1
|
Bayode AA, Akpotu SO, Omorogie MO, Vieira EM, Unuabonah EI. Self-assembly of ZnO-Biochar/Kaolinite/Chitosan/GO with 1D/2D/3D heterojunctions for enhanced removal of estrogens and triclosan in water. BMC Chem 2024; 18:243. [PMID: 39696679 DOI: 10.1186/s13065-024-01359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
This Study focuses on the preparation of sustainable and efficient Chitosan catalyst for the removal of three organic pollutants, 17β-Estradiol (E2), 17α-ethynyl estradiol (EE2) and triclosan (TCS) from water. The prepared nanocomposites were characterized by different techniques which confirmed the presence of the key components Chitosan, Carica Papaya seed and Kaolinite. The optical characterization proved the nanocomposite is photoactive with a band gap of 1.81 eV and 1.77 eV for Chitosan/kaolinite biochar (CS/KBC) and Chitosan/kaolinite biochar/GO (CS/KBC/GO) respectively, confirming the ability of the nanocomposite to be active in the visible light region of the spectrum. The degradation experiment using CS/KBC/GO was observed better with 100% removal for 5 mg/L E2 and EE2 over 60 min and 97.8% over 120 min for 10 mg/L TCS at optimum conditions (pH 3 for E2, and EE2 and pH 7). It was observed that the superoxide radical played a major role in the degradation of the contaminants. Furthermore, the CS/KBC/GO was efficient over four cycles without any decrease in performance, which rules out the question of catalyst deactivation proving the sustainability of the catalyst. The toxicity test shows that the water is safe as it does not harm cerio daphnia silvestrii organism.; CS/KBC/GO efficiently removed the micropollutants from real-life waste samples and the performance was very good with a slight decrease in performance for the wastewater due to the complex matrix of the water sample that competes for the active site.
Collapse
Affiliation(s)
- Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Nigeria.
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Nigeria.
- Laboratório de Química Analítica Ambiental E Ecotoxicologia (LaQuAAE), Departamento de Química E Física Molecular, Instituto de Química de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, Brazil.
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Martins O Omorogie
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Nigeria
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Nigeria
| | - Eny Maria Vieira
- Laboratório de Química Analítica Ambiental E Ecotoxicologia (LaQuAAE), Departamento de Química E Física Molecular, Instituto de Química de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, Brazil
| | - Emmanuel I Unuabonah
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Nigeria
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Nigeria
| |
Collapse
|
2
|
Cortés-Arriagada D, Ortega DE, Miranda-Rojas S. Mechanistic insights into the adsorption of endocrine disruptors onto polystyrene microplastics in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121017. [PMID: 36610654 DOI: 10.1016/j.envpol.2023.121017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Microplastics and endocrine disruptors (EDs) are contaminants of emerging concerns and ubiquitously present in aquatic ecosystems, establishing interactions that still are the subject of investigation due to their implications in the cotransport of pollutants. Then, we conducted mechanistic studies based on state-of-art computational chemistry methods to quantitatively understand the interaction mechanisms whereby polystyrene micro or nanoplastics (PS-MPs) interact with representative classes of EDs in water (Ethynylestradiol, Estradiol, and Bisphenol A). The results showed that PS-MPs increase their charge distribution when forming microparticles in water, giving a permanent dipole that explains their increasing solubility in aqueous conditions. In agreement with experimental assessments, the PS-MPs favorably adsorb EDs with adsorption energies larger than 15 kcal/mol, even with comparable stability to nanostructured materials for adsorption, removal, and/or analysis of pollutants. The adsorption occurs via physisorption without covalent binding, bond breaking, or structural preparation energies, where the molecular structure of EDs can favor inner or outer surface adsorption depending on the molecular structure of the adsorbates. A balanced contribution of dispersion and electrostatic stabilizing effects determines the interaction mechanisms, accounting for a whole contribution of 88-90%. The electrostatic contribution emerges from the favorable alignment of the PS-MPs and EDs dipoles upon interaction due to the mild charge transfer between them in solution. In contrast, the dispersion contribution emerges from electron-electron interactions due to the permanent dipoles in adsorbates and adsorbents. Furthermore, thermochemical analyses clarify the role of temperature and pressure effects on the relative adsorption stability among EDs in aquatic environments. Therefore, modeling the adsorption process contributes to new knowledge on the sorption properties of PS-MPs, providing a mechanistic basis to understand the cotransport of pollutants in water environments and their impacts on environmental pollution.
