1
|
Sumon MAA, Meregildo-Rodriguez ED, Lee PT, Dinh-Hung N, Larson ET, Permpoonpattana P, Van Doan H, Jung WK, Linh NV. Droplet digital PCR for fish pathogen detection and quantification: A systematic review and meta-analysis. JOURNAL OF FISH DISEASES 2024; 47:e14019. [PMID: 39282714 DOI: 10.1111/jfd.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 11/10/2024]
Abstract
This study provides a comprehensive summary of the findings regarding the application and diagnostic efficacy of droplet digital PCR (ddPCR) in detecting viral and bacterial pathogens in aquaculture. Utilizing a systematic search of four databases up to 6 November 2023, we identified studies where ddPCR was deployed for pathogen detection in aquaculture settings, adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis of Diagnostic Test Accuracy guidelines. From the collected data, 16 studies retrieved, seven were included in a meta-analysis, encompassing 1121 biological samples from various fish species. The detection limits reported ranged markedly from 0.07 to 34 copies/μL. A direct comparison of the diagnostic performance between ddPCR with quantitative PCR (qPCR) proved challenging due to limited data, thus only a pooled sensitivity analysis was feasible. The results showed a pooled sensitivity of 0.750 (95% confidence interval [CI]: 0.487-0.944) for ddPCR, compared to 0.461 (95% CI: 0.294-0.632) for qPCR, with no statistically significant difference in sensitivity between the two methods (p = .5884). Notably, significant heterogeneity was observed among the studies (I2 = 93%-97%, p < .01), with the year of publication significantly influencing this heterogeneity (p < .001), but not the country of origin (p = .49). No publication bias was detected, and the studies generally exhibited a low risk of bias according to QUADAS-C criteria. While ddPCR and qPCR showed comparable sensitivities in pathogen detection, ddPCR's capability to precisely quantify pathogens without the need for standard curves highlights its potential utility. This characteristic could significantly enhance the accuracy and reliability of pathogen detection in aquaculture.
Collapse
Affiliation(s)
- Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | | | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Earl T Larson
- Department of Biological Sciences, St. Johns River State College, Orange Park, Florida, USA
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agriculture, Functional Feed Innovation Center (FuncFeed), Chiang Mai University, Chiang Mai, Thailand
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Busan, Republic of Korea
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Abdel-Hady A, Monge M, Aslett D, Mikelonis A, Touati A, Ratliff K. Comparison of liquid and filter sampling techniques for recovery of Bacillus spores and Escherichia coli from environmental water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122711. [PMID: 39366227 DOI: 10.1016/j.jenvman.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Historically, detecting water contamination has involved collecting and directly analyzing liquid samples, but recent advances in filter sampling methods offer numerous potential advantages. Emerging technologies, including environmental DNA (eDNA) samplers, could be used for remote microbial contamination sampling, but work is needed to determine if target microorganisms can be recovered from filters at comparable levels to traditional sampling methods. In this study, Escherichia coli and a surrogate for Bacillus anthracis spores were sampled from synthetic stormwater and quantified using both direct liquid and filter methods, and dwell time tests compared microorganism persistence in water and on filters. At nearly all tested timepoints, the recoveries of spores from membrane filters were within 0.5 log10 colony forming units per sample (CFU/sample) compared to the liquid-only samples, suggesting that the use of filter sampling is a feasible alternative to liquid-based sampling, and samples were held for up to 4 weeks without significant sample degradation. Recoveries for E. coli remained relatively consistent for ∼3 days in phosphate buffered saline (PBS), in synthetic stormwater, and on membrane filters, but decreases in recoveries were observed for samples held for >3 days. These results indicate that emerging water sampling technologies, which reduce logistical burdens and offer potential cost savings, can be leveraged to characterize biological contamination in water matrices with multiple types of microbiological agents.
Collapse
Affiliation(s)
| | - Mariela Monge
- Consolidated Safety Services, Inc., Research Triangle Park, NC, USA
| | - Denise Aslett
- Jacobs Technology Inc., Research Triangle Park, NC, USA
| | - Anne Mikelonis
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Katherine Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Jarman S, Alexander JB, Dawkins KL, Lukehurst SS, Nester GM, Wilkinson S, Marnane MJ, McDonald JI, Elsdon TS, Harvey ES. Marine eDNA sampling from submerged surfaces with paint rollers. Mar Genomics 2024; 76:101127. [PMID: 38905943 DOI: 10.1016/j.margen.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Environmental DNA (eDNA) analyses of species present in marine environments is the most effective biological diversity measurement tool currently available. eDNA sampling methods are an intrinsically important part of the eDNA biodiversity analysis process. Identification and development of eDNA sampling methods that are as rapid, affordable, versatile and practical as possible will improve rates of detection of marine species. Optimal outcomes of eDNA biodiversity surveys come from studies employing high levels of sampling replication, so any methods that make sampling faster and cheaper will improve scientific outcomes. eDNA sampling methods that can be applied more widely will also enable sampling from a greater range of marine surface micro-habitats, resulting in detection of a wider range of organisms. In this study, we compared diversity detection by several methods for sampling eDNA from submerged marine surfaces: polyurethane foam, nylon swabs, microfibre paint rollers, and sediment scoops. All of the methods produced a diverse range of species identifications, with >250 multicellular species represented by eDNA at the study site. We found that widely-available small paint rollers were an effective, readily available and affordable method for sampling eDNA from underwater marine surfaces. This approach enables the sampling of marine eDNA using extended poles, or potentially by remotely operated vehicles, where surface sampling by hand is impractical.
Collapse
Affiliation(s)
- Simon Jarman
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; eDNA Frontiers, Curtin University, Bentley, WA, Australia.
