1
|
Rabajczyk A, Gniazdowska J, Stojek P, Czyżewska K, Trusek A, Labus K. Hydrogels and Their Functionalization-Analysis of the Possibility of Their Application in Post-Fire Water Treatment Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5820. [PMID: 39685255 DOI: 10.3390/ma17235820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Increasingly intense changes in climatic conditions and the use of modified materials are causing fires, the consequences of which are increasingly serious for the environment. On one hand, there is the issue of access to water resources. On the other hand, there is the problem of post-fire wastewater, which often contains a mixture of simple inorganic compounds and complex organic molecules, making the removal of pollutants a difficult task requiring innovative approaches. Among these solutions, hydrogels stand out as a promising class of sorption materials. Depending on their synthesis or functionalization, hydrogels can effectively capture contaminants and facilitate the reduction or removal of specific pollutants. This study explores the functionalization of polymeric materials, specifically hydrogels, using microorganisms or bioactive substances to create materials capable of treating water contaminated with hazardous substances generated during firefighting incidents. The possibility of wastewater capture was also taken into account to retain pretreated water at the place of pollutant generation. The analysis covered the potential, conditions, and limitations of using hydrogels in post-fire operations for the effective management of contaminated waters. It was shown that hydrogels, depending on the modification, have the potential to capture wastewater and purify it from both organic and inorganic substances specific to post-fire wastewater. However, it is not possible for a given hydrogel to meet all desired expectations at the same time. Furthermore, modifications that facilitate the optimal performance of certain functionalities may render the others ineffective.
Collapse
Affiliation(s)
- Anna Rabajczyk
- Scientific and Research Centre for Fire Protection-National Research Institute, Aleja Nadwiślańska 213, 05-420 Józefów, Poland
| | - Justyna Gniazdowska
- Scientific and Research Centre for Fire Protection-National Research Institute, Aleja Nadwiślańska 213, 05-420 Józefów, Poland
| | - Piotr Stojek
- Scientific and Research Centre for Fire Protection-National Research Institute, Aleja Nadwiślańska 213, 05-420 Józefów, Poland
| | - Katarzyna Czyżewska
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, 50-373 Wrocław, Poland
| | - Anna Trusek
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, 50-373 Wrocław, Poland
| | - Karolina Labus
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, 50-373 Wrocław, Poland
| |
Collapse
|
2
|
Thamer AA, Mustafa A, Bashar HQ, Van B, Le PC, Jakab M, Rashed TR, Kułacz K, Hathal M, Somogyi V, Nguyen DD. Activated carbon and their nanocomposites derived from vegetable and fruit residues for water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121058. [PMID: 38714036 DOI: 10.1016/j.jenvman.2024.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Water pollution remains a pressing environmental issue, with diverse pollutants such as heavy metals, pharmaceuticals, dyes, and aromatic hydrocarbon compounds posing a significant threat to clean water access. Historically, biomass-derived activated carbons (ACs) have served as effective adsorbents for water treatment, owing to their inherent porosity and expansive surface area. Nanocomposites have emerged as a means to enhance the absorption properties of ACs, surpassing conventional AC performance. Biomass-based activated carbon nanocomposites (ACNCs) hold promise due to their high surface area and cost-effectiveness. This review explores recent advancements in biomass-based ACNCs, emphasizing their remarkable adsorption efficiencies and paving the way for future research in developing efficient and affordable ACNCs. Leveraging real-time communication for ACNC applications presents a viable approach to addressing cost concerns.
