barriers was moderate (between 21 and 37%), and there were no differences between the barrier types. All the barriers were after 1 year dominated by members of Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria, although the community composition differed between the barriers. Bacterial classes belonging to the phylum Chloroflexi showed an increased relative abundance in the compost-based barriers. In contrast to the increased genetic potential for nitrification in the compost-based barriers, the woodchip-based barrier demonstrated higher genetic potentials for denitrification, nitrous oxide reduction, and dissimilatory reduction of nitrate to ammonium. The barriers have previously been shown to display a high capacity to degrade recalcitrant pollutants, but in this study, we show that most barriers performed poorly in terms of N removal and those based on compost also leaked DOC, highlighting the difficulties in designing barriers that satisfactorily meet several purposes.
Collapse
Affiliation(s)
- Maria Hellman
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Maria Hellman,
| | - Cristina Valhondo
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
- Associate Unit, Hydrogeology Group (UPC-CSIC), Barcelona, Spain
| | - Lurdes Martínez-Landa
- Associate Unit, Hydrogeology Group (UPC-CSIC), Barcelona, Spain
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
- Associate Unit, Hydrogeology Group (UPC-CSIC), Barcelona, Spain
| | - Jaanis Juhanson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Jiang R, Han D, Song X, Zheng F. Numerical modeling of changes in groundwater storage and nitrate load in the unconfined aquifer near a river receiving reclaimed water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36100-36114. [PMID: 35061175 DOI: 10.1007/s11356-022-18597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Reclaimed water (RW) has been widely used as an alternative water resource to recharge rivers in mega-city Beijing. At the same time, the RW also recharges the ambient aquifers through riverbank filtration and modifies the subsurface hydrodynamic system and hydrochemical characteristics. To assess the impact of RW recharge on the unconfined groundwater system, we conducted a 3D groundwater flow and solute transport model based on 10 years of sequenced groundwater monitoring data to analyze the changes of the groundwater table, Cl- loads, and NO3-N loads in the shallow aquifer after RW recharge to the river channel. The results show that the groundwater table around the river channel elevated by about 3-4 m quickly after RW recharge from Dec. 2007 to Dec. 2009, and then remained stable due to the continuous RW infiltration. However, the unconfined groundwater storage still declined overall from 2007 to 2014 due to groundwater exploitation. The storage began to recover after groundwater extraction reduction, rising from 3.76 × 108 m3 at the end of 2014 to 3.85 × 108 m3 at the end of 2017. Cl- concentrations varied from 5-75 mg/L before RW recharge to 50-130 mg/L in 2 years (2007-2009), and then remained stable. The zones of the unconfined groundwater quality affected by RW infiltration increased from 11.7 km2 in 2008 to 26.7 km2 in 2017. Cl- loads in the zone increased from 1.8 × 103 t in 2008 to 3.8 × 103 t in 2017, while NO3-N loads decreased from 29.8 t in 2008 to 11.9 t in 2017 annually. We determined the maximum area of the unconfined groundwater quality affected by RW, and groundwater outside this area not affected by RW recharge keeps its original state. The RW recharge to the river channel in the study area is beneficial to increase the groundwater table and unconfined groundwater storage with lesser environmental impacts.
