1
|
Saaristo M, Sharp S, McKenzie R, Hinwood A. Pharmaceuticals in biota: The impact of wastewater treatment plant effluents on fish in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124695. [PMID: 39122170 DOI: 10.1016/j.envpol.2024.124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Globally, pharmaceuticals and personal care products (PPCPs) are detected in surface waters receiving wastewater, yet their presence in biota, remain largely understudied. To address this, we conducted a study that measured 46 PPCPs in spot water samples and fish caught up- and downstream from wastewater treatment plants (WWTPs) in Victoria, Australia. We sampled 15 sites located along four waterways following a 3-site design: WWTP-discharge('hotspot'), 'upstream'(∼2 km) and 'downstream'(∼2 km). Spot water and fish were also sampled at reference sites >100 km from WWTP discharge (n = 3). Additionally, spot water samples were taken from WWTP effluent outflows (n = 3). From each locality, we analysed 3-12 fish (n = 131 total). In waterways, passive samplers (POCIS; ∼28d, n = 19 PPCPs) were also deployed. Individual fish (axial muscle) and water were analysed with LC-MS-MS. We found that PPCP concentrations in environmental surface water ranged from<0.02-0.97 μg/L. In WWTP effluent, the range was <0.02-1.4 μg/L. Of the 46 PPCPs analysed, 12 were detected in spot water samples and five in fish. In water, the highest concentration detected was for antidepressant venlafaxine (3 μg/L). The most frequently detected PPCPs: venlafaxine (54.9%), metoprolol (41.2%), propranolol (29.4%), carbamazepine (29.4%), caffeine (17.6%) and sulfamethoxazole (17.6%). Out of 131 fish analysed, 35 fish had detectable levels of PPCPs in the muscle tissue. The highest muscle concentrations were: venlafaxine (150 μg/kg, redfin perch), and sertraline (100 μg/kg, eel). Bioaccumulation factors ranged from 104 to 341L/kg for venlafaxine in redfins, 21-1,260L/kg for carbamazepine in redfins and eels, and 367-3,333L/kg for sertraline in eels. Based on our human health risk calculations for venlafaxine, carbamazepine, sertraline, triclosan, and caffeine, consumption of fish does not pose a significant risk to human health. Despite this, most of the detected PPCPs in surface waters exceeded 10 ng/L trigger value, which has led to further investigations by EPA. Our study highlights the need for using multiple lines of evidence for estimating risks of PPCPs.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment Protection Authority, EPA Science, Victoria, Australia.
| | - Simon Sharp
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Robert McKenzie
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority, EPA Science, Victoria, Australia
| |
Collapse
|
2
|
Zanni S, Cammalleri V, D'Agostino L, Protano C, Vitali M. Occurrence of pharmaceutical residues in drinking water: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34544-8. [PMID: 39103588 DOI: 10.1007/s11356-024-34544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
The aim of the present paper was to give a complete picture on the drinking water contamination by pharmaceutical residues all over the world. For this purpose, a systematic review was carried out for identifying all available research reporting original data resulting by sampling campaign and analysis of "real" drinking water samples to detect pharmaceutical residues. The investigated databases were PubMed, Scopus, and Web of Science. A total of 124 studies were included; among these, 33 did not find target analytes (all below the limit of detection), while the remaining 91 studies reported the presence for one or more compounds, in concentrations ranging from a few units to a few tens of nanograms. The majority of the studies were performed in Europe and the most represented categories were nonsteroidal anti-inflammatory drugs and analgesics. The most common analytical approach used is the preparation and analysis of the samples by solid-phase extraction and chromatography coupled to mass spectrometry. The main implications resulting from our review are the need for (a) further studies aimed to allow more accurate environmental, wildlife, and human health risk assessments and (b) developing integrated policies promoting less environmentally persistent drugs, the reduction of pharmaceuticals in livestock breeding, and the update of wastewater and drinking water treatment plants for a better removal of drugs and their metabolites.