| | - Jason B Alexander
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | | | | | - Georgia M Nester
- Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Crawley, WA, Australia
| | - Shaun Wilkinson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Wilderlab, Miramar, Wellington, New Zealand
| | - Michael J Marnane
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Chevron Technical Center, Perth, Western Australia, Australia
| | - Justin I McDonald
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Sustainability and Biosecurity, Department of Primary Industries and Regional Development (DPIRD), Hillarys, 6025, Western Australia, Australia
| | - Travis S Elsdon
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Chevron Technical Center, Perth, Western Australia, Australia
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
4
|
Dass MA, Sherman CDH, van Oorschot RAH, Tuohey K, Hartman D, Carter G, Durdle A. Assessing eDNA capture method from aquatic environment to optimise recovery of human mt-eDNA. Forensic Sci Int 2024; 361:112085. [PMID: 38850619 DOI: 10.1016/j.forsciint.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Previous studies have shown that environmental DNA (eDNA) from human sources can be recovered from natural bodies of water, and the generation of DNA profiles from such environmental samples may assist in forensic investigations. However, fundamental knowledge gaps exist around the factors influencing the probability of detecting human eDNA and the design of optimal sampling protocols. One of these is understanding the particle sizes eDNA signals are most strongly associated with and the most appropriate filter size needed for efficiently capturing eDNA particles. This study assessed the amount of mitochondrial eDNA associated with different particle sizes from human blood and skin cells recovered from freshwater samples. Samples (300 mL) were taken from experimental 10 L tanks of freshwater spiked with 50 µL of human blood or skin cells deposited by vigorously rubbing hands together for two minutes in freshwater. Subsamples were collected by passing 250 mL of experimental water sample through six different filter pore sizes (from 0.1 to 8 µm). This process was repeated at four time intervals after spiking over 72 hours to assess if the particle size of the amount of eDNA recovered changes as the eDNA degrades. Using a human-specific quantitative polymerase chain reaction (qPCR) assay targeting the HV1 mitochondrial gene region, the total amount of mitochondrial eDNA associated with different particle size fractions was determined. In the case of human blood, at 0 h, the 0.45 µm filter pore size captured the greatest amount of mitochondrial eDNA, capturing 42 % of the eDNA detected. The pattern then changed after 48 h, with the 5 µm filter pore size capturing the greatest amount of eDNA (67 %), and 81 % of eDNA at 72 h. Notably, a ten-fold dilution proved to be a valuable strategy for enhancing eDNA recovery from the 8 µm filter at all time points, primarily due to the PCR inhibition observed in hemoglobin. For human skin cells, the greatest amounts of eDNA were recovered from the 8 µm filter pore size and were consistent through time (capturing 37 %, 56 %, and 88 % of eDNA at 0 hours, 48 hours, and 72 hours respectively). There is a clear variation in the amount of eDNA recovered between different cell types, and in some forensic scenarios, there is likely to be a mix of cell types present. These results suggest it would be best to use a 5 µm filter pore size to capture human blood and an 8 µm filter pore size to capture human skin cells to maximize DNA recovery from freshwater samples. Depending on the cell type contributing to the eDNA, a combination of different filter pore sizes may be employed to optimize the recovery of human DNA from water samples. This study provides the groundwork for optimizing a strategy for the efficient recovery of human eDNA from aquatic environments, paving the way for its broader application in forensic and environmental sciences.
Collapse
Affiliation(s)
- Marie Antony Dass
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia.
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kate Tuohey
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia
| | - Dadna Hartman
- Victorian Institute of Forensic Medicine, Southbank, VIC 3006, Australia; Department of Forensic Medicine, Monash University, Southbank, VIC 3006, Australia
| | - Gemma Carter
- Victorian Institute of Forensic Medicine, Southbank, VIC 3006, Australia
| | - Annalisa Durdle
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia
| |
Collapse
|
5
|
Lu S, Zeng H, Xiong F, Yao M, He S. Advances in environmental DNA monitoring: standardization, automation, and emerging technologies in aquatic ecosystems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1368-1384. [PMID: 38512561 DOI: 10.1007/s11427-023-2493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 03/23/2024]
Abstract
Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.
Collapse
Affiliation(s)
- Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
6
|
Bhendarkar M, Rodriguez-Ezpeleta N. Exploring uncharted territory: new frontiers in environmental DNA for tropical fisheries management. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:617. [PMID: 38874640 DOI: 10.1007/s10661-024-12788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Tropical ecosystems host a significant share of global fish diversity contributing substantially to the global fisheries sector. Yet their sustainable management is challenging due to their complexity, diverse life history traits of tropical fishes, and varied fishing techniques involved. Traditional monitoring techniques are often costly, labour-intensive, and/or difficult to apply in inaccessible sites. These limitations call for the adoption of innovative, sensitive, and cost-effective monitoring solutions, especially in a scenario of climate change. Environmental DNA (eDNA) emerges as a potential game changer for biodiversity monitoring and conservation, especially in aquatic ecosystems. However, its utility in tropical settings remains underexplored, primarily due to a series of challenges, including the need for a comprehensive barcode reference library, an understanding of eDNA behaviour in tropical aquatic environments, standardized procedures, and supportive biomonitoring policies. Despite these challenges, the potential of eDNA for sensitive species detection across varied habitats is evident, and its global use is accelerating in biodiversity conservation efforts. This review takes an in-depth look at the current state and prospects of eDNA-based monitoring in tropical fisheries management research. Additionally, a SWOT analysis is used to underscore the opportunities and threats, with the aim of bridging the knowledge gaps and guiding the more extensive and effective use of eDNA-based monitoring in tropical fisheries management. Although the discussion applies worldwide, some specific experiences and insights from Indian tropical fisheries are shared to illustrate the practical application and challenges of employing eDNA in a tropical context.
Collapse
Affiliation(s)
- Mukesh Bhendarkar
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), 48395, Sukarrieta, Bizkaia, Spain.
- ICAR-National Institute of Abiotic Stress Management, Baramati, 413 115, Maharashtra, India.