Collapse
Affiliation(s)
- A A Thamer
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - A Mustafa
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - H Q Bashar
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - Bao Van
- Institute of Research and Development, Duy Tan University, 550000, Danang, Viet Nam; School of Engineering & Technology, Duy Tan University, 550000, Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Lien Chieu Dist., Danang, 550000, Viet Nam
| | - Miklós Jakab
- College of Technical Engineering, Al-Farahidi University, 47024, Baghdad, Iraq
| | - T R Rashed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - Karol Kułacz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - MustafaM Hathal
- The Industrial Development and Regulatory Directorate, The Ministry of Industry and Minerals, Baghdad, Iraq; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
3
|
Grigoraș CG, Simion AI, Drob C. Hydrogels Based on Chitosan and Nanoparticles and Their Suitability for Dyes Adsorption from Aqueous Media: Assessment of the Last-Decade Progresses. Gels 2024; 10:211. [PMID: 38534629 PMCID: PMC10970373 DOI: 10.3390/gels10030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Water is one of the fundamental resources for the existence of humans and the environment. Throughout time, due to urbanization, expanding population, increased agricultural production, and intense industrialization, significant pollution with persistent contaminants has been noted, placing the water quality in danger. As a consequence, different procedures and various technologies have been tested and used in order to ensure that water sources are safe for use. The adsorption process is often considered for wastewater treatment due to its straightforward design, low investment cost, availability, avoidance of additional chemicals, lack of undesirable byproducts, and demonstrated significant efficacious potential for treating and eliminating organic contaminants. To accomplish its application, the need to develop innovative materials has become an essential goal. In this context, an overview of recent advances in hydrogels based on chitosan and nanocomposites and their application for the depollution of wastewater contaminated with dyes is reported herein. The present review focuses on (i) the challenges raised by the synthesis process and characterization of the different hydrogels; (ii) the discussion of the impact of the main parameters affecting the adsorption process; (iii) the understanding of the adsorption isotherms, kinetics, and thermodynamic behavior; and (iv) the examination of the possibility of recycling and reusing the hydrogels.
Collapse
Affiliation(s)
- Cristina-Gabriela Grigoraș
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Andrei-Ionuț Simion
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Cătălin Drob
- Department of Engineering and Management, Mechatronics, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania;
| |
Collapse
|
4
|
Chamani F, Tanhaei B, Chenar MP. Innovative strategies for enhancing gas separation: Ionic liquid-coated PES membranes for improved CO 2/N 2 selectivity and permeance. CHEMOSPHERE 2024; 351:141179. [PMID: 38224753 DOI: 10.1016/j.chemosphere.2024.141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
As a cost-effective advancement in membrane technology, this study investigates the impact of PEG additive and CBT on the structural, stability, and gas permeance properties of PES-coated membranes, utilizing 1-dodecyl-3-methylimidazolium chloride ionic liquid ([DDMI][Cl] IL) as a carrier liquid. BET and FT-IR analyses highlight the significant enhancement in performance through the immobilization of pores with [DDMIM][Cl] IL. The investigation focuses on PES-M5-coated membranes, revealing excellent stability in finger-like pore structures prepared through direct immersion and nitrogen pressure immobilization. PES-M5-coated membranes with [DDMIM][Cl] IL via direct immersion experience lower weight loss than those coated using nitrogen pressure, with critical pressures at 1.4 and 1.25 bar, respectively. The study identifies PES-coated membranes, particularly PES-M25 (20.88 GPU) with macro-void pores and PES-M5 (29 GPU) with finger-like pores, exhibiting the highest CO2 permeance and CO2/N2 selectivity. As a cost-effective advancement in membrane technology, ionic liquids are employed in support membranes to enhance gas separation. Employing pure PES membranes with varying pore structures, created through the NIPS method, the study immobilizes [DDMI][Cl] IL in membrane pores through nitrogen pressure and direct immersion. Results underscore the successful application of porous support materials coated with ionic liquids for continuous CO2 and sulfur compound separation, showcasing competitive permeability and selectivity compared to traditional polymer membranes.
Collapse
Affiliation(s)
- Fatemeh Chamani
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mahdi Pourafshari Chenar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Hassan MG, Wassel MA, Gomaa HA, Elfeky AS. Adsorption of Rose Bengal dye from waste water onto modified biomass. Sci Rep 2023; 13:14776. [PMID: 37679514 PMCID: PMC10484916 DOI: 10.1038/s41598-023-41747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Herein, adsorption of Rose Bengal dye (RB) from aqueous solution was investigated. Nano raw orange peel (OP) activated carbon (AC) coated with nano chitosan (Cs) to obtain nano chitosan/activated carbon (AC/Cs) composite which cross-linked with functionalized multi-walled carbon nanotubes (MWCNTs-COOH) to create a novel composite (AC/Cs/MWCNTs) with high surface area (1923 m2/g). The examined parameters such as concentration (1-7 ppm), pH (6.5-9.5) and temperature (295-323 K) were traversed. The maximum removal efficiency was at pH 6.5, increased from 70.4% for nano OP to 94.7% for AC/Cs/MWCNTs nano composite. Langmuir isotherm model was the best fitting to acquired data (R2 ≥ 0.99). Also, the adsorption of RB matched with pseudo-second order model, t0.5 results for pseudo-second order was 4.4672 for nano OP and 1.2813 for AC/Cs/MWCNTs at 303 K. Thermodynamic studies showed that the adsorption of RB dye is exothermic and spontaneous due to the negative value of ΔG and ΔH.
