1
|
Wadhawan G, Gupta A. Biological treatment of methyl orange dye and textile wastewater using halo-alkaliphilic bacteria under highly alkaline conditions. Extremophiles 2024; 29:6. [PMID: 39601943 DOI: 10.1007/s00792-024-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
As the textile wastewater is highly saline and has high pH it is important to employ extremophilic microbes to survive in harsh conditions and provide effective bioremediation of textile dyes. This study aims to find a sustainable solution for dye removal by investigating the potential of an indigenously isolated bacterium, Nesterenkonia lacusekhoensis EMLA3 (halo-alkaliphilic) for treatment of an azo dye, methyl orange (MO) and textile effluent. MO dye decolorization studies were conducted using mineral salt media (MSM) by varying incubation time (0-120 h), initial dye concentration (50-350 mg/L), pH (7.0-12.0), inoculum dose (3-10%), agitation (stationary, 100 rpm and 200 rpm), and temperature (20-55 °C). Dye removal by the bacterium for 50 mg/L of dye was > 97.0% within 72 h of incubation at pH 11.0 in stationary condition. Bacterium had excellent reusability i.e. > 97% dye removal for up to 5 cycles. Moreover, bacterium has the potential for co-removal of chromium (VI) (3.5-28 mg/L), and also almost complete dye removal in presence of high amount of NaCl. Liquid chromatography-mass spectrometry showed degradation as the mechanism of dye removal. Application of the bacterium to MO dye spiked real textile wastewater showed excellent dye removal. Phyto-toxicity assessment conducted on Vigna radiata and Triticum aestivum seeds, showed 100% germination of biotreated textile wastewater indicating its reuse potential.
Collapse
Affiliation(s)
- Gunisha Wadhawan
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
2
|
Fu K, Kang J, Zhao J, Bian Y, Li X, Yang W, Li Z. Efficient nitrite accumulation in partial sulfide autotrophic denitrification (PSAD) system: insights of S/N ratio, pH and temperature. ENVIRONMENTAL TECHNOLOGY 2024; 45:5419-5436. [PMID: 38118135 DOI: 10.1080/09593330.2023.2293678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/03/2023] [Indexed: 12/22/2023]
Abstract
To provide the necessary nitrite for the Anaerobic Ammonium Oxidation (ANAMMOX) process, the effect of nitrite accumulation in the partial sulfide autotrophic denitrification (PSAD) process was investigated using an SBR reactor. The results revealed that the effectiveness of nitrate removal was unsatisfactory when the S/N ratio (mol/mol) fell below 0.6. The optimal conditions for nitrate removal and nitrite accumulation were achieved within the S/N ratio range of 0.7-0.8, resulting in an average Nitrate Removal Efficiency (NRE) of 95.84%±4.89% and a Nitrite Accumulation Rate (NAR) of 75.31%±6.61%, respectively. It was observed that the nitrate reduction rate was three times faster than that of nitrite reduction during a typical cycle test. Furthermore, batch tests were conducted to assess the influence of pH and temperature conditions. In the pH tests, it became evident that the PSAD process performed more effectively in alkaline environment. The highest levels of nitrate removal and nitrite accumulation were achieved at an initial pH of 8.5, resulting in a NRE of 98.30%±1.93% and a NAR of 85.83%±0.47%, respectively. In the temperature tests, the most favourable outcomes for nitrate removal and nitrite accumulation were observed at 22±1 ℃, with a NRE of 100.00% and a NAR of 81.03%±1.64%, respectively. Moreover, a comparative analysis of 16S rRNA sequencing results between the raw sludge and the sulfide-enriched culture sludge sample showed that Proteobacteria (49.51%) remained the dominant phylum, with Thiobacillus (24.72%), Prosthecobacter (2.55%), Brevundimonas (2.31%) and Ignavibacterium (2.04%) emerging as the dominant genera, assuming the good nitrogen performance of the system.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Jia Kang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Jing Zhao
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yihao Bian
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xiaodan Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Wenbing Yang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Zirui Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
3
|