| | - Naiara Rodriguez-Ezpeleta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), 48395, Sukarrieta, Bizkaia, Spain
| |
Collapse
|
7
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
8
|
Scriver M, von Ammon U, Youngbull C, Pochon X, Stanton JAL, Gemmell NJ, Zaiko A. Drop it all: extraction-free detection of targeted marine species through optimized direct droplet digital PCR. PeerJ 2024; 12:e16969. [PMID: 38410796 PMCID: PMC10896080 DOI: 10.7717/peerj.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| | - Cody Youngbull
- Nucleic Sensing Systems, LCC, Saint Paul, Minnesota, United States
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Sequench Ltd, Nelson, New Zealand
| |
Collapse
|
9
|
Rishan ST, Kline RJ, Rahman MS. New prospects of environmental RNA metabarcoding research in biological diversity, ecotoxicological monitoring, and detection of COVID-19: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11406-11427. [PMID: 38183542 DOI: 10.1007/s11356-023-31776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Ecosystems are multifaceted and complex systems and understanding their composition is crucial for the implementation of efficient conservation and management. Conventional approaches to biodiversity surveys can have limitations in detecting the complete range of species present. In contrast, the study of environmental RNA (eRNA) offers a non-invasive and comprehensive method for monitoring and evaluating biodiversity across different ecosystems. Similar to eDNA, the examination of genetic material found in environmental samples can identify and measure many species, including ones that pose challenges to traditional methods. However, eRNA is degraded quickly and therefore shows promise in detection of living organisms closer to their actual location than eDNA methods. This method provides a comprehensive perspective on the well-being of ecosystems, facilitating the development of focused conservation approaches to save at-risk species and uphold ecological equilibrium. Furthermore, eRNA has been recognized as a valuable method for the identification of COVID-19 in the environment, besides its established uses in biodiversity protection. The SARS-CoV-2 virus, which is accountable for the worldwide epidemic, releases RNA particles into the surrounding environment via human waste, providing insights into the feasibility of detecting it in wastewater and other samples taken from the environment. In this article, we critically reviewed the recent research activities that use the eRNA method, including its utilization in biodiversity conservation, ecological surveillance, and ecotoxicological monitoring as well as its innovative potential in identifying COVID-19. Through this review, the reader can understand the recent developments, prospects, and challenges of eRNA research in ecosystem management and biodiversity conservation.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
10
|
Alexander JB, Marnane MJ, Elsdon TS, Bunce M, Sitaworawet P, Songploy S, Chaiyakul S, Harvey ES. Using environmental DNA to better inform decision making around decommissioning alternatives for offshore oil and gas infrastructure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165991. [PMID: 37536600 DOI: 10.1016/j.scitotenv.2023.165991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Artificial reefs are being utilised globally to aid in natural resource management, conservation, restoration or the creation of unique marine habitats. There is discussion around the optimal construction materials and designs for artificial reefs, the influences these have on biological communities, and the resulting ecological and social benefits. This discussion also includes the ecological value of repurposed marine infrastructure, such as decommissioned oil and gas platforms. Platforms often have an operational life spanning multiple decades, over which time they can develop extensive and unique community assemblages. The creation of artificial reefs by repurposing oil and gas platforms can have ecological, economic and sociological merit. However, with >12,000 platforms requiring decommissioning globally, there is the need for holistic assessment of biological communities associated with these platforms to inform the potential outcomes of different decommissioning options. We use environmental DNA metabarcoding (eDNA) of water, bio-foul and sediment samples to census broad eukaryotic diversity at eight platforms in the Gulf of Thailand (GoT) and five nearby soft sediment habitat locations. We sampled three target depths at sites (shallow, mid, deep) and detected 430 taxa at platforms, with higher diversity in shallow (near-surface) samples (313 taxa), compared to mid (30 m collection depth; 261 taxa) and deep (50 m; 273 taxa). Three percent of taxa were shared among all depths at platforms with distinct assembles at each depth. Introduced species are an ongoing risk for platforms, however the eDNA detected no known introduced species. While the eDNA data provide broad taxon coverage and significant assemblage patterns, ongoing sampling innovation, assay design and local reference material still require development to obtain the maximum benefit of the technique. This study highlights the versatility and scalability of eDNA metabarcoding to holistically census marine infrastructure and inform the management and potential conservation of extant communities.
Collapse
Affiliation(s)
- Jason B Alexander
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| | | | - Travis S Elsdon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia; Chevron Technical Center, Perth, Western Australia, Australia
| | - Michael Bunce
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia; Department of Conservation, New Zealand
| | | | - Se Songploy
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Sarin Chaiyakul
- Chevron Thailand Exploration and Production, Bangkok, Thailand
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
11
|
Jo TS. Validating post-enrichment steps in environmental RNA analysis for improving its availability from water samples. Funct Integr Genomics 2023; 23:338. [PMID: 37975936 DOI: 10.1007/s10142-023-01269-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Environmental RNA (eRNA) analysis is expected to inclusively provide the physiological information of a population and community without individual sampling, having the potential for the improved monitoring of biodiversity and ecosystem function. Protocol development for maximizing eRNA availability is crucial to interpret its detection and quantification results with high accuracy and reliability, but the methodological validation and improvement of eRNA collection and processing methods are scarce. In this study, the technical steps after eRNA extraction, including genomic DNA (gDNA) removal and reverse transcription, were focused on and their performances were compared by zebrafish (Danio rerio) aquarium experiments. Additionally, this study also focused on the eRNA quantification variabilities between replicates and compared them between the PCR and sample levels. Results showed that (i) there was a trade-off between gDNA removal approaches and eRNA yields and an excess gDNA removal could lead to the false-negative eRNA detection, (ii) the use of the gene-specific primers for reverse transcription could increase the eRNA yields for multiple mitochondrial and nuclear genes compared with the random hexamer primers, and (iii) the coefficient of variation (CV) values of eRNA quantifications between PCR replicates were substantially lower for those between samples. Including the study, further knowledge for the sensitive and precise detection of macro-organismal eRNA should be needed for increasing the reliability and robustness of eRNA-based biomonitoring.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan.
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
| |
Collapse
|
12
|
von Ammon U, Casanovas P, Pochon X, Zirngibl M, Leonard K, Smith A, Chetham J, Milner D, Zaiko A. Harnessing environmental DNA to reveal biogeographical patterns of non-indigenous species for improved co-governance of the marine environment in Aotearoa New Zealand. Sci Rep 2023; 13:17061. [PMID: 37816793 PMCID: PMC10564887 DOI: 10.1038/s41598-023-44258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Aotearoa New Zealand's Northern region is a major gateway for the incursion and establishment of non-indigenous species (NIS) populations due to high numbers of recreational and commercial vessels. This region also holds a unique marine ecosystem, home to many taonga (treasured) species of cultural and economic importance. Regular surveillance, eradication plans and public information sharing are undertaken by local communities and governmental organizations to protect these ecosystems from the impact of NIS. Recently, considerable investments went into environmental DNA (eDNA) research, a promising approach for the early detection of NIS for complementing existing biosecurity systems. We applied eDNA metabarcoding for elucidating bioregional patterns of NIS distributions across a gradient from harbors (NIS hotspots) to open seas (spreading areas). Samples were collected during a research cruise sailing across three Aotearoa New Zealand harbors, Waitematā, Whangārei and Pēwhairangi (Bay of Islands), and their adjacent coastal waters. The small-ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes were screened using the online Pest Alert Tool for automated detection of putative NIS sequences. Using a probabilistic modelling approach, location-dependent occupancies of NIS were investigated and related to the current information on species distribution from biosecurity surveillance programs. This study was collaboratively designed with Māori partners to initiate a model of co-governance within the existing science system.