Collapse
Affiliation(s)
- Diego Cortés-Arriagada
- Programa Institucional de Fomento a La Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | - Daniela E Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago, Chile
| |
Collapse
|
3
|
Adeola AO, Abiodun BA, Adenuga DO, Nomngongo PN. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104019. [PMID: 35533435 DOI: 10.1016/j.jconhyd.2022.104019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The provision of clean water is still a major challenge in developing parts of the world, as emphasized by the United Nation Sustainable Development Goals (SDG 6), and has remained a subject of extensive research globally. Advancements in science and industry have resulted in a massive surge in the amount of industrial chemicals produced within the last few decades. Persistent and emerging organic pollutants are detected in aquatic environments, and conventional wastewater treatment plants have ineffectively handled these trace, bioaccumulative and toxic compounds. Therefore, we have conducted an extensive bibliometric analysis of different materials utilized to combat organic pollutants via adsorption and photocatalysis. The classes of pollutants, material synthesis, mechanisms of interaction, merits, and challenges were comprehensively discussed. The paper highlights the advantages of various materials used in the removal of hazardous pollutants from wastewater with activated carbon having the highest adsorption capacity. Dyes, pharmaceuticals, endocrine-disrupting chemicals, pesticides and other recalcitrant organic pollutants have been successfully removed at high degradation efficiencies through the photocatalytic process. The photocatalytic degradation and adsorption processes were compared by considering factors such as cost, efficiency, ease of application and reusability. This review will be good resource material for water treatment professionals/scientists, who may be interested in adsorptive and photocatalytic remediation of organic chemicals pollutants.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Ondo State, 001, Nigeria; Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Bayode A Abiodun
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Nigeria
| | - Dorcas O Adenuga
- Water Utilization Division, Department of Chemical Engineering, University of Pretoria, Pretoria, Private Bag X20, Hatfield, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
4
|
Prokić D, Vukčević M, Mitrović A, Maletić M, Kalijadis A, Janković-Častvan I, Đurkić T. Adsorption of estrone, 17β-estradiol, and 17α-ethinylestradiol from water onto modified multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4431-4445. [PMID: 34405332 DOI: 10.1007/s11356-021-15970-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Carbon materials of different structural and textural properties (multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon) were used as adsorbents for the removal of estrone, 17β-estradiol, and 17α-ethinylestradiol from aqueous solutions. Chemical modification and/or activation were applied to alter surface characteristics and to increase the adsorption and desorption efficiency of carbon materials. Surfaces of treated and untreated carbon materials were characterized through the examination of the textural properties, the nature of surface functional groups, and surface acidity. It was found that the adsorption capacity of tested carbon materials is not directly proportional to the specific surface area and the content of surface oxygen groups. However, a high ratio of surface mesoporosity affected the adsorption process most prominently, by increasing adsorption capacity and the rate of the adsorption process. Adsorption of estrone, 17β-estradiol, and 17α-ethinylestradiol followed pseudo-second-order kinetic model, while the equilibrium adsorption data were best fitted with the Langmuir isotherm model. Calculated mean adsorption energy values, along with the thermodynamic parameters, indicated that removal of selected hormones was dominated by the physisorption mechanism. High values of adsorption efficiency (88-100 %) and Langmuir adsorption capacities (29.45-194.7 mg/g) imply that examined materials, especially mesoporous carbon cryogel and multi-walled carbon nanotubes, can be used as powerful adsorbents for relatively fast removal of estrogen hormones from water.
Collapse
Affiliation(s)
- Danijela Prokić
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, 11000, Serbia.
| | - Marija Vukčević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Angelina Mitrović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franše d'Eperea 86, Belgrade, 11000, Serbia
| | - Marina Maletić
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Ana Kalijadis
- Department of Materials "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade, 11000, Serbia
| | - Ivona Janković-Častvan
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Tatjana Đurkić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| |
Collapse
|