Madduri SB, Kommalapati RR. Harnessing Novel Reduced Graphene Oxide-Based Aerogel for Efficient Organic Contaminant and Heavy Metal Removal in Aqueous Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1708. [PMID: 39513788 PMCID: PMC11547916 DOI: 10.3390/nano14211708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Ensuring clean water sources is pivotal for sustainable development and the well-being of communities worldwide. This study represents a pioneering effort in water purification, exploring an innovative approach utilizing modified reduced graphene oxide (rGO) aerogels. These advanced materials promise to revolutionize environmental remediation efforts, specifically removing organic contaminants from aqueous solutions. The study investigates the exceptional adsorption properties of rGO-aerogel, enhanced with cysteamine, to understand its efficacy in addressing water pollution challenges. The characterization methods utilized encompass various analytical techniques, including FE-SEM, BET, FTIR, TGA, DSC, XPS, NMR, and elemental analysis. These analyses provide valuable insights into the material's structural modifications and surface chemistry. The research comprehensively explores the intricacies of adsorption kinetics, equilibrium, and isothermal study to unravel the underlying mechanisms governing contaminant removal. MO and Ni2+ exhibited adsorption of 542.6 and 150.6 mg g-1, respectively, at 25 °C. Ni2+ has unveiled the highest removal at pH 5, and MO has shown high removal in a wide pH range (pH 4-7). Both contaminants have shown fast adsorption kinetic performance on an rGO-aerogel surface. This study aims to identify the synergistic effect of cysteamine and rGO in aerogel formation to remove heavy metals and organic contaminants. These findings mark a significant stride in advancing sustainable water-treatment methods and pioneering in synthesizing innovative materials with versatile applications in environmental contexts, offering a potential solution to the global water pollution crisis.
Collapse
Affiliation(s)
- Sunith B. Madduri
- Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Raghava R. Kommalapati
- Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA;
- Department of Civil and Environmental Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
4
|
Wadhawan G, Kalra A, Gupta A. Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review. 3 Biotech 2024; 14:194. [PMID: 39131176 PMCID: PMC11306850 DOI: 10.1007/s13205-024-04036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.
Collapse
Affiliation(s)
- Gunisha Wadhawan
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anuja Kalra
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| |
Collapse
|
5
|
Kongkoed P, Lertna N, Athikaphan P, Neramittagapong A, Neramittagapong S. Enhancing catalyst stability: Immobilization of Cu-Fe catalyst in sodium alginate matrix for methyl orange removal via Fenton-like reaction. Heliyon 2024; 10:e33789. [PMID: 39040388 PMCID: PMC11261880 DOI: 10.1016/j.heliyon.2024.e33789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
This study aims to enhance the stability and effectiveness of heterogeneous catalysts in Fenton-like reactions, explicitly addressing the acidity limitations inherent in traditional Fenton processes. Copper-iron was synthesized through co-precipitation, and a catalyst bead was produced from hydrogel formation. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirm phases in the bimetallic Copper-iron, aligning with the intended composition. Modification with alginate led to reduced metal leaching compared to the bare bimetallic counterpart, as confirmed by atomic absorption spectroscopy (AAS). Additionally, Fourier-transform infrared spectroscopy (FTIR) revealed the deactivation of alginate through the disappearance of carboxyl groups, indicating the depolymerization of the catalyst bead. Under the suggested conditions (Methyl Orange concentration of 25 mg/L, initial solution pH of 7, 2 g/L catalyst loading, concentration of hydrogen peroxide 100 mM in a 120-min reaction time), the catalyst demonstrated remarkable decolorization efficiency of Methyl Orange, achieving 97.67 %. Further highlighting its practicality, the catalyst exhibited outstanding reusability over four cycles under identical conditions, showcasing robust immobilization capabilities and sustained performance. Notably, the catalyst's magnetic properties facilitated easy separation using an external magnet. In conclusion, the developed catalyst beads offer a solution with high reusability, magnetic separability, and reduced iron leaching. The advantageous characteristics underscore its potential as a heterogeneous catalyst for wastewater treatment applications, warranting further exploration under practical conditions.