Collapse
Affiliation(s)
- Stefano Zanni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Vincenzo Cammalleri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Ludovica D'Agostino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy.
| |
Collapse
|
3
|
Grzegorzek M, Wartalska K, Kowalik R. Occurrence and sources of hormones in water resources-environmental and health impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37907-37922. [PMID: 38772997 PMCID: PMC11189324 DOI: 10.1007/s11356-024-33713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Within recent years, hormones have become emergent contaminants in the water environment. They easily accumulate in living organisms which in effect leads to numerous health problems (endocrine-disrupting mechanism is one of the most known toxic effects). Microbial resistance to antibiotics also became one of the emergent issues related to hormone presence. It was shown that the most common in the environment occur estrogens (E1, E2, E3, and EE2). It has been proven that large amounts of hormones are released from aquaculture as well as from wastewater treatment plants (due to the relatively low separation efficiency of conventional wastewater treatment processes). Within the article's scope, the literature review was performed. The analysis was regarding the characterization of the hormone substances present in the environment, their influence on living organisms and the environment, as well as its potential sources classification.
Collapse
Affiliation(s)
- Martyna Grzegorzek
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Katarzyna Wartalska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Robert Kowalik
- Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
| |
Collapse
|
4
|
Hernández-Tenorio R. Hydroxylated transformation products of pharmaceutical active compounds: Generation from processes used in wastewater treatment plants and its environmental monitoring. CHEMOSPHERE 2024; 349:140753. [PMID: 38006923 DOI: 10.1016/j.chemosphere.2023.140753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Pharmaceutical active compounds (PhACs) are organic pollutants detected in wastewater and aquatic environments worldwide in concentrations ranging from ng L-1 to μg L-1. Wastewater effluents containing PhACs residues is discharged in municipal sewage and, subsequently collected in municipal wastewater treatment plants (WWTPs) where are not entirely removed. Thus, PhACs and its transformation products (TPs) are discharged into water bodies. In the current work, the transformation of PhACs under treatments used in municipal WWTPs such as biological, photolysis, chlorination, and ozonation processes was reviewed. Data set of the major transformation pathways were obtained of studies that performed the PhACs removal and TPs monitoring during batch-scale experiments using gas and liquid chromatography coupled with tandem mass spectrometry (GC/LC-MS/MS). Several transformation pathways as dealkylation, hydroxylation, oxidation, acetylation, aromatic ring opening, chlorination, dehalogenation, photo-substitution, and ozone attack reactions were identified during the transformation of PhACs. Especially, hydroxylation reaction was identified as transformation pathway in all the processes. During the elucidation of hydroxylated TPs several isobaric compounds as monohydroxylated and dihydroxylated were identified. However, hydroxylated TPs monitoring in wastewater and aquatic environments is a topic scarcely studied due to that has no environmental significance, lack of available analytic standars of hydroxylated TPs and lack of analytic methods for their identification. Thus, screening strategy for environmental monitoring of hydroxylated TPs was proposed through target and suspect screening using GC/LC-MS/MS systems. In the next years, more studies on the hydroxylated TPs monitoring are necessary for its detection in WWTPs effluents as well as studies on their environmental effects in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco A.C., Sede Noreste, Vía de La Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
5
|
Akkam Y, Omari D, Alhmoud H, Alajmi M, Akkam N, Aljarrah I. Assessment of Xenoestrogens in Jordanian Water System: Activity and Identification. TOXICS 2023; 11:63. [PMID: 36668789 PMCID: PMC9866086 DOI: 10.3390/toxics11010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Sex hormone disruptors (xenoestrogens) are a global concern due to their potential toxicity. However, to date, there has been no study to investigate the presence of xenoestrogen pollutants in the Jordanian water system. Samples in triplicates were collected from six locations in Jordan, including dams, surface water, tap or faucet water, and filtered water (drinking water-local company). Xenoestrogens were then extracted and evaluated with a yeast estrogen screen utilizing Saccharomyces cerevisiae. Later, possible pollutants were mined using ultrahigh-performance liquid chromatography (UPLC) coupled with a Bruker impact II Q-TOF-MS. Possible hits were identified using MetaboScape software (4000 compounds), which includes pesticide, pharmaceutical pollutant, veterinary drug, and toxic compound databases and a special library of 75 possible xenoestrogens. The presence of xenoestrogens in vegetable samples collected from two different locations was also investigated. The total estrogen equivalents according to the YES system were 2.9 ± 1.2, 9.5 ± 5, 2.5 ± 1.5, 1.4 ± 0.9 ng/L for King Talal Dam, As-Samra Wastewater Treatment Plant, King Abdullah Canal, and tap water, respectively. In Almujeb Dam and drinking water, the estrogenic activity was below the detection limit. Numbers of identified xenoestrogens were: As-Samra Wastewater Treatment Plant 27 pollutants, King Talal Dam 20 pollutants, Almujeb Dam 10 pollutants, King Abdullah Canal 16 pollutants, Irbid tap water 32 pollutants, Amman tap water 30 pollutants, drinking water 3 pollutants, and vegetables 7 pollutants. However, a large number of compounds remained unknown. Xenoestrogen pollutants were detected in all tested samples, but the total estrogenic capacities were within the acceptable range. The major source of xenoestrogen pollutants was agricultural resources. Risk evaluations for low xenoestrogen activity should be taken into account, and thorough pesticide monitoring systems and regular inspections should also be established.