Collapse
Affiliation(s)
- Mohammed G Hassan
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Magdy A Wassel
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hosni A Gomaa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed S Elfeky
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
6
|
Poornachandhra C, Jayabalakrishnan RM, Prasanthrajan M, Balasubramanian G, Lakshmanan A, Selvakumar S, John JE. Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: isotherms and kinetics. RSC Adv 2023; 13:4757-4774. [PMID: 36760285 PMCID: PMC9900603 DOI: 10.1039/d2ra08283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The development of economic and recyclable adsorbents for removing pollutants from contaminated water is gaining increasing attention. Agro residue or nature-based material sourced absorbents could revolutionize the future of wastewater treatment. Hence in this study, nanocellulose was synthesized from coconut husk fiber and immobilized onto chitosan to form hydrogel beads. The BET surface area and zeta potential of the adsorbent nanocrystalline cellulose-chitosan hydrogel (NCC-CH) bead was 25.77 m2 g-1 and +50.6 mV, respectively. The functional group analysis also confirmed that the adsorbent had functional groups appropriate for the adsorption of textile dyes. The adsorption performance of NCC-CH and also the influence of initial dye concentration, adsorbent dose, pH, and contact time was evaluated by batch adsorption studies with crystal violet (CV) and methylene blue (MB) dyes. The most favorable operational conditions achieved through I-optimal design in response surface methodology were 0.5 g NCC-CH, 1 h, 9 pH, and 60 mg L-1 for CV removal (94.75%) and 0.13 g NCC-CH, 1 h, 9 pH, and 30 mg L-1 for MB removal (95.88%). The polynomial quadratic model fits the experimental data with an R 2 value of 0.99 and 0.98 for CV and MB removal, respectively. The optimum depiction of the isotherm data was obtained using the Freundlich model for MB adsorption and Freundlich and Langmuir model for CV adsorption. The Dubinin-Radushkevich (D-R) isotherm was also a good fit to the adsorption of CV and MB dye, suggesting the physisorption due to its free energy of adsorption < 8 kJ mol-1. The kinetics were effectively explained by a pseudo-second order model for both the dyes suggesting that chemical mechanisms influenced the adsorption of CV and MB dyes onto NCC-CH. The intraparticle diffusion model best suited the MB adsorption with three stages rather than the CV with a single step process. Also, the removal efficiency of adsorbent was retained at above 60% even after seven adsorption-desorption cycles indicating the effectiveness of the NCC-CH hydrogel beads for the removal of textile dyes.
Collapse
Affiliation(s)
| | | | - Mohan Prasanthrajan
- Department of Environmental Sciences, Tamil Nadu Agricultural University India
| | | | | | - S Selvakumar
- Water Technology Centre, Tamil Nadu Agricultural University India
| | - Joseph Ezra John
- Department of Environmental Sciences, Tamil Nadu Agricultural University India
| |
Collapse
|
7
|
Removal of Dye from Aquatic Environments: State-of-the-Art and Future Perspectives. SEPARATIONS 2022. [DOI: 10.3390/separations9110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surface water sources play a vital role in numerous aspects of societal demand, including as sources of drinking water and water used for agricultural and industrial purposes [...]