Collapse
Affiliation(s)
| | | | - Xavier Pochon
- Cawthron Institute, Nelson, 7010, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, 6011, New Zealand
| | | | - Kaeden Leonard
- Northland Regional Council, Whangārei, 9021, New Zealand
| | - Aless Smith
- Northland Regional Council, Whangārei, 9021, New Zealand
| | - Juliane Chetham
- Patuharakeke Te Iwi Trust Board, Takahiwai, 0171, New Zealand
| | - Dave Milner
- Patuharakeke Te Iwi Trust Board, Takahiwai, 0171, New Zealand
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, 7010, New Zealand
- Sequench Ltd, Nelson, 7010, New Zealand
| |
Collapse
|
13
|
Jo TS. Methodological considerations for aqueous environmental RNA collection, preservation, and extraction. ANAL SCI 2023; 39:1711-1718. [PMID: 37326949 DOI: 10.1007/s44211-023-00382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Environmental RNA (eRNA) analysis is expected to infer species' physiological information (health status, developmental stage, and environmental stress response) and their distribution and composition more correctly than environmental DNA (eDNA) analysis. With the prospect of such eRNA applications, there is an increasing need for technological development for efficient eRNA detection because of its physicochemical instability. The present study conducted a series of aquarium experiments using zebrafish (Danio rerio) and validated the methodologies for capture, preservation, and extraction of eRNA in a water sample. In the eRNA extraction experiment, an approximately 1.5-fold increase in lysis buffer volume resulted in a more than sixfold increase in target eRNA concentration. In the eRNA capture experiment, although GF/F and GF/A filters yielded similar eRNA concentrations, a GF/A filter may be capable of passing through more volume of water samples and consequently collecting more eRNA particles, given the time required for water filtration. In the eRNA preservation experiment, the use of RNA stabilization reagent (RNAlater) allowed for stably preserving target eRNA on a filter sample at - 20 and even 4 °C for 6 days at least. Altogether, the findings enable the improvement of eRNA availability from the field and easily preserve eRNA samples without deep-freezing, which will contribute to the refinement of eRNA analysis for biological and physiological monitoring in aquatic ecosystems.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
| |
Collapse
|
14
|
Durán-Vinet B, Araya-Castro K, Zaiko A, Pochon X, Wood SA, Stanton JAL, Jeunen GJ, Scriver M, Kardailsky A, Chao TC, Ban DK, Moarefian M, Aran K, Gemmell NJ. CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning. CRISPR J 2023; 6:316-324. [PMID: 37439822 PMCID: PMC10494903 DOI: 10.1089/crispr.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/14/2023] Open
Abstract
Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.
Collapse
Affiliation(s)
- Benjamín Durán-Vinet
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile; Berkeley, Berkeley, California, USA
| | - Karla Araya-Castro
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile; Berkeley, Berkeley, California, USA
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand; Berkeley, Berkeley, California, USA
- Sequench Ltd, Nelson, New Zealand; Berkeley, Berkeley, California, USA
| | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand; Berkeley, Berkeley, California, USA
| | - Susanna A. Wood
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
| | - Jo-Ann L. Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| | - Gert-Jan Jeunen
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| | - Michelle Scriver
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand; Berkeley, Berkeley, California, USA
| | - Anya Kardailsky
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
- Department of Zoology, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| | - Tzu-Chiao Chao
- Institute of Environmental Change and Society, Department of Biology, University of Regina, Regina, Canada; Berkeley, Berkeley, California, USA
| | - Deependra K. Ban
- Keck Graduate Institute, The Claremont Colleges, Claremont, California, USA; Berkeley, Berkeley, California, USA
| | - Maryam Moarefian
- Keck Graduate Institute, The Claremont Colleges, Claremont, California, USA; Berkeley, Berkeley, California, USA
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, California, USA; Berkeley, Berkeley, California, USA
- Cardea Bio Inc., San Diego, California, USA; and Berkeley, Berkeley, California, USA
- University of California, Berkeley, Berkeley, California, USA
| | - Neil J. Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| |
Collapse
|
15
|
Carvalho S, Shchepanik H, Aylagas E, Berumen ML, Costa FO, Costello MJ, Duarte S, Ferrario J, Floerl O, Heinle M, Katsanevakis S, Marchini A, Olenin S, Pearman JK, Peixoto RS, Rabaoui LJ, Ruiz G, Srėbalienė G, Therriault TW, Vieira PE, Zaiko A. Hurdles and opportunities in implementing marine biosecurity systems in data-poor regions. Bioscience 2023; 73:494-512. [PMID: 37560322 PMCID: PMC10408360 DOI: 10.1093/biosci/biad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.
Collapse
Affiliation(s)
- Susana Carvalho
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Hailey Shchepanik
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Eva Aylagas
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
- Red Sea Global, Riyadh 12382-6726, Saudi Arabia
| | - Michael L Berumen
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jasmine Ferrario
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - Moritz Heinle
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- International Centre for Water Resources and Global Change, Federal Institute of Hydrology, Koblenz, Germany
| | | | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Sergej Olenin
- Marine Research Institute, Klaipeda University, Lithuania
| | | | - Raquel S Peixoto
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Lotfi J Rabaoui
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- National Center for Wildlife, Riyadh, Saudi Arabia
| | - Greg Ruiz
- Smithsonian Environmental Research Center, Edgewater, Maryland
| | | | | | - Pedro E Vieira
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Yuan Q, Wang X, Fang H, Cheng Y, Sun R, Luo Y. Coastal mudflats as reservoirs of extracellular antibiotic resistance genes: Studies in Eastern China. J Environ Sci (China) 2023; 129:58-68. [PMID: 36804242 DOI: 10.1016/j.jes.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Despite coastal mudflats serving as essential ecological zones interconnecting terrestrial/freshwater and marine systems, little is known about the profiles of antibiotic resistance genes (ARGs) in this area. In this study, characteristics of typical ARGs, involving both intracellular (iARGs) and extracellular ARGs (eARGs) at different physical states, were explored in over 1000 km of coastal mudflats in Eastern China. Results indicated the presence of iARGs and eARGs at states of both freely present or attached by particles. The abundance of eARGs was significantly higher than that of iARGs (87.3% vs 12.7%), and their dominance was more significant than those in other habitats (52.7%-76.3%). ARG abundance, especially for eARGs, showed an increasing trend (p < 0.05) from southern (Nantong) to northern (Lianyungang) coastal mudflats. Higher salinity facilitated the transformation from iARGs to eARGs, and smaller soil particle size was conducive to the persistence of eARGs in northern coastal mudflats. This study addresses the neglected function of coastal mudflats as eARGs reservoirs.