Collapse
Affiliation(s)
- Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Derar Omari
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Hassan Alhmoud
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
- Faculty of Pharmacy, Jerash University, Irbid 26110, Jordan
| | - Mohammad Alajmi
- Department of Law and Science Department, Kuwait International Law School, Doha 93151, Kuwait
| | - Nosaibah Akkam
- Department of Anatomy and Cell Biology, Faculty of Medicine, Universität des Saarlandes, 66424 Hamburg, Germany
| | - Islam Aljarrah
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
6
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Bilal M, Rizwan K, Adeel M, Barceló D, Awad YA, Iqbal HMN. Robust strategies to eliminate endocrine disruptive estrogens in water resources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119373. [PMID: 35500715 DOI: 10.1016/j.envpol.2022.119373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023]
Abstract
The widespread occurrence and ubiquitous distribution of estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) in our water matrices, is an issue of global concern. Public and regulatory authorities are concerned and placing joint efforts to eliminate estrogens and related environmentally hazardous compounds, due to their toxic influences on the environmental matrices, ecology, and human health, even at low concentrations. However, most of the available literature is focused on the occurrence of estrogens in different water environments with limited treatment options. Thus, a detailed review to fully cover the several treatment processes is needed. This review comprehensively and comparatively discusses many physical, chemical, and biological-based treatments to eliminate natural estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) and related synthetic estrogens, e.g., 17α-ethinylestradiol (EE2) and other related hazardous compounds. The covered techniques include adsorption, nanofiltration, ultrafiltration, ultrasonication, photocatalysis of estrogenic compounds, Fenton, Fenton-like and photo-Fenton degradation of estrogenic compounds, electro-Fenton degradation of estrogenic compounds, ozonation, and biological methods for the removal of estrogenic compounds are thoroughly discussed with suitable examples. The studies revealed that treatment plants based on chemical and biological approaches are cost-friendly for removing estrogenic pollutants. Further, there is a need to properly monitor and disposal of the usage of estrogenic drugs in humans and animals. Additional studies are required to explore a robust and more advanced oxidation treatment strategy that can contribute effectively to industrial-scale applications. This review may assist future investigations, monitoring, and removing estrogenic compounds from various environmental matrices. In concluding remarks, a way forward and future perspectives focusing on bridging knowledge gaps in estrogenic compounds removal are also proposed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H(2)O, 17003, Girona, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, India
| | - Youssef Ahmed Awad
- Structural Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
8
|
Hu J, Qi D, Chen Q, Sun W. Comparison and prioritization of antibiotics in a reservoir and its inflow rivers of Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25209-25221. [PMID: 34837609 DOI: 10.1007/s11356-021-17723-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotics in drinking water resources, like reservoirs, is of considerable concern due to their potential risks to ecosystem, human health, and antimicrobial resistance development. Here, we quantified 83 antibiotics in water and sediments of wet and dry seasons from the Miyun reservoir and its inflow rivers in Beijing, China. Twenty-four antibiotics were detected in water with concentrations of ND-11.6 ng/L and 19 antibiotics were observed in sediments with concentrations of ND-6.50 ng/g. Sulfonamides (SAs) were the dominated antibiotics in water in two seasons. SAs and quinolones (QNs) in wet season and macrolides (MLs) and QNs in dry season predominated in sediments. The reservoir and inflow rivers showed significant differences in antibiotic concentrations and compositions in water and sediments. As an important input source of reservoir, the river water showed significantly higher total antibiotic concentrations than those in the reservoir. In contrast, the reservoir sediments are the sink of antibiotics, and had higher total antibiotic concentrations compared with rivers. A prioritization approach based on the overall risk scores and detection frequencies of antibiotics was developed, and 3 (sulfaguanidine, anhydroerythromycin, and sulfamethoxazole) and 5 (doxycycline, sulfadiazine, clarithromycin, roxithromycin, and flumequine) antibiotics with high and moderate priority, respectively, were screened. The study provides a comprehensive insight of antibiotics in the Miyun Reservoir and its inflow rivers, and is significant for future monitoring and pollution mitigation of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Dianqing Qi
