1
|
Lv J, Yang T, An Y. Compositions of the major ions, variations in their sources, and a risk assessment of the Qingshuijiang River Basin in Southwest China: a 10-year comparison of hydrochemical measurements. PeerJ 2024; 12:e18284. [PMID: 39494301 PMCID: PMC11531746 DOI: 10.7717/peerj.18284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Rivers in karst areas face increased risks from persistent growth in human activity that leads to changes in water chemistry and threatens the water environment. In this study, principal component analysis (PCA), ion ratio measurements, and other methods were used to study the water chemistry of the Qingshuijiang River Basin over the past 10 years. The results showed that the main ions in the river were Ca2+ and HCO3 -, with a cation order of Ca2+ (mean: 0.93 mmol/L) > Mg2+ (mean: 0.51 mmol/L) > Na+ (mean: 0.30 mmol/L) > K+ (mean: 0.06 mmol/L) and HCO3 - (mean: 2.00 mmol/L) > SO4 2- (mean: 0.49 mmol/L) > Cl- (mean: 0.15 mmol/L) > NO3 - (mean: 0.096 mmol/L) > F- (mean : 0.012 mmol/L). In the past 10 years, the concentration of major ions in the river water in the basin has increased significantly. The weathering input of rock (mainly upstream carbonate) was the main source of Mg2+, Ca2+, and HCO3 -, though sulfuric acid was also involved in this process. While K+ and Na+ were affected by the combination of human activity and the weathering input of silicate rock in the middle and lower reaches of the river, human activity was the main source of SO4 2-, NO3 -, and F- ions. Irrigation water quality and health risks were evaluated by calculating the sodium adsorption ratio (SAR), soluble sodium percentage (Na%), residual sodium carbonate (RSC), and hazard quotient (HQ). The findings indicated that the river water was generally safe for irrigation and drinking, and the health risks were gradually reduced over time. However, long-term monitoring of the river basin is still essential, especially for the risk of excessive F- in a few tributaries in the basin.
Collapse
Affiliation(s)
- Jiemei Lv
- The College of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Tianhao Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanling An
- The College of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Yang T, Wu Q, An Y, Lv J. Major ion compositions, sources and risk assessment of karst stream under the influence of anthropogenic activities, Guizhou Province, Southwest China. PeerJ 2023; 11:e15368. [PMID: 37220523 PMCID: PMC10200100 DOI: 10.7717/peerj.15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
To explore the influence of different types of anthropogenic activity on the rivers, we investigate the major ion composition, sources and risk assessment of the karst stream (Youyu stream and Jinzhong stream), which are heavily influenced by mining activities and urban sewage, respectively. The chemical compositions of the Youyu stream water, which is heavily influenced by mining activities, are dominated by Ca2+ and SO42-. However, the chemical compositions of the Jinzhong stream water, which is heavily influenced by urban sewage, are dominated by Ca2+ and HCO3-. The Ca2+, Mg2+ and HCO3- in Jinzhong stream are mainly derived from rock weathering, while the Youyu stream is affected by acid mine drainage, and sulfuric acid is involved in the weathering process. Ion sources analysis indicates that the Na+, K+, NO3-, and Cl- in the Jinzhong stream mainly derive from urban sewage discharge; but NO3- and Cl- of the Youyu stream mainly derive from agricultural activities, and Na+, K+ are mainly from natural sources. The element ratios analysis indicates the ratio of SO42-/Mg2+ in Youyu stream (4.61) polluted by coal mine is much higher than that in Jinzhong stream (1.29), and the ratio of (Na++K++Cl-)/Mg2+ in Jinzhong stream (1.81) polluted by urban sewage is higher than Youyu stream (0.64). Moreover, the ratios of NO3-/Na+, NO3-/K+, and NO3-/Cl- in the agriculturally polluted Youyu stream were higher than those in the Jinzhong stream. We can identify the impact of human activities on streams by ion ratios (SO42-/Mg2+, (Na++K++Cl-)/Mg2+, NO3-/Na+, NO3-/K+, and NO3-/Cl-). The health risk assessment shows the HQT and HQN for children and adults are higher in Jinzhong stream than in Youyu stream and the total HQ value (HQT) of children was higher than one at J1 in the Jinzhong stream, which shows that children in Jinzhong stream basin are threatened by non-carcinogenic pollutants. Each HQ value of F- and NO3- for children was higher than 0.1 in the tributaries into Aha Lake, indicating that the children may also be potentially endangered.
