1
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
2
|
Sharma A, Shivanna JM, Alodhayb AN, Hegde G. Efficient cationic dye removal from water through Arachis hypogaea skin-derived carbon nanospheres: a rapid and sustainable approach. NANOSCALE ADVANCES 2024; 6:3199-3210. [PMID: 38868826 PMCID: PMC11166100 DOI: 10.1039/d4na00254g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
The present study investigates the potential of Arachis hypogaea skin-derived carbon nanospheres (CNSs) as an efficient adsorbent for the rapid removal of cationic dyes from aqueous solutions. The CNSs were synthesized through a facile, cost-effective, catalyst-free and environmentally friendly process, utilizing Arachis hypogaea skin waste as a precursor. This is the first reported study on the synthesis of mesoporous carbon nanospheres from Arachis hypogaea skin. The structural and morphological characteristics of the CNSs were confirmed by different nano-characterization techniques. The adsorption performance of the carbon nanospheres was evaluated through batch adsorption experiments using two cationic dyes-methylene blue (MB) and malachite green (MG). The effects of the initial dye concentration, contact time, adsorbent dosage, and pH were investigated to determine the optimal conditions for dye removal. The results revealed that the obtained CNSs exhibited remarkable adsorption capacity and rapid adsorption kinetics. Up to ∼98% removal efficiency was noted for both dyes in as little as 2 min for a 5 mg L-1 dye concentration, and the CNSs maintained their structural morphology even after adsorption. The adsorption data were fitted to various kinetic and isotherm models to gain insights into the adsorption mechanism and behaviour. The pseudo-second-order kinetic model and Redlich-Peterson model best described the experimental data, indicating multi-layer adsorption and chemisorption as the predominant adsorption mechanism. The maximum adsorption capacity was determined to be 1128.46 mg g-1 for MB and 387.6 mg g-1 for MG, highlighting the high affinity of the carbon nanospheres towards cationic dyes. Moreover, CNS reusability and stability were examined through desorption and regeneration experiments, which revealed sustained efficiency over 7 cycles. CNSs were immobilised in a membrane matrix and examined for adsorption, which demonstrated acceptable efficiency values and opened the door for further improvement.
Collapse
Affiliation(s)
- Aman Sharma
- Department of Chemistry, School of Sciences, CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | | | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Gurumurthy Hegde
- Department of Chemistry, School of Sciences, CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| |
Collapse
|
3
|
Ismael BH, Khaleel F, Ibrahim SS, Khaleel SR, AlOmar MK, Masood A, Aljumaily MM, Alsalhy QF, Mohd Razali SF, Al-Juboori RA, Hameed MM, Alsarayreh AA. Permeation Flux Prediction of Vacuum Membrane Distillation Using Hybrid Machine Learning Techniques. MEMBRANES 2023; 13:900. [PMID: 38132904 PMCID: PMC10744684 DOI: 10.3390/membranes13120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Vacuum membrane distillation (VMD) has attracted increasing interest for various applications besides seawater desalination. Experimental testing of membrane technologies such as VMD on a pilot or large scale can be laborious and costly. Machine learning techniques can be a valuable tool for predicting membrane performance on such scales. In this work, a novel hybrid model was developed based on incorporating a spotted hyena optimizer (SHO) with support vector machine (SVR) to predict the flux pressure in VMD. The SVR-SHO hybrid model was validated with experimental data and benchmarked against other machine learning tools such as artificial neural networks (ANNs), classical SVR, and multiple linear regression (MLR). The results show that the SVR-SHO predicted flux pressure with high accuracy with a correlation coefficient (R) of 0.94. However, other models showed a lower prediction accuracy than SVR-SHO with R-values ranging from 0.801 to 0.902. Global sensitivity analysis was applied to interpret the obtained result, revealing that feed temperature was the most influential operating parameter on flux, with a relative importance score of 52.71 compared to 17.69, 17.16, and 14.44 for feed flowrate, vacuum pressure intensity, and feed concentration, respectively.