Collapse
|
8
|
Quesada HB, de Araújo TP, Cusioli LF, de Barros MASD, Gomes RG, Bergamasco R. CAFFEINE REMOVAL BY CHITOSAN/ACTIVATED CARBON COMPOSITE BEADS: ADSORPTION IN TAP WATER AND SYNTHETIC HOSPITAL WASTEWATER. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Mallakpour S, Radfar Z, Feiz M. Optimization of chitosan/tannic acid@ ZnFe layered double hydroxide bionanocomposite film for removal of reactive blue 4 using a response surface methodology. Int J Biol Macromol 2022; 209:747-762. [PMID: 35398059 DOI: 10.1016/j.ijbiomac.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 01/19/2023]
Abstract
Layered double hydroxides (LDH) are great adsorbents for anionic pollutants, but are in a powder form that leads to challenges in solid-liquid separation, low hydraulic conductivity, and handling. Herein, novel bionanocomposite films containing chitosan (Cs), tannic acid (TA), and LDH were fabricated and applied for the removal of reactive blue 4 (RB4). A response surface methodology with Box-Behnken design was applied to study the effect of operating parameters (TA%: 0-20, LDH%: 0-20, pH: 5-9, adsorbent dosage: 0.5-1.5 g L-1, time: 30-90 min) on RB4 dye removal (DR%). A quadratic regression equation was successfully developed to predict the response (R2: 0.95). The obtained optimized condition was TA%: 10, LDH%: 20, pH: 5, adsorbent dosage: 1.5 g L-1, and time: 71 min that resulted in DR%: 98.2. The best-fitted adsorption isotherm and kinetic models were linear Langmuir and nonlinear pseudo-second-order models, respectively. The maximum capacity of adsorption for the optimized film was 406 mg g-1. The obtained thermodynamic parameters implied that the process of adsorption was exothermic and spontaneous. The reusability studies showed that the DR% was decreased from 93% for the first cycle to 69%, 57%, and 56% for the second, third and fourth cycle, respectively.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Zeinab Radfar
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mahmoud Feiz
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| |
Collapse
|
10
|
Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. ENVIRONMENTAL RESEARCH 2022; 204:111965. [PMID: 34453900 DOI: 10.1016/j.envres.2021.111965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.
Collapse
Affiliation(s)
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
11
|
Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041349. [PMID: 35209138 PMCID: PMC8875830 DOI: 10.3390/molecules27041349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/23/2022]
Abstract
The aim of this work was to investigate the influence of initial pH value (pH0) on the isothermal adsorption of Reactive Black 5 (RB5) dye on commercial powdered activated carbon. Four initial pH values were chosen for this experiment: pH0 = 2.00, 4.00, 8.00, and 10.00. In order to investigate the mechanism of adsorption kinetic, studies have been performed using pseudo-first-order and pseudo-second-order kinetic models as well as an intraparticle diffusion model. In addition, thermodynamic parameters of adsorption were determined for pH0 = 4.00. Results of this research showed that the initial pH value significantly influences the adsorption of RB5 dye onto activated carbon. The highest adsorption capacities (qe) and efficiencies of decolouration were observed for initial pH values of pH0 = 2.00 (qe = 246.0 mg g−1) and 10.00 (qe = 239.1 mg g−1) due to strong electrostatic interactions and attractive π···π interactions, respectively. It was also shown that the adsorption of RB5 dye on activated carbon at all initial pH values is kinetically controlled, assuming a pseudo-second-order model, and that intraparticle diffusion is not the only process that influences on the adsorption rate.
Collapse
|
12
|
Abstract
Recently, national and international effluent standards have become more stringent, posing a significant challenge in the water treatment industry. Accordingly, treatment techniques with minimal energy consumption and maximal performance are urgently required for wastewater and water treatments. This topic was investigated from both technical and environmental perspectives to improve water and wastewater treatment techniques and enhance the quality of water bodies. This Special Issue (SI) has attracted investigations by researchers worldwide, including those from Australia, the United States, Finland, Turkey, South Africa, Oman, China, Japan, Malaysia, and Pakistan. In this SI, research and review articles propose and discuss efficient water and wastewater treatment techniques. We hope that the readers of Water can learn about new aspects of wastewater treatment using physicochemical, biological, and hybrid techniques. Finally, we hope that this SI will contribute to the United Nations’ Sustainable Development Goal 6, which is to ensure a secure water supply globally through cost-efficient technologies.