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
9
|
Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. WATER 2021. [DOI: 10.3390/w13091159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The procedures for analyzing pharmaceuticals and personal care products (PPCPs) are typically tedious and expensive and thus, it is necessary to synthesize all available information from previously conducted research. An extensive collection of PPCP data from the published literature was compiled to determine the occurrence, pathways, and the effectiveness of current treatment technologies for the removal of PPCPs in water and wastewater. Approximately 90% of the compiled published papers originated from Asia, Europe, and the North American regions. The incomplete removal of PPCPs in different water and wastewater treatment processes was widely reported, thus resulting in the occurrence of PPCP compounds in various environmental compartments. Caffeine, carbamazepine, diclofenac, ibuprofen, triclosan, and triclocarban were among the most commonly reported compounds detected in water and solid matrices. Trace concentrations of PPCPs were also detected on plants and animal tissues, indicating the bioaccumulative properties of some PPCP compounds. A significant lack of studies regarding the presence of PPCPs in animal and plant samples was identified in the review. Furthermore, there were still knowledge gaps on the ecotoxicity, sub-lethal effects, and effective treatment processes for PPCPs. The knowledge gaps identified in this study can be used to devise a more effective research paradigm and guidelines for PPCP management.
Collapse
|
10
|
Staszny A, Dobosy P, Maasz G, Szalai Z, Jakab G, Pirger Z, Szeberenyi J, Molnar E, Pap LO, Juhasz V, Weiperth A, Urbanyi B, Kondor AC, Ferincz A. Effects of pharmaceutically active compounds (PhACs) on fish body and scale shape in natural waters. PeerJ 2021; 9:e10642. [PMID: 33614266 PMCID: PMC7882141 DOI: 10.7717/peerj.10642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Background In recent years, there are growing concerns about pharmaceutically active compounds (PhACs) in natural ecosystems. These compounds have been found in natural waters and in fish tissues worldwide. Regarding their growing distribution and abundance, it is becoming clear that traditionally used risk assessment methodologies and ecotoxicological studies have limitations in several respects. In our study a new, combined approach of environmental impact assesment of PhACs has been used. Methods In this study, the constant watercourses of the suburban region of the Hungarian capital (Budapest) were sampled, and the body shape and scale shape of three fish species (roach Rutilus rutilus, chub Squalius cephalus, gibel carp Carassius gibelio) found in these waters were analyzed, based on landmark-based geometric morphometric methods. Possible connections were made between the differences in body shape and scale shape, and abiotic environmental variables (local- and landscape-scale) and measured PhACs. Results Significant connections were found between shape and PhACs concentrations in several cases. Despite the relatively large number of compounds (54) detected, citalopram, propranolol, codeine and trimetazidine significantly affected only fish body and scale shape, based on their concentrations. These four PhACs were shown to be high (citalopram), medium (propranolol and codeine), and low (trimetazidine) risk levels during the environmental risk assessment, which were based on Risk Quotient calculation. Furthermore, seven PhACs (diclofenac, Estrone (E1), tramadol, caffeine 17α-Ethinylestradiol (EE2), 17α-Estradiol (aE2), Estriol (E3)) were also categorized with a high risk level. However, our morphological studies indicated that only citalopram was found to affect fish phenotype amongst the PhACs posing high risk. Therefore, our results revealed that the output of (traditional) environmental/ecological risk assessment based on ecotoxicological data of different aquatic organisms not necessarily show consistency with a “real-life” situation; furthermore, the morphological investigations may also be a good sub-lethal endpoint in ecotoxicological assessments.