Collapse
Affiliation(s)
- Bashar H. Ismael
- Construction and Projects Department, University of Fallujah, Fallujah 31002, Iraq;
- Department of Civil Engineering, Al-Maarif University College (AUC), Ramadi 31001, Iraq; (F.K.); (M.K.A.); (M.M.A.); (M.M.H.)
| | - Faidhalrahman Khaleel
- Department of Civil Engineering, Al-Maarif University College (AUC), Ramadi 31001, Iraq; (F.K.); (M.K.A.); (M.M.A.); (M.M.H.)
| | - Salah S. Ibrahim
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsena’a Street 52, Baghdad 10066, Iraq; (S.S.I.); (S.R.K.)
| | - Samraa R. Khaleel
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsena’a Street 52, Baghdad 10066, Iraq; (S.S.I.); (S.R.K.)
| | - Mohamed Khalid AlOmar
- Department of Civil Engineering, Al-Maarif University College (AUC), Ramadi 31001, Iraq; (F.K.); (M.K.A.); (M.M.A.); (M.M.H.)
| | - Adil Masood
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi 110025, India;
| | - Mustafa M. Aljumaily
- Department of Civil Engineering, Al-Maarif University College (AUC), Ramadi 31001, Iraq; (F.K.); (M.K.A.); (M.M.A.); (M.M.H.)
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsena’a Street 52, Baghdad 10066, Iraq; (S.S.I.); (S.R.K.)
| | - Siti Fatin Mohd Razali
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
- Smart and Sustainable Township Research Centre (SUTRA), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Green Engineering and Net Zero Solution (GREENZ), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Raed A. Al-Juboori
- NYUAD Water Research Center, Abu Dhabi Campus, New York University, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 Espoo, Finland
| | - Mohammed Majeed Hameed
- Department of Civil Engineering, Al-Maarif University College (AUC), Ramadi 31001, Iraq; (F.K.); (M.K.A.); (M.M.A.); (M.M.H.)
| | - Alanood A. Alsarayreh
- Department of Chemical Engineering, Faculty of Engineering, Mutah University, P.O. Box 7, Karak 61710, Jordan;
| |
Collapse
|
4
|
Shabeeb KM, Noori WA, Abdulridha AA, Majdi HS, Al-Baiati MN, Yahya AA, Rashid KT, Németh Z, Hernadi K, Alsalhy QF. Novel partially cross-linked nanoparticles graft co-polymer as pore former for polyethersulfone membranes for dyes removal. Heliyon 2023; 9:e21958. [PMID: 38034800 PMCID: PMC10682142 DOI: 10.1016/j.heliyon.2023.e21958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
A newly developed water-soluble polymeric nano-additive termed "partially cross-linked nanoparticles graft copolymer (PCLNPG)" has been successfully synthesized and harnessed as a pore former for modifying a polyethersulfone ultrafiltration membrane for dyes removal. The PCLNPG content was varied in the PES polymeric matrix aiming to scrutinize its impact on membrane surface characteristics, morphological structure, and overall performance. Proposed interaction mechanism between methylene blue (MB), methyle orange (MO), and malachite green (MG) dyes with PES membrane was presented as well. Hydrophilicity and porosity of the novel membrane increased by 18 and 17 %, respectively, when manufactured with a 3 Wt. % PCLNPG, according to the findings. Besides this, the disclosed increased porosity, rather than the hydrophilic properties of the water-soluble PCLNPG, was the principal cause of the diminished contact angle. Meanwhile, raising the PCLNPG content in the prepared membrane made worthy shifts in its structure. A sponge-like region was materialized near the bottom surface as well. The membrane's pure water flux (PWF) synthesized with 3 Wt.% PCLNPG recorded 628 LMH, which is estimated 3.95 fold the pristine membrane. MG, MB, and MO dyes were rejected by 90.6, 96.3, and 97.87 %, respectively. These findings showed that the performance characteristics of the PES/PCLNPG membrane make it a potentially advantageous option to treat the textile wastewater.