Collapse
Affiliation(s)
- Ruixue Jiang
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fandong Zheng
- Department of Water Resources, Beijing Water Science and Technology Institute, Beijing, 100048, China
| |
Collapse
|
10
|
Sunyer-Caldú A, Diaz-Cruz MS. Development of a QuEChERS-based method for the analysis of pharmaceuticals and personal care products in lettuces grown in field-scale agricultural plots irrigated with reclaimed water. Talanta 2021; 230:122302. [PMID: 33934770 DOI: 10.1016/j.talanta.2021.122302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
The use of reclaimed water for agricultural irrigation is an increasingly common practice, which recently has found its own European regulatory frame. However, the partial removal of organic contaminants together with other xenobiotic substances in current wastewater treatment plants leads to the occurrence of residues of such pollutants in the treated effluents. Wastewater reclamation techniques are thus required to provide reclaimed water fitting the minimum quality standards set up for irrigation of crops intended for human consumption. This work describes the development and validation of a simple QuEChERS-based extraction and liquid chromatography quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS/MS) method for the simultaneous quantitative analysis of 55 pharmaceuticals and personal care products (PPCPs) in lettuces irrigated with treated wastewater and reclaimed water. The method showed good recovery rates (80-120%) and low detection limits (0.04-0.8 ng/g dw). In comparison with previous analytical methodologies, this method was simpler, faster and, in most cases, more sensitive. Moreover, is the first one analysing selected personal care products in lettuces. The proposed method was applied to assess the potential transfer of contaminants of urban origin in the use of reclaimed water in agriculture. The case study consisted in the evaluation of the lettuce uptake of the selected contaminants at field scale under two irrigation systems, two soil compositions, and two water types. Benzophenone-2, 4-hydroxybenzophenone, 1H-benzotriazole, 2-(2-Benzotriazol-2-yl)-p-cresol, nalidixic acid, diclofenac, carbamazepine 10,11-epoxy, N-des-methylvenlafaxine, and salicylic acid were transferred to all samples. Highest detected values corresponded to 4-hydroxybenzophenone (84.1 ng/g dw), benzophenone-2 (54.4 ng/g dw), and salicylic acid (53.8 ng/g dw). The best combination to minimize the transfer of the target contaminants from the irrigation water to the lettuces was sprinkling irrigation with water reclaimed by soil infiltration through reactive barriers, and clayey soil.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
11
|
Alam S, Borthakur A, Ravi S, Gebremichael M, Mohanty SK. Managed aquifer recharge implementation criteria to achieve water sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144992. [PMID: 33736333 DOI: 10.1016/j.scitotenv.2021.144992] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Depletion of groundwater is accelerated due to an increase in water demand for applications in urbanized areas, agriculture sectors, and energy extraction, and dwindling surface water during changing climate. Managed aquifer recharge (MAR) is one of the several methods that can help achieve long-term water sustainability by increasing the natural recharge of groundwater reservoirs with water from non-traditional supplies such as excess surface water, stormwater, and treated wastewater. Despite the multiple benefits of MAR, the wide-scale implementation of MAR is lacking, partly because of challenges to select the location for MAR implementation and identify the MAR type based on site conditions and needs. In this review, we provide an overview of MAR types with a basic framework to select and implement specific MAR at a site based on water availability and quality, land use, source type, soil, and aquifer properties. Our analysis of 1127 MAR projects shows that MAR has been predominantly implemented in sites with sandy clay loam soil (soil group C) and with access to river water for recharge. Spatial analysis reveals that many regions with depleting water storage have opportunities to implement MAR projects. Analyzing data from 34 studies where stormwater was used for recharge, we show that MAR can remove dissolved organic carbon, most metals, E. coli but not efficient at removing most trace organics, and enterococci. Removal efficiency depends on the type of MAR. In the end, we highlight potential challenges for implementing MAR at a site and additional benefits such as minimizing land subsidence, flood risk, augmenting low dry-season flow, and minimizing salt-water intrusion. These results could help identify locations in the water-stressed regions to implement specific MAR for water sustainability.
Collapse
Affiliation(s)
- Sarfaraz Alam
- Civil and Environmental Engineering, University of California Los Angeles, CA, USA.
| | - Annesh Borthakur
- Civil and Environmental Engineering, University of California Los Angeles, CA, USA.
| | - Sujith Ravi
- Earth and Environmental Science, Temple University, PA, USA
| | | | - Sanjay K Mohanty
- Civil and Environmental Engineering, University of California Los Angeles, CA, USA.
| |
Collapse
|
12
|
Abstract
Managed aquifer recharge (MAR) is part of the palette of solutions to water shortage, water security, water quality decline, falling water tables, and endangered groundwater-dependent ecosystems. It can be the most economic, most benign, most resilient, and most socially acceptable solution, but frequently has not been implemented due to lack of awareness, inadequate knowledge of aquifers, immature perception of risk, and incomplete policies for integrated water management, including linking MAR with demand management. MAR can achieve much towards solving the myriad local water problems that have collectively been termed “the global water crisis”. This special issue strives to elucidate the effectiveness, benefits, constraints, limitations, and applicability of MAR, together with its scientific advances, to a wide variety of situations that have global relevance. This special issue was initiated by the International Association of Hydrogeologists Commission on Managing Aquifer Recharge to capture and extend from selected papers at the 10th International Symposium on Managed Aquifer Recharge (ISMAR10) held in Madrid, Spain, 20–24 May 2019.
Collapse
|