Collapse
Affiliation(s)
- Adam Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Peter Dobosy
- Danube Research Institute, MTA-Centre for Ecological Research, Budapest, Hungary
| | - Gabor Maasz
- Balaton Limnological Institute, MTA-Centre for Ecological Research, Tihany, Hungary.,Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Zoltan Szalai
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budapest, Hungary.,Department of Environmental and Landscape Geography, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Jakab
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budapest, Hungary.,Department of Environmental and Landscape Geography, Eötvös Loránd University, Budapest, Hungary.,Institute of Geography and Geoinformatics, University of Miskolc, Miskolc, Hungary
| | - Zsolt Pirger
- Balaton Limnological Institute, MTA-Centre for Ecological Research, Tihany, Hungary
| | - Jozsef Szeberenyi
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budapest, Hungary
| | - Eva Molnar
- Balaton Limnological Institute, MTA-Centre for Ecological Research, Tihany, Hungary
| | - Lilianna Olimpia Pap
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Vera Juhasz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Andras Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bela Urbanyi
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Attila Csaba Kondor
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budapest, Hungary
| | - Arpad Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
11
|
WITTLEROVÁ M, JÍROVÁ G, VLKOVÁ A, KEJLOVÁ K, MALÝ M, HEINONEN T, WITTLINGEROVÁ Z, ZIMOVÁ M. Sensitivity of Zebrafish (Danio rerio) Embryos to Hospital Effluent Compared to Daphnia magna and Aliivibrio fischeri. Physiol Res 2020. [DOI: 10.33549/physiolres.934616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Fish Embryo Acute Toxicity (FET) Test was adopted by the Organisation for Economic Co-operation and Development as OECD TG 236 in 2013. The test has been designed to determine acute toxicity of chemicals on embryonic stages of fish and proposed as an alternative method to the Fish Acute Toxicity Test performed according to OECD TG 203. In recent years fish embryos were used not only in the assessment of toxicity of chemicals but also for environmental and wastewater samples. In our study we investigated the acute toxicity of treated wastewater from seven hospitals in the Czech Republic. Our main purpose was to compare the suitability and sensitivity of zebrafish embryos with the sensitivity of two other aquatic organisms commonly used for wastewater testing – Daphnia magna and Aliivibrio fischeri. For the aim of this study, in addition to the lethal endpoints of the FET test, sublethal effects such as delayed heartbeat, lack of blood circulation, pericardial and yolk sac edema, spinal curvature and pigmentation failures were evaluated. The comparison of three species demonstrated that the sensitivity of zebrafish embryos is comparable or in some cases higher than the sensitivity of D. magna and A. fischeri. The inclusion of sublethal endpoints caused statistically significant increase of the FET test efficiency in the range of 1-12 %. Based on our results, the FET test, especially with the addition of sublethal effects evaluation, can be considered as a sufficiently sensitive and useful additional tool for ecotoxicity testing of the acute toxicity potential of hospital effluents.
Collapse
Affiliation(s)
- M WITTLEROVÁ
- National Institute of Public Health, Prague, Czech Republic
| | - G JÍROVÁ
- National Institute of Public Health, Prague, Czech Republic
| | - A VLKOVÁ
- National Institute of Public Health, Prague, Czech Republic
| | - K KEJLOVÁ
- National Institute of Public Health, Prague, Czech Republic
| | - M MALÝ
- National Institute of Public Health, Prague, Czech Republic
| | - T HEINONEN
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Z WITTLINGEROVÁ
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - M ZIMOVÁ
- National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|