Collapse
Affiliation(s)
- Kadhum M. Shabeeb
- Department of Materials Engineering, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Wallaa A. Noori
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | | | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Mohammad N. Al-Baiati
- Department of Chemistry, College of Education for Pure Sciences, University of Kerbala, 56001, Kerbala, Iraq
| | - Ali A. Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Zoltán Németh
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc, Hungary
| | - Klara Hernadi
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc, Hungary
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| |
Collapse
|
5
|
Tamilarasan R, Subramani A, Sasikumar G, Ganapathi P, Karthikeyan S, Ponnusamy S, Albukhaty S, Mohammed MKA, Al-Aqbi ZT, Al-Doghachi FAJ, Ahmed DS, Taufiq-Yap YH. Catalytic response and molecular simulation studies in the development of synthetic routes in trimeric triaryl pyridinium type ionic liquids. Sci Rep 2023; 13:4453. [PMID: 36932171 PMCID: PMC10023811 DOI: 10.1038/s41598-023-31476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Under conventional and silica-supported Muffle furnace methods, water-soluble substituted trimeric triaryl pyridinium cations with various inorganic counter anions are synthesized. The solvent-free synthesis method is superior to the conventional method in terms of non-toxicity, quicker reaction times, ease of workup, and higher yields. Trimeric substituted pyridinium salts acted as excellent catalytic responses for the preparation of Gem-bisamide derivatives compared with available literature. To evaluate the molecular docking, benzyl/4-nitrobenzyl substituted triaryl pyridinium salt compounds with VEGFR-2 kinase were used with H-bonds, π-π stacking, salt bridges, and hydrophobic contacts. The results showed that the VEGFR-2 kinase protein had the most potent inhibitory activity. Intriguingly, the compound [NBTAPy]PF6- had a strongly binds to VEGFR-2 kinase and controlled its activity in cancer treatment and prevention.
Collapse
Affiliation(s)
- Ramalingam Tamilarasan
- Department of Chemistry, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, India
| | - Annadurai Subramani
- Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamilnadu, 600106, India
| | - G Sasikumar
- Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamilnadu, 600106, India
| | - Pandurangan Ganapathi
- Department of Chemistry, Mohamed Sathak College of Arts & Science, Sholinganallur, Chennai, India
| | - S Karthikeyan
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 636 701, India
| | - Sasikumar Ponnusamy
- Department of Physics, Saveetha School of Engineering, (SIMATS), Thandalam, Chennai, 602 105, India.
| | - Salim Albukhaty
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Mustafa K A Mohammed
- Radiological Techniques Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq.
| | - Zaidon T Al-Aqbi
- College of Agriculture, University of Misan, Al-Amara, Misan, 62001, Iraq
| | - Faris A J Al-Doghachi
- Department of Chemistry, Faculty of Science, University of Basrah, Basrah, 61004, Iraq
| | - Duha S Ahmed
- Applied Science Department, University of Technology, Baghdad, 10011, Iraq
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Faculty of Science and Natural Resources, University Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
6
|
Al-Enazi NM, Alsamhary K, Kha M, Ameen F. In vitro anticancer and antibacterial performance of biosynthesized Ag and Ce co-doped ZnO NPs. Bioprocess Biosyst Eng 2023; 46:89-103. [PMID: 36536225 PMCID: PMC9763817 DOI: 10.1007/s00449-022-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The great potential of zinc oxide nanoparticles (ZnO NPs) for biomedical applications is attributed to their physicochemical properties. In this work, pure and Ag and Ce dual-doped ZnO NPs were synthesized through a facile and green route to examine their cytotoxicity in breast cancer and normal cells. The initial preparation of dual-doped nanoparticles was completed by the usage of taranjabin. The synthesis of Ag and Ce dual-doped ZnO NPs was started with preparing the Ce:Ag ratios of 1:1, 1:2, and 1:4. The cytotoxicity effects of synthesized nanoparticles against breast normal cells (MCF-10A) and breast cancer cells (MDA-MB-231) were examined. The hexagonal structure of synthesized nanoparticles was observed through the results of X-ray diffraction (XRD). Scanning electron microscopy (SEM) images exhibited the spherical shape and smooth surfaces of prepared particles along with the homogeneous distribution of Ag and Ce in ZnO with high-quality lattice fringes without any distortions. According to the cytotoxic results, the effects of Ag/Ce dual-doped ZnO NPs on breast cancer (MDA-MB-231) cells were significantly more than of pure ZnO NPs, while dual-doped and pure nanoparticles remained indifferent towards breast normal (MCF-10A) cells. In addition, we investigated the antimicrobial activity against harmful bacteria.