Collapse
|
13
|
Genç N, Durna E, Kacıra E. The preference of the most appropriate radical-based regeneration process for spent activated carbon by the PROMETHEE approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5240-5255. [PMID: 34417697 DOI: 10.1007/s11356-021-15833-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, regeneration of spent granular activated carbon (GAC) with reactive dye by hydroxyl and sulfate radical-based advanced oxidation processes (microwave (MW) +persulfate (PS)), (Fe(II)+ PS), and (O3 + H2O2) were evaluated. The adsorption of the dye to the GAC surface was characterized by chemisorption and Langmuir isotherm. Regeneration processes have been optimized by the response surface methodology to determine the operating conditions that will provide the highest adsorptive capacity. The optimum conditions of (MW + PS), (Fe (II) + PS), and (O3 + H2O2) processes were process PS anion of 45.52 g/L, pH of 11.4, MW power of 126 W, and duration of 14.56 min; Fe (II) of 3.58 g/L, PS anion of 73.5 g/L, duration of 59.8 min, and pH of 10.9; and H2O2 of 2.8 mole/L, flow rate of 8.14 mg ozone/L, duration of 32.8 min, and pH of 5.3, respectively. For (MW + PS), (Fe (II) + PS), and (O3 + H2O2) processes, the adsorptive capacity under optimum conditions was found as 4.36, 8.89, and 8.12 mg dye/g GAC, respectively. For (Fe (II) + PS) and (O3 + H2O2) processes, these values are approximately equal to the adsorptive capacity of raw GAC (8.01 mg dye/g GAC). The predicted values of the adsorption capacities by the obtained models were in good agreement with the actual experimental results. Preference Ranking Organization Method for Enrichment Evaluation approach was used in the preference of the appropriate regeneration process. The adsorptive capacity of regenerated GAC, operating cost of the regeneration process, change in the adsorptive capacity during the regeneration cycle, and carbon mass loss criteria were taken into account. The order of preference of regeneration processes was determined as (Fe (II) + PS)> (MW + PS)> (O3 + H2O2) considering all criteria.
Collapse
Affiliation(s)
- Nevim Genç
- Department of Environmental Engineering, Faculty of Engineering, Kocaeli University, 41380, Kocaeli, Turkey.
| | - Elif Durna
- Department of Environmental Engineering, Faculty of Engineering, Kocaeli University, 41380, Kocaeli, Turkey
| | - Esin Kacıra
- Department of Environmental Engineering, Faculty of Engineering, Kocaeli University, 41380, Kocaeli, Turkey
| |
Collapse
|
14
|
Development of Biochars Derived from Water Bamboo (Zizania latifolia) Shoot Husks Using Pyrolysis and Ultrasound-Assisted Pyrolysis for the Treatment of Reactive Black 5 (RB5) in Wastewater. WATER 2021. [DOI: 10.3390/w13121615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adsorbent made by carbonization of biomass under oxygen-limited conditions has become a promising material for wastewater treatment owing to its cost-effective, simple, and eco-friendly processing method. Ultrasound is considered a green technique to modify carbon materials because it uses water as the solvent. In this study, a comparison of Reactive Black 5 (RB5) adsorption capacity between biochar (BC) generated by pyrolysis of water bamboo (Zizania latifolia) husks at 600 °C and ultrasound-assisted biochar (UBC) produced by pyrolysis at 600 °C assisted by ultrasonic irradiation was performed. UBC showed a greater reaction rate and reached about 80% removal efficiency after 4 h, while it took 24 h for BC to reach that level. Scanning electron microscope (SEM) images indicated that the UBC morphology surface was more porous, with the structure of the combination of denser mesopores enhancing physiochemical properties of UBC. By Brunauer, Emmett, and Teller (BET), the specific surface areas of adsorbent materials were analyzed, and the surface areas of BC and UBC were 56.296 m2/g and 141.213 m2/g, respectively. Moreover, the pore volume of UBC was 0.039 cm3/g, which was higher than that of BC at 0.013 cm3/g. The adsorption isotherms and kinetics revealed the better fits of reactions to Langmuir isotherm and pseudo-second-order kinetic model, indicating the inclination towards monolayer adsorption and chemisorption of RB5 on water bamboo husk-based UBC.