Collapse
Affiliation(s)
- Tianhao Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| | - Qixin Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| | - Yanling An
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
- The College of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Jiemei Lv
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- The College of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang, China
| |
Collapse
|
3
|
Egbueri JC. A multi-model study for understanding the contamination mechanisms, toxicity and health risks of hardness, sulfate, and nitrate in natural water resources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61626-61658. [PMID: 36928703 DOI: 10.1007/s11356-023-26396-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/07/2023] [Indexed: 05/10/2023]
Abstract
Several water quality contaminants have attracted the attention of numerous researchers globally, in recent times. Although the toxicity and health risk assessments of sulfate and water hardness have not received obvious attention, nitrate contamination has gained peculiar research interest globally. In the present paper, multiple data-driven indexical, graphical, and soft computational models were integrated for a detailed assessment and predictive modeling of the contamination mechanisms, toxicity, and human health risks of natural waters in Southeast Nigeria. Majority of the tested physicochemical parameters were within their satisfactory limits for drinking and other purposes. However, total hardness (TH), SO4, and NO3 were above stipulated limits in some locations. A nitrate health risk assessment revealed that certain areas present a chronic health risk to children, females, and males due to water intake. However, the dermal absorption route was found to have negligible health risks. SO4 in some locations was above the 100 mg/L Nigerian limit; thus, heightening the potential health effects due to intake of the contaminated water resources. Most samples had low TH values, which exposes users to health defects. There are mixed contamination mechanisms in the area, according to graphical plots, R-mode hierarchical dendrogram, factor analysis, and stoichiometry. However, geogenic mechanisms predominate over human-related mechanisms. Based on the results, a composite diagrammatic model was developed. Furthermore, predictive radial basis function (RBF) and multiple linear regression (MLR) models accurately predicted the TH, SO4, and NO3, with the RBF outperforming the MLR models. Insights from the RBF and MLR models were useful in validating the results of the hierarchical dendrogram, factor, stoichiometric, and graphical analyses.
Collapse
Affiliation(s)
- Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria.
| |
Collapse
|
4
|
Zeng J, Han G, Zhang S, Qu R. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159234. [PMID: 36208764 DOI: 10.1016/j.scitotenv.2022.159234] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic reactive nitrogen emissions have a significant impact on atmospheric chemical composition and earth surface ecosystem. As one of the most important sinks of atmospheric nitrogen, the wet deposition of nitrate (rainwater NO3-) has been widely concerned. Yet, the sources and transformation processes of wet deposited NO3- were not well revealed in megacity during rainy season in the context of global climate change. Here, we investigated the concentrations of nitrogen components and dual isotopes of rainwater nitrate collected in Beijing during July to August 2021 (rainy season). The main findings showed that the concentrations of NH4+-N, NO3--N, and NO2--N ranged 0.5- 6.7 mg L-1, 0.3- 4.5 mg L-1, and 0.05- 0.18 mg L-1, respectively, with the average relative percentages of 69 %, 29 %, and 2 %. The stoichiometry analysis of characteristic ion ratios indicated that the contribution of municipal wastes and agricultural sources to rainwater NH4+-N is relatively significant, while traffics were the major contributor of NO3--N instead of the fixed emission. Rainwater δ15N-NO3- and δ18O-NO3- presented slightly 15N-depleted characteristic compared to previous studies with the average values of -3.9 ± 3.1 ‰ and 58.7 ± 12.6 ‰. These isotope compositions suggesting an origin of rainwater NO3- from the mixing of multi-sources and was mainly generated via the pathway of OH radical oxidization. Further source apportionment of rainwater NO3- by Bayesian mixing model evaluated that traffic (30.3 %) and soil (30.3 %) emissions contributed mostly to NO3-, while the contribution of biomass burning (18.8 %) and coal combustion (20.6 %) were relatively lower. This study highlighted the important role of dual isotopes in rainwater nitrate source identification and formation processes in megacity.