Collapse
Affiliation(s)
- Nouf M. Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
| | - Mansour Kha
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang China
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
7
|
Nasri A, Jaleh B, Shabanlou E, Nasrollahzadeh M, Ali Khonakdar H, Kruppke B. Ionic liquid-based (nano)catalysts for hydrogen generation and storage. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Jasim SA, Amin HIM, Rajabizadeh A, Nobre MAL, Borhani F, Jalil AT, Saleh MM, Kadhim MM, Khatami M. Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2303-2335. [PMID: 36378182 PMCID: wst_2022_318 DOI: 10.2166/wst.2022.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature. The results show that Zn-MOFs are capable of high degradation of the above pollutants and over 90% of degradation was observed in publications. In addition, the reusability percentage was examined and studies showed that the Zn-MOF nanostructure has very good stability and can continue to degrade a high percentage of pollutants after several cycles. This review focuses on Zn-MOFs and their composites. First, the methods of synthesis and characterization of these compounds are given. Finally, the application of these composites in the process of photocatalytic degradation of dye pollutants such as methylene blue, methyl orange, crystal violet, rhodamine B, etc. is explained.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Chemistry Department, Salahaddin University-Erbil, Erbil, Iraq; Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Ahmad Rajabizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Marcos Augusto Lima Nobre
- School of Technology and Sciences, São Paulo State University (Unesp), Presidente Prudente, SP 19060-900, Brazil
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mustafa M Kadhim
- Department of Medical Laboratory Techniques, Dijlah University College, Baghdad 10021, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Mirzaiebadizi A, Ravan H, Dabiri S, Mohammadi P, Shahba A, Ziasistani M, Khatami M. An intelligent DNA nanorobot for detection of MiRNAs cancer biomarkers using molecular programming to fabricate a logic-responsive hybrid nanostructure. Bioprocess Biosyst Eng 2022; 45:1781-1797. [PMID: 36125526 DOI: 10.1007/s00449-022-02785-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Herein, we designed a DNA framework-based intelligent nanorobot using toehold-mediated strand displacement reaction-based molecular programming and logic gate operation for the selective and synchronous detection of miR21 and miR125b, which are known as significant cancer biomarkers. Moreover, to investigate the applicability of our design, DNA nanorobots were implemented as capping agents onto the pores of MSNs. These agents can develop a logic-responsive hybrid nanostructure capable of specific drug release in the presence of both targets. The prosperous synthesis steps were verified by FTIR, XRD, BET, UV-visible, FESEM-EDX mapping, and HRTEM analyses. Finally, the proper release of the drug in the presence of both target microRNAs was studied. This Hybrid DNA Nanostructure was designed with the possibility to respond to any target oligonucleotides with 22 nucleotides length.
Collapse
Affiliation(s)
- Amin Mirzaiebadizi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Shahriar Dabiri
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Pourya Mohammadi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Arezoo Shahba
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Ziasistani
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Alhomaidi E, Jasim SA, Amin HIM, Lima Nobre MA, Khatami M, Jalil AT, Hussain Dilfy S. Biosynthesis of silver nanoparticles using Lawsonia inermis and their biomedical application. IET Nanobiotechnol 2022; 16:284-294. [PMID: 36039655 PMCID: PMC9469786 DOI: 10.1049/nbt2.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Developing biosynthesis of silver nanoparticles (Ag‐NPs) using plant extract is an environmentally friendly method to reduce the use of harmful chemical substances. The green synthesis of Ag‐NPs by Lawsonia inermis extract and its cellular toxicity and the antimicrobial effect was studied. The physical and chemical properties of synthesised Ag‐NPs were investigated using UV‐visible spectroscopy, infrared spectroscopy, X‐ray diffraction (XRD), scanning, and transmission electron microscopy. The average size of Ag‐NPs was 40 nm. The XRD result shows peaks at 2θ = 38.07°, 44.26°, 64.43°, and 77.35° are related to the FCC structure of Ag‐NPs. Cytotoxicity of synthesised nanoparticles was evaluated by MTT toxicity test on breast cancer MCF7 cell line. Observations showed that the effect of cytotoxicity of nanoparticles on the studied cell line depended on concentration and time. The obtained IC50 was considered for cells at a dose of 250 μg/ml. Growth and survival rates decreased exponentially with the dose. Antimicrobial properties of Ag‐NPs synthesised with extract were investigated against Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus to calculate the minimum inhibitory concentration and the minimum bactericidal concentration of (MBC). The results showed that the synthesised Ag‐NPs and the plant extract have antimicrobial properties. The lowest concentration of Ag‐NPs that can inhibit the growth of bacterial strains was 25 μg/ml.