Collapse
Affiliation(s)
- Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaolin Wang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Fang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Dobretsov S, Rittschof D. "Omics" Techniques Used in Marine Biofouling Studies. Int J Mol Sci 2023; 24:10518. [PMID: 37445696 DOI: 10.3390/ijms241310518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Biofouling is the growth of organisms on wet surfaces. Biofouling includes micro- (bacteria and unicellular algae) and macrofouling (mussels, barnacles, tube worms, bryozoans, etc.) and is a major problem for industries. However, the settlement and growth of some biofouling species, like oysters and corals, can be desirable. Thus, it is important to understand the process of biofouling in detail. Modern "omic" techniques, such as metabolomics, metagenomics, transcriptomics, and proteomics, provide unique opportunities to study biofouling organisms and communities and investigate their metabolites and environmental interactions. In this review, we analyze the recent publications that employ metagenomic, metabolomic, and proteomic techniques for the investigation of biofouling and biofouling organisms. Specific emphasis is given to metagenomics, proteomics and publications using combinations of different "omics" techniques. Finally, this review presents the future outlook for the use of "omics" techniques in marine biofouling studies. Like all trans-disciplinary research, environmental "omics" is in its infancy and will advance rapidly as researchers develop the necessary expertise, theory, and technology.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123, Muscat P.O. Box 34, Oman
| | - Daniel Rittschof
- Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| |
Collapse
|
18
|
Zaiko A, Scheel M, Schattschneider J, von Ammon U, Scriver M, Pochon X, Pearman JK. Pest Alert Tool-a web-based application for flagging species of concern in metabarcoding datasets. Nucleic Acids Res 2023:7173698. [PMID: 37207328 DOI: 10.1093/nar/gkad364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 05/21/2023] Open
Abstract
Advances in high-throughput sequencing (HTS) technologies and their increasing affordability have fueled environmental DNA (eDNA) metabarcoding data generation from freshwater, marine and terrestrial ecosystems. Research institutions worldwide progressively employ HTS for biodiversity assessments, new species discovery and ecological trend monitoring. Moreover, even non-scientists can now collect an eDNA sample, send it to a specialized laboratory for analysis and receive in-depth biodiversity record from a sampling site. This offers unprecedented opportunities for biodiversity assessments across wide temporal and spatial scales. The large volume of data produced by metabarcoding also enables incidental detection of species of concern, including non-indigenous and pathogenic organisms. We introduce an online app-Pest Alert Tool-for screening nuclear small subunit 18S ribosomal RNA and mitochondrial cytochrome oxidase subunit I datasets for marine non-indigenous species as well as unwanted and notifiable marine organisms in New Zealand. The output can be filtered by minimum length of the query sequence and identity match. For putative matches, a phylogenetic tree can be generated through the National Center for Biotechnology Information's BLAST Tree View tool, allowing for additional verification of the species of concern detection. The Pest Alert Tool is publicly available at https://pest-alert-tool-prod.azurewebsites.net/.
Collapse
Affiliation(s)
- Anastasija Zaiko
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Sequench Ltd, 1/131 Hardy Street, Nelson 7010, New Zealand
| | | | | | - Ulla von Ammon
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Michelle Scriver
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xavier Pochon
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| |
Collapse
|
19
|
Ratliff K, Abdel-Hady A, Monge M, Mikelonis A, Touati A. Impact of filter material and holding time on spore sampling efficiency in water. Lett Appl Microbiol 2023; 76:ovad005. [PMID: 36705271 PMCID: PMC10599418 DOI: 10.1093/lambio/ovad005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Bacillus anthracis and other environmentally persistent pathogens pose a significant threat to human and environmental health. If contamination is spread over a wide area (e.g. resulting from a bioterrorism or biowarfare incident), readily deployable and scalable sample collection methods will be necessary for rapidly developing and implementing effective remediation strategies. A recent surge in environmental (eDNA) sampling technologies could prove useful for quantifying the extent and levels of contamination from biological agents in environmental and drinking water. In this study, three commonly used membrane filtration materials (cellulose acetate, cellulose nitrate, and nylon) were evaluated for spore filtration efficiency, yielding recoveries from 17%-68% to 25%-117% for high and low titer samples, respectively, where cellulose nitrate filters generated the highest recoveries. A holding time test revealed no statistically significant differences between spore recoveries when analyzed at the specified timepoints, suggesting that eDNA filter sampling techniques can yield and maintain a relatively high recovery of spores for an extended period of time between filtration and analysis without a detrimental impact on spore recoveries. The results shown here indicate that emerging eDNA technologies could be leveraged for sampling following a wide-area contamination incident and for other microbiological water sampling applications.
Collapse
Affiliation(s)
- Katherine Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Developmen, Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | | | - Mariela Monge
- Consolidated Safety Services, Inc., Research Triangle Park, NC 27709, USA
| | - Anne Mikelonis
- Center for Environmental Solutions and Emergency Response, Office of Research and Developmen, Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
20
|
von Ammon U, Pochon X, Casanovas P, Trochel B, Zirngibl M, Thomas A, Witting J, Joyce P, Zaiko A. Net overboard: Comparing marine eDNA sampling methodologies at sea to unravel marine biodiversity. Mol Ecol Resour 2023; 23:440-452. [PMID: 36226834 DOI: 10.1111/1755-0998.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/09/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023]
Abstract
Environmental DNA (eDNA) analyses are powerful for describing marine biodiversity but must be optimized for their effective use in routine monitoring. To maximize eDNA detection probabilities of sparsely distributed populations, water samples are usually concentrated from larger volumes and filtered using fine-pore membranes, often a significant cost-time bottleneck in the workflow. This study aimed to streamline eDNA sampling by investigating plankton net versus bucket sampling, direct versus sequential filtration including self-preserving filters. Biodiversity was assessed using metabarcoding of the small ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes. Multispecies detection probabilities were estimated for each workflow using a probabilistic occupancy modelling approach. Significant workflow-related differences in biodiversity metrics were reported. Highest amplicon sequence variant (ASV) richness was attained by the bucket sampling combined with self-preserving filters, comprising a large portion of microplankton. Less diversity but more metazoan taxa were captured in the net samples combined with 5 μm pore size filters. Prefiltered 1.2 μm samples yielded few or no unique ASVs. The highest average (~32%) metazoan detection probabilities in the 5 μm pore size net samples confirmed the effectiveness of preconcentration plankton for biodiversity screening. These results contribute to streamlining eDNA sampling protocols for uptake and implementation in marine biodiversity research and surveillance.