Collapse
Affiliation(s)
- Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Shitong Zhang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rui Qu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
5
|
Zhang S, Han G, Zeng J, Liu M, Li X, Liu J. Multi-isotopes revealing the coastal river anthropogenic pollutants and natural material flux to ocean: Sr, C, N, S, and O isotope study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61397-61411. [PMID: 35441999 DOI: 10.1007/s11356-022-20223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Coastal river exports massive terrestrial materials to the adjacent marine environment with information about chemical weathering, providing critical insights on riverine flux and the potential impact on marine ecosystem. In this study, the preliminary data of dissolved strontium (Sr) and 87Sr/86Sr in a typical coastal river in southeastern China were collected along with hydrochemistry and C, N, S, and O isotopes to discriminate the source of terrestrial weathering and the riverine flux. Sr concentrations exhibited a range of 0.084 ~ 1.307 μmol L-1, and 87Sr/86Sr values ranged 0.7089 ~ 0.7164. The total cationic charge (TZ+) ranged 0.2 ~ 11.7 meq L-1 with the predominant Ca2+ which accounted for > 50% of TZ+, while the anions were dominated by HCO3-. The extremely high Na+ and Cl- near the estuary indicated seawater mixing in such a coastal river. δ13C-DIC, δ15N-NO3-, δ18O-NO3-, and δ34S-SO42- of river water ranged - 24.1‰ ~ - 9.2‰, 0.3‰ ~ 22.7‰, - 2.1‰ ~ 21.4‰, and - 9.3‰ ~ 18.0‰, respectively. δ13C enhanced correspondingly to decreased δ34S, confirming the attendance of H2SO4 in carbonate weathering. Most δ18O values exhibited within ± 10‰, indicating the dominant nitrification process. δ15N presented slightly negative relationship with δ13C and no obvious correlation with δ34S, indicating relatively limited impact of denitrification. The depleted δ13C and δ15N may be attributed to carbonate dissolution with nitric acids and the oxidation of organic matters into C and N pools. Quantitative analysis revealed that silicate weathering accounts for 79% of total dissolved Sr, indicating the dominant weathering process. The estimated monthly flux of dissolved Sr to the East China Sea was 138.1 tons, demonstrating an potential impact on seawater Sr isotope evolution. Overall, the investigations of multi-isotopes revealed the enhancement of weathering rates and the consequently depleted CO2 consumption, which further proved the involvement of strong acids (H2SO4 and HNO3). This study provides scientific insight in terrestrial weathering and anthropogenic impact of a typical coastal watershed and may orient the management of environmental issues related to coastal ecosystems.
Collapse
Affiliation(s)
- Shitong Zhang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Man Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiaoqiang Li
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jinke Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
6
|
Impacts of Soil Moisture and Fertilizer on N2O Emissions from Cornfield Soil in a Karst Watershed, SW China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Incubation experiments using a typical cornfield soil in the Wujiang River watershed, SW China, were conducted to examine the impacts of soil moisture and fertilizer on N2O emissions and production mechanisms. According to the local fertilizer type, we added NH4NO3 (N) and glucose (C) during incubation to simulate fertilizer application in the cornfield soil. The results showed that an increase in soil moisture and fertilizer significantly stimulated N2O emissions in cornfield soil in the karst area, and it varied with soil moisture. The highest N2O emission fluxes were observed in the treatment with nitrogen and carbon addition at 70% water-filled pore space (WFPS), reaching 6.6 mg kg−1 h−1, which was 22,310, 124.9, and 1.4 times higher than those at 5%, 40%, and 110% WFPS, respectively. The variations of nitrogen species indicated that the production of extremely high N2O at 70% WFPS was dominated by nitrifier denitrification and denitrification, and N2O was the primary form of soil nitrogen loss when soil moisture was >70% WFPS. This study provides a database for estimating N2O emissions in cropland soil in the karst area, and further helped to promote proper soil nitrogen assessment and management of agricultural land of the karst watersheds.
Collapse
|
7
|
Watershed Water Environment and Hydrology under the Influence of Anthropogenic and Natural Processes. WATER 2022. [DOI: 10.3390/w14071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Water resources imbalance of requirement and distribution has become one of the most vital limiting factors for regional and global sustainable development [...]
Collapse
|