Collapse
Affiliation(s)
- Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq.,Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Marcos Augusto Lima Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, Sao Paulo, Brazil
| | - Mehrdad Khatami
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang, China
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Saja Hussain Dilfy
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.,Department of Biology, College of Education for Pure Science, Wasit University, Iraq
| |
Collapse
|
11
|
The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Aljanabi AAA, Mousa NE, Aljumaily MM, Majdi HS, Yahya AA, AL-Baiati MN, Hashim N, Rashid KT, Al-Saadi S, Alsalhy QF. Modification of Polyethersulfone Ultrafiltration Membrane Using Poly(terephthalic acid-co-glycerol-g-maleic anhydride) as Novel Pore Former. Polymers (Basel) 2022; 14:polym14163408. [PMID: 36015666 PMCID: PMC9414477 DOI: 10.3390/polym14163408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, poly terephthalic acid-co-glycerol-g-maleic anhydride (PTGM) graft co-polymer was used as novel water-soluble pore formers for polyethersulfone (PES) membrane modification. The modified PES membranes were characterized to monitor the effect of PTGM content on their pure water flux, hydrophilicity, porosity, morphological structure, composition, and performance. PTGM and PES/PTGM membranes were characterized by field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle (CA). The results revealed that the porosity and hydrophilicity of the fabricated membrane formed using a 5 wt.% PTGM ratio exhibited an enhancement of 20% and 18%, respectively. Similarly, upon raising the PTGM ratio in the casting solution, a more porous with longer finger-like structure was observed. However, at optimum PTGM content (i.e., 5%), apparent enhancements in the water flux, bovine serum albumin (BSA), and sodium alginate (SA) retention were noticed by values of 203 L/m2.h (LMH), 94, and 96%, respectively. These results illustrated that the observed separation and permeation trend of the PES/PTGM membrane may be a suitable option for applications of wastewater treatment. The experimental results suggest the promising potential of PTGM as a pore former on the membrane properties and performance.
Collapse
Affiliation(s)
- Ali A. Abbas Aljanabi
- Al-Mussaib Technical College, Al-Furat Al-Awsat Technical University, Babylon 51009, Iraq
| | - Noor Edin Mousa
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Mustafa M. Aljumaily
- Department of Civil Engineering, Al-Maarif University College, Al-Ramadi 31001, Iraq
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Ali Amer Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Mohammad N. AL-Baiati
- Department of Chemistry, College of Education for Pure Sciences, University of Kerbala, Holly Kerbala 56001, Iraq
| | - Noor Hashim
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Khaild T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Saad Al-Saadi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Correspondence: (S.A.-S.); (Q.F.A.)
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
- Correspondence: (S.A.-S.); (Q.F.A.)
| |
Collapse
|
13
|
Mortezagholi B, Movahed E, Fathi A, Soleimani M, Forutan Mirhosseini A, Zeini N, Khatami M, Naderifar M, Abedi Kiasari B, Zareanshahraki M. Plant-mediated synthesis of silver-doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay. Microsc Res Tech 2022; 85:3553-3564. [PMID: 35983930 DOI: 10.1002/jemt.24207] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022]
Abstract
In this research, silver-doped zinc oxide (SdZnO) nanoparticles (NPs) were synthesized in an environmental-friendly manner. The synthesized NPs were identified by UV-vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Finally, the antimicrobial activity of synthesized ZnO and SdZnO NPs was performed. It was observed that by doping silver, the size of ZnO NPs was changed. By adding silver to ZnO NPs, the antimicrobial effect of ZnO NPs was improved. Antibacterial test against gram-positive bacterium Streptococcus mutants showed that SdZnO NPs with a low density of silver had higher antibacterial activity than ZnO NPs; Therefore, SdZnO NPs can be used as a new antibacterial agent in medical applications.