Collapse
|
15
|
Enhanced Adsorptive Removal of Dyes Using Mandarin Peel Biochars via Chemical Activation with NH4Cl and ZnCl2. WATER 2021. [DOI: 10.3390/w13111495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study examined differences in the adsorption kinetics, isotherms, and thermodynamics of the dyes (methyl orange and fast green FCF) by pristine (M–biochar) and chemical activated mandarin peel biochars (MN–biochar and MZ–biochar). The specific surface area (1085.0 m2/g) and pore volume (0.194 cm3/g) of MZ-biochar much higher than those of the M–biochar (specific surface area = 8.5 m2/g, pore volume = 0.016 cm3/g) and MN–biochar (specific surface area = 181.1 m2/g, pore volume = 0.031 cm3/g). The equilibrium adsorption capacities (mg/g) of MO and FG using M–biochar (MO = 0.95, FG = 0.78) MN–biochar (MO = 2.52, FG = 2.13), and MZ–biochar (MO = 16.27, FG = 12.44) have well-matched the pseudo-second-order model (R2 ≥ 0.952) compared with the pseudo-first-order model (R2 ≥ 0.008). Furthermore, the better explanation of the adsorption behavior of dyes by the Freundlich isotherm model (R2 ≥ 0.978) than the Langmuir isotherm model (R2 ≥ 0.881) supports the assumption that the multilayer adsorption governed the adsorption of dyes using mandarin peel biochars. The adsorptions of dyes were significantly dependent on the solution pH and temperature since the electrostatic and spontaneous endothermic reactions governed their removal using the pristine and chemical activated mandarin peel biochars.
Collapse
|
16
|
da Silva Alves DC, Healy B, Pinto LADA, Cadaval TRS, Breslin CB. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021; 26:594. [PMID: 33498661 PMCID: PMC7866017 DOI: 10.3390/molecules26030594] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.
Collapse
Affiliation(s)
- Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Bronach Healy
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| | - Luiz A. de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Tito R. Sant’Anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| |
Collapse
|
17
|
Eco-Friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by Bio-Based Karaya Gum-Chitosan Sponge. Polymers (Basel) 2021; 13:polym13020251. [PMID: 33451026 PMCID: PMC7828559 DOI: 10.3390/polym13020251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
A novel, lightweight (8 mg/cm3), conjugate sponge of karaya gum (Kg) and chitosan (Ch) has been synthesized with very high porosity (~98%) and chemical stability, as a pH-responsive adsorbent material for the removal of anionic and cationic dyes from aqueous solutions. Experimental results showed that Kg-Ch conjugate sponge has good adsorption capacity for anionic dye methyl orange (MO: 32.81 mg/g) and cationic dye methylene blue (MB: 32.62 mg/g). The optimized Kg:Ch composition grants access to the free and pH-dependent ionizable functional groups on the surface of the sponge for the adsorption of dyes. The studies on the adsorption process as a function of pH, adsorbate concentration, adsorbent dose, and contact time indicated that the adsorption capacity of MB was decreased with increasing pH from 5 to 10 and external mass transfer together with intra-particle diffusion. The adsorption isotherm of the anionic dye MO was found to correlate with the Langmuir model (R2 = 0.99) while the adsorption of the cationic MB onto the sponge was better described by the Freundlich model (R2 = 0.99). Kinetic regression results specified that the adsorption kinetics were well represented by the pseudo-second-order model. The H-bonding, as well as electrostatic interaction between the polymers and the adsorption interactions of dyes onto Kg-Ch sponge from aqueous solutions, were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and the highly wrinkled porous morphology was visualized in depth by field-emission scanning electron microscopy (FE-SEM) analysis. Moreover, the samples could be reused without loss of contaminant removal capacity over six successive adsorption-desorption cycles. The hierarchical three-dimensional sponge-like structure of Kg has not been reported yet and this novel Kg-Ch sponge functions as a promising candidate for the uninterrupted application of organic pollutant removal from water.
Collapse
|