Collapse
Affiliation(s)
| | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Jan Witting
- SEA Education Association, Woods Hole, Massachusetts, USA
| | - Paul Joyce
- SEA Education Association, Woods Hole, Massachusetts, USA
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Zárate A, Molina V, Valdés J, Icaza G, Vega SE, Castillo A, Ugalde JA, Dorador C. Spatial co-occurrence patterns of benthic microbial assemblage in response to trace metals in the Atacama Desert Coastline. Front Microbiol 2023; 13:1020491. [PMID: 36726571 PMCID: PMC9885135 DOI: 10.3389/fmicb.2022.1020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023] Open
Abstract
Taxonomic and functional microbial communities may respond differently to anthropogenic coastal impacts, but ecological quality monitoring assessments using environmental DNA and RNA (eDNA/eRNA) in response to pollution are poorly understood. In the present study, we investigated the utility of the co-occurrence network approach's to comprehensively explore both structure and potential functions of benthic marine microbial communities and their responses to Cu and Fe fractioning from two sediment deposition coastal zones of northern Chile via 16S rRNA gene metabarcoding. The results revealed substantial differences in the microbial communities, with the predominance of two distinct module hubs based on study zone. This indicates that habitat influences microbial co-occurrence networks. Indeed, the discriminant analysis allowed us to identify keystone taxa with significant differences in eDNA and eRNA comparison between sampled zones, revealing that Beggiatoaceae, Carnobacteriaceae, and Nitrosococcaceae were the primary representatives from Off Loa, whereas Enterobacteriaceae, Corynebacteriaceae, Latescibacteraceae, and Clostridiaceae were the families responsible for the observed changes in Mejillones Bay. The quantitative evidence from the multivariate analyses supports that the benthic microbial assemblages' features were linked to specific environments associated with Cu and Fe fractions, mainly in the Bay. Furthermore, the predicted functional microbial structure suggested that transporters and DNA repair allow the communities to respond to metals and endure the interacting variable environmental factors like dissolved oxygen, temperature, and salinity. Moreover, some active taxa recovered are associated with anthropogenic impact, potentially harboring antibiotic resistance and other threats in the coastal zone. Overall, the method of scoping eRNA in parallel with eDNA applied here has the capacity to significantly enhance the spatial and functional understanding of real-time microbial assemblages and, in turn, would have the potential to increase the acuity of biomonitoring programs key to responding to immediate management needs for the marine environment.
Collapse
Affiliation(s)
- Ana Zárate
- Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Biotecnología en Ambientes Extremos, Centro de Excelencia en Medicina Traslacional, Universidad de la Frontera, Temuco, Chile,*Correspondence: Ana Zárate, ✉
| | - Verónica Molina
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas y HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile,Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile,Verónica Molina, ✉
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Facultad de Ciencias del Mar y de Recursos Biológicos, Instituto de Ciencias Naturales A. von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Icaza
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | | | - Alexis Castillo
- Centro de Investigación y Estudios Avanzados del Maule, Vicerrectoría de Investigación de Investigación y Posgrado, Universidad Católica del Maule, Campus San Miguel, Talca, Chile,J’EAI CHARISMA (IRD-France, UMNG-Colombia, UA-Chile, UCM-Chile, UCH-Chile, IGP-Peru, UPCH-Peru) and Nucleo Milenio UPWELL, Concepción, Chile
| | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile,Cristina Dorador, ✉
| |
Collapse
|
22
|
Patin NV, Goodwin KD. Capturing marine microbiomes and environmental DNA: A field sampling guide. Front Microbiol 2023; 13:1026596. [PMID: 36713215 PMCID: PMC9877356 DOI: 10.3389/fmicb.2022.1026596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The expanding interest in marine microbiome and eDNA sequence data has led to a demand for sample collection and preservation standard practices to enable comparative assessments of results across studies and facilitate meta-analyses. We support this effort by providing guidelines based on a review of published methods and field sampling experiences. The major components considered here are environmental and resource considerations, sample processing strategies, sample storage options, and eDNA extraction protocols. It is impossible to provide universal recommendations considering the wide range of eDNA applications; rather, we provide information to design fit-for-purpose protocols. To manage scope, the focus here is on sampling collection and preservation of prokaryotic and microeukaryotic eDNA. Even with a focused view, the practical utility of any approach depends on multiple factors, including habitat type, available resources, and experimental goals. We broadly recommend enacting rigorous decontamination protocols, pilot studies to guide the filtration volume needed to characterize the target(s) of interest and minimize PCR inhibitor collection, and prioritizing sample freezing over (only) the addition of preservation buffer. An annotated list of studies that test these parameters is included for more detailed investigation on specific steps. To illustrate an approach that demonstrates fit-for-purpose methodologies, we provide a protocol for eDNA sampling aboard an oceanographic vessel. These guidelines can aid the decision-making process for scientists interested in sampling and sequencing marine microbiomes and/or eDNA.
Collapse
Affiliation(s)
- Nastassia Virginia Patin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States,*Correspondence: Nastassia Virginia Patin,
| | - Kelly D. Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States
| |
Collapse
|
23
|
Jeunen GJ, Cane JS, Ferreira S, Strano F, von Ammon U, Cross H, Day R, Hesseltine S, Ellis K, Urban L, Pearson N, Olmedo-Rojas P, Kardailsky A, Gemmell NJ, Lamare M. Assessing the utility of marine filter feeders for environmental DNA (eDNA) biodiversity monitoring. Mol Ecol Resour 2023; 23:771-786. [PMID: 36598115 DOI: 10.1111/1755-0998.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Aquatic environmental DNA (eDNA) surveys are transforming how marine ecosystems are monitored. The time-consuming preprocessing step of active filtration, however, remains a bottleneck. Hence, new approaches that eliminate the need for active filtration are required. Filter-feeding invertebrates have been proven to collect eDNA, but side-by-side comparative studies to investigate the similarity between aquatic and filter-feeder eDNA signals are essential. Here, we investigated the differences among four eDNA sources (water; bivalve gill-tissue; sponges; and ethanol in which filter-feeding organisms were stored) along a vertically stratified transect in Doubtful Sound, New Zealand using three metabarcoding primer sets targeting fish and vertebrates. Combined, eDNA sources detected 59 vertebrates, while concurrent diver surveys observed eight fish species. There were no significant differences in alpha and beta diversity between water and sponge eDNA and both sources were highly correlated. Vertebrate eDNA was successfully extracted from the ethanol in which sponges were stored, although a reduced number of species were detected. Bivalve gill-tissue dissections, on the other hand, failed to reliably detect eDNA. Overall, our results show that vertebrate eDNA signals obtained from water samples and marine sponges are highly concordant. The strong similarity in eDNA signals demonstrates the potential of marine sponges as an additional tool for eDNA-based marine biodiversity surveys, by enabling the incorporation of larger sample numbers in eDNA surveys, reducing plastic waste, simplifying sample collection, and as a cost-efficient alternative. However, we note the importance to not detrimentally impact marine communities by, for example, nonlethal subsampling, specimen cloning, or using bycatch specimens.