Collapse
Affiliation(s)
- Bardia Mortezagholi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Emad Movahed
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Soleimani
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Negar Zeini
- Department of Oral and Maxillofacial Radiology, School Dentistry Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran
| | - Mehran Zareanshahraki
- School of Dentistry, Islamic Azad Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Nezafat Z, Karimkhani MM, Nasrollahzadeh M, Javanshir S, Jamshidi A, Orooji Y, Jang HW, Shokouhimehr M. Facile synthesis of Cu NPs@Fe 3O 4-lignosulfonate: Study of catalytic and antibacterial/antioxidant activities. Food Chem Toxicol 2022; 168:113310. [PMID: 35931246 DOI: 10.1016/j.fct.2022.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
Environmental pollution is one of the important concerns for human health. There are different types of pollutants and techniques to eliminate them from the environment. We hereby report an efficient method for the remediation of environmental contaminants through the catalytic reduction of the selected pollutants. A green method has been developed for the immobilization of copper nanoparticles on magnetic lignosulfonate (Cu NPs@Fe3O4-LS) using the aqueous extract of Filago arvensis L. as a non-toxic reducing and stabilizing agent. The characterization of the prepared Cu NPs@Fe3O4-LS was achieved by vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD), scanning TEM (STEM), thermogravimetry-differential thermal analysis (TG/DTA), fast Fourier transform (FFT), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron (XPS) analyses. The synthesized Cu NPs@Fe3O4-LS was applied as a magnetic and green catalyst in the reduction of Congo Red (CR), 4-nitrophenol (4-NP), and methylene blue (MB). The progress of the reduction reactions was monitored by UV-Vis spectroscopy. Finally, the biological properties of the Cu NPs@Fe3O4-LS were investigated. The prepared catalyst demonstrated excellent catalytic efficiency in the reduction of CR, 4-NP, and MB in the presence of sodium borohydride (NaBH4) as the reducing agent. The appropriate magnetism of Cu NPs@Fe3O4-LS made its recovery very simple. The advantages of this process include a simple reaction set-up, high and catalytic antibacterial/antioxidant activities, short reaction time, environmentally friendliness, high stability, and easy separation of the catalyst. In addition, the prepared Cu NPs@Fe3O4-LS could be reused for four cycles with no significant decline in performance.
Collapse
Affiliation(s)
- Zahra Nezafat
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Sun X, Abbass R, Ghoroqi M, Patra I, Dwijendra NKA, Uktamov KF, Jasem H. Optimization of dyes and toxic metals removal from environmental water samples by clinoptilolite zeolite using response surface methodology approach. Sci Rep 2022; 12:13218. [PMID: 35918466 PMCID: PMC9345950 DOI: 10.1038/s41598-022-17636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 12/07/2022] Open
Abstract
The present study aimed to remove crystal violet (CV), malachite green (MG), Cd(II), and Pb(II) from an aqueous solution using clinoptilolite zeolite (CZ) as an adsorbent. Response surface methodology (RSM) based on central composite design (CCD) was used to analyze and optimize the process parameters, such as pH, analyte concentration, adsorbent amount, and sonication time. Quadratic models with the coefficient of determination (R2) of 0.99 (p < 0.0001) were compared statistically. The results revealed that the selected models have good precision and a good agreement between the predicted and experimental data. The maximum removal of contaminants was achieved under optimum conditions of pH = 6, sonication time of 22 min, the adsorbent amount of 0.19 g, and analyte concentration of 10 mg L-1. The reusability test of the adsorbent showed that the CZ adsorbent could be used 5 times in water and wastewater treatment processes. According to the results of interference studies, the presence of different ions, even at high concentrations, does not interfere with the removal of contaminants. Applying the CZ adsorbent on environmental water samples revealed that CZ adsorbent could remove CV, MG, Cd(II), and Pb(II) in the range of 84.54% to 99.38% and contaminants present in industrial effluents. As a result, the optimized method in this study can be widely used with high efficiency for removing CV, MG, Cd(II), and Pb(II) from water and wastewater samples.
Collapse
Affiliation(s)
- Xinpo Sun
- College of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Reathab Abbass
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Milad Ghoroqi
- Department of Environmental Engineering, School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Indrajit Patra
- National Institute of Technology (NIT) Durgapur, Durgapur, West Bengal, India
| | | | | | - Hadeer Jasem
- Medical Instrumentation Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| |
Collapse
|