Collapse
Affiliation(s)
- Gert-Jan Jeunen
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jasmine S Cane
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,ARC CoE for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Sara Ferreira
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Kelburn, New Zealand
| | | | - Hugh Cross
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robert Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Hesseltine
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
| | - Kaleb Ellis
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
| | - Lara Urban
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Niall Pearson
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
| | | | - Anya Kardailsky
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miles Lamare
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Shea MM, Kuppermann J, Rogers MP, Smith DS, Edwards P, Boehm AB. Systematic review of marine environmental DNA metabarcoding studies: toward best practices for data usability and accessibility. PeerJ 2023; 11:e14993. [PMID: 36992947 PMCID: PMC10042160 DOI: 10.7717/peerj.14993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/12/2023] [Indexed: 03/31/2023] Open
Abstract
The emerging field of environmental DNA (eDNA) research lacks universal guidelines for ensuring data produced are FAIR-findable, accessible, interoperable, and reusable-despite growing awareness of the importance of such practices. In order to better understand these data usability challenges, we systematically reviewed 60 peer reviewed articles conducting a specific subset of eDNA research: metabarcoding studies in marine environments. For each article, we characterized approximately 90 features across several categories: general article attributes and topics, methodological choices, types of metadata included, and availability and storage of sequence data. Analyzing these characteristics, we identified several barriers to data accessibility, including a lack of common context and vocabulary across the articles, missing metadata, supplementary information limitations, and a concentration of both sample collection and analysis in the United States. While some of these barriers require significant effort to address, we also found many instances where small choices made by authors and journals could have an outsized influence on the discoverability and reusability of data. Promisingly, articles also showed consistency and creativity in data storage choices as well as a strong trend toward open access publishing. Our analysis underscores the need to think critically about data accessibility and usability as marine eDNA metabarcoding studies, and eDNA projects more broadly, continue to proliferate.
Collapse
Affiliation(s)
- Meghan M. Shea
- Emmett Interdisciplinary Program in Environment & Resources (E-IPER), Stanford University, Stanford, CA, United States of America
| | - Jacob Kuppermann
- Earth Systems Program, Stanford University, Stanford, CA, United States of America
| | - Megan P. Rogers
- Program in Human Biology, Stanford University, Stanford, CA, United States of America
| | - Dustin Summer Smith
- Earth Systems Program, Stanford University, Stanford, CA, United States of America
| | - Paul Edwards
- Program in Science, Technology and Society, Stanford University, Stanford, CA, United States of America
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
25
|
Zaiko A, von Ammon U, Stuart J, Smith KF, Yao R, Welsh M, Pochon X, Bowers HA. Assessing the performance and efficiency of environmental
DNA
/
RNA
capture methodologies under controlled experimental conditions. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anastasija Zaiko
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
- Institute of Marine Science University of Auckland, Private Bag 92019, Auckland 1142 New Zealand
| | - Ulla von Ammon
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
| | - Jacqui Stuart
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
| | - Kirsty F. Smith
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
- School of Biological Sciences University of Auckland, Private Bag 92019, Auckland 1142 New Zealand
| | - Richard Yao
- Scion (NZ Forest Research Institute), Te Papa Tipu Innovation Park, Titokorangi Drive, Whakarewarewa Rotorua 3010 New Zealand
| | - Melissa Welsh
- Scion (NZ Forest Research Institute), P.O. Box 29237 Christchurch 8540 New Zealand
| | - Xavier Pochon
- Cawthron Institute Private Bag 2, Nelson 7042 New Zealand
- Institute of Marine Science University of Auckland, Private Bag 92019, Auckland 1142 New Zealand
| | - Holly A. Bowers
- Moss Landing Marine Laboratories San Jose State University Moss Landing, California, 95039 USA
| |
Collapse
|
26
|
Ellis MR, Clark ZSR, Treml EA, Brown MS, Matthews TG, Pocklington JB, Stafford-Bell RE, Bott NJ, Nai YH, Miller AD, Sherman CDH. Detecting marine pests using environmental DNA and biophysical models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151666. [PMID: 34793806 DOI: 10.1016/j.scitotenv.2021.151666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The spread of marine pests is occurring at record rates due to globalisation and increasing trade. Environmental DNA (eDNA) is an emerging tool for pest surveillance, allowing for the detection of genetic material shed by organisms into the environment. However, factors influencing the spatial and temporal detection limits of eDNA in marine environments are poorly understood. In this study we use eDNA assays to assess the invasive ranges of two marine pests in south-eastern Australia, the kelp Undaria pinnatifida and the seastar Asterias amurensis. We explored the temporal and spatial detection limits of eDNA under different oceanographic conditions by combining estimates of eDNA decay with biophysical modelling. Positive eDNA detections at several new locations indicate the invasive range of both pest species is likely to be wider than currently assumed. Environmental DNA decay rates were similar for both species, with a decay rate constant of 0.035 h-1 for U. pinnatifida, and a decay rate constant of 0.041 h-1 for A. amurensis, resulting in a 57-73% decrease in eDNA concentrations in the first 24 h and decaying beyond the limits of detection after 3-4 days. Biophysical models informed by eDNA decay profiles indicate passive transport of eDNA up to a maximum of 10 to 20 km from its source, with a ~90-95% reduction in eDNA concentration within 1-3 km from the source, depending on local oceanography. These models suggest eDNA signals are likely to be highly localised, even in complex marine environments. This was confirmed with spatially replicated eDNA sampling around an established U. pinnatifida population indicating detection limits of ~750 m from the source. This study highlights the value of eDNA methods for marine pest surveillance and provides a much-needed description of the spatio-temporal detection limits of eDNA under different oceanographic conditions.
Collapse
Affiliation(s)
- Morgan R Ellis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Zach S R Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Eric A Treml
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Morgan S Brown
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ty G Matthews
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jacqueline B Pocklington
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Environment and Science Division, Parks Victoria, Melbourne, Victoria 3000, Australia
| | - Richard E Stafford-Bell
- Department of Jobs, Precincts and Regions, 475 Mickleham Road, Attwood, Vic. 3049, Australia
| | - Nathan J Bott
- School of Science, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Yi Heng Nai
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Adam D Miller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
27
|
Brasell KA, Pochon X, Howarth J, Pearman JK, Zaiko A, Thompson L, Vandergoes MJ, Simon KS, Wood SA. Shifts in DNA yield and biological community composition in stored sediment: implications for paleogenomic studies. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.78128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lake sediments hold a wealth of information from past environments that is highly valuable for paleolimnological reconstructions. These studies increasingly apply modern molecular tools targeting sedimentary DNA (sedDNA). However, sediment core sampling can be logistically difficult, making immediate subsampling for sedDNA challenging. Sediment cores are often refrigerated (4 °C) for weeks or months before subsampling. We investigated the impact of storage time on changes in DNA (purified or as cell lysate) concentrations and shifts in biological communities following storage of lake surface sediment at 4 °C for up to 24 weeks. Sediment samples (~ 0.22 g, in triplicate per time point) were spiked with purified DNA (100 or 200 ng) or lysate from a brackish water cyanobacterium that produces the cyanotoxin nodularin or non-spiked. Samples were analysed every 1–4 weeks over a 24-week period. Droplet digital PCR showed no significant decrease in the target gene (nodularin synthetase – subunit F; ndaF) over the 24-week period for samples spiked with purified DNA, while copy number decreased by more than half in cell lysate-spiked samples. There was significant change over time in bacteria and eukaryotic community composition assessed using metabarcoding. Amongst bacteria, the cyanobacterial signal became negligible after 5 weeks while Proteobacteria increased. In the eukaryotic community, Cercozoa became dominant after 6 weeks. These data demonstrate that DNA yields and community composition data shift significantly when sediments are stored chilled for more than 5 weeks. This highlights the need for rapid subsampling and appropriate storage of sediment core samples for paleogenomic studies.
Collapse
|
28
|
Dully V, Rech G, Wilding TA, Lanzén A, MacKichan K, Berrill I, Stoeck T. Comparing sediment preservation methods for genomic biomonitoring of coastal marine ecosystems. MARINE POLLUTION BULLETIN 2021; 173:113129. [PMID: 34784523 DOI: 10.1016/j.marpolbul.2021.113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
To avoid loss of genetic information in environmental DNA (eDNA) field samples, the preservation of nucleic acids during field sampling is a critical step. In the development of standard operating procedures (SOPs) for eDNA-based compliance monitoring, the effect of different routinely used sediment preservations on biological community structures serving as bioindicators has gone untested. We compared eDNA metabarcoding results of marine bacterial communities from sample aliquots that were treated with a nucleic acid preservation solution (treated samples) and aliquots that were frozen without further treatment (non-treated samples). Sediment samples were obtained from coastal locations subjected to different stressors (aquaculture, urbanization, industry). DNA extraction efficiency, bacterial community profiles, and measures of alpha- and beta-diversity were highly congruent between treated and non-treated samples. As both preservation methods provide the same relevant information to environmental managers and regulators, we recommend the inclusion of both methods into SOPs for biomonitoring in marine coastal environments.
Collapse
Affiliation(s)
- Verena Dully
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany
| | - Giulia Rech
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany
| | - Thomas A Wilding
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Scotland, United Kingdom
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Iain Berrill
- Scottish Salmon Producers Organization, Edinburgh, Scotland, United Kingdom
| | - Thorsten Stoeck
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
29
|
Zaiko A, Greenfield P, Abbott C, von Ammon U, Bilewitch J, Bunce M, Cristescu ME, Chariton A, Dowle E, Geller J, Ardura Gutierrez A, Hajibabaei M, Haggard E, Inglis GJ, Lavery SD, Samuiloviene A, Simpson T, Stat M, Stephenson S, Sutherland J, Thakur V, Westfall K, Wood SA, Wright M, Zhang G, Pochon X. Towards reproducible metabarcoding data: Lessons from an international cross-laboratory experiment. Mol Ecol Resour 2021; 22:519-538. [PMID: 34398515 DOI: 10.1111/1755-0998.13485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
Advances in high-throughput sequencing (HTS) are revolutionizing monitoring in marine environments by enabling rapid, accurate and holistic detection of species within complex biological samples. Research institutions worldwide increasingly employ HTS methods for biodiversity assessments. However, variance in laboratory procedures, analytical workflows and bioinformatic pipelines impede the transferability and comparability of results across research groups. An international experiment was conducted to assess the consistency of metabarcoding results derived from identical samples and primer sets using varying laboratory procedures. Homogenized biofouling samples collected from four coastal locations (Australia, Canada, New Zealand and the USA) were distributed to 12 independent laboratories. Participants were asked to follow one of two HTS library preparation workflows. While DNA extraction, primers and bioinformatic analyses were purposefully standardized to allow comparison, many other technical variables were allowed to vary among laboratories (amplification protocols, type of instrument used, etc.). Despite substantial variation observed in raw results, the primary signal in the data was consistent, with the samples grouping strongly by geographical origin for all data sets. Simple post hoc data clean-up by removing low-quality samples gave the best improvement in sample classification for nuclear 18S rRNA gene data, with an overall 92.81% correct group attribution. For mitochondrial COI gene data, the best classification result (95.58%) was achieved after correction for contamination errors. The identified critical methodological factors that introduced the greatest variability (preservation buffer, sample defrosting, template concentration, DNA polymerase, PCR enhancer) should be of great assistance in standardizing future biodiversity studies using metabarcoding.
Collapse
Affiliation(s)
- Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Paul Greenfield
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia.,Environmental (e)DNA and Biomonitoring Lab, Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Cathryn Abbott
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Ulla von Ammon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Jaret Bilewitch
- National Institute of Water & Atmospheric Research Ltd (NIWA), Hataitai, Wellington, New Zealand
| | - Michael Bunce
- Environmental Protection Authority, Wellington, New Zealand
| | | | - Anthony Chariton
- Environmental (e)DNA and Biomonitoring Lab, Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Eddy Dowle
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jonathan Geller
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | | | | | - Emmet Haggard
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Graeme J Inglis
- National Institute of Water & Atmospheric Research Ltd (NIWA), Christchurch, New Zealand
| | - Shane D Lavery
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Tiffany Simpson
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Michael Stat
- The University of Newcastle, Newcastle, New South Wales, Australia
| | - Sarah Stephenson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Judy Sutherland
- National Institute of Water & Atmospheric Research Ltd (NIWA), Hataitai, Wellington, New Zealand
| | - Vibha Thakur
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kristen Westfall
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | | | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|