Collapse
Affiliation(s)
- Pongpanit Kongkoed
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Natthaphong Lertna
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pakpoom Athikaphan
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Athit Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutasinee Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
6
|
Bhattacharjee S, Kuila SB, Mazumder A. Surfactant-modified coconut coir powder (SMCCP) as a low-cost adsorbent for the treatment of dye-contaminated wastewater: parameters and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34022-1. [PMID: 38904878 DOI: 10.1007/s11356-024-34022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The dye-contaminated wastewater discharged from various industries such as dye manufacturing, paint, textile, paper, and cosmetic is a prime source of surface water pollution having serious detrimental effects on both the environment and human beings. These hazardous dyes when exposed to water obstruct the penetration of sunlight into the water and thus restrain aquatic plants from generating photosynthetic compounds. Moreover, some dyes are potential cancer-causing and also negatively impact the human nervous and respiratory systems. In this current study, modification of coconut coir powder (CCP) was carried out through cationic surfactant treatment and was successively utilized as the adsorbent for decoloring anionic dye (acid blue 185 (AB 185)) containing waste stream. Further, a comparative investigation of the dye removal efficiency of raw CCP and surfactant-modified coconut coir powder (SMCCP) as the adsorbent was studied. On surfactant treatment, using a very minimal SMCCP dosage of 8.3 g/L, a very high percentage dye removal of 98.4% is possible, whereas with raw CCP, even after using a higher dosage of 14 g/L, only 70.1% dye removal can be achieved. Characterization of SMCCP adsorbent was done by Fourier transform infrared, thermogravimetric, X-ray, and scanning electron microscope analyses. Furthermore, the optimization of critical operating parameters was investigated for the effective adsorption of AB 185 dye in batch mode. The adsorption of AB 185 onto SMCCP was a thermodynamically spontaneous endothermic process, following the Langmuir isotherm and pseudo-second-order kinetic model. Moreover, regeneration of exhausted SMCCP by 0.1 (M) NaOH was achieved with a satisfactorily high recovery of 97% in the first cycle. Subsequently, SMCCP can be successfully reutilized for five consecutive cycles with a loss of 17.6% in the total adsorption capacity. With all such advantages, the present study delivers a new paradigm to utilize the novel adsorbent SMCCP as a promising eco-friendly adsorbent aided by its advantage of regeneration and reusability for the treatment of dye-contaminated wastewater.
Collapse
Affiliation(s)
| | - Sunil Baran Kuila
- Department of Chemical Engineering, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Ankita Mazumder
- Department of Chemical Engineering, Haldia Institute of Technology, Haldia, West Bengal, India.
| |
Collapse
|
7
|
Hu F, Wang P, Li Y, Ling J, Ruan Y, Yu J, Zhang L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117211. [PMID: 37778604 DOI: 10.1016/j.envres.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The development of the chemical industry has led to a boom in daily consumption and convenience, but has also led to the release of large amounts of organic pollutants, such as petroleum hydrocarbons, plastics, pesticides, and dyes. These pollutants are often recalcitrant to degradation in the environment, whereby the most problematic compounds may even lead to carcinogenesis, teratogenesis and mutagenesis in animals and humans after accumulation in the food chain. Microbial degradation of organic pollutants is efficient and environmentally friendly, which is why it is considered an ideal method. Numerous studies have shown that Pseudomonas aeruginosa is a powerful platform for the remediation of environmental pollution with organic chemicals due to its diverse metabolic networks and its ability to secrete biosurfactants to make hydrophobic substrates more bioavailable, thereby facilitating degradation. In this paper, the mechanisms and methods of the bioremediation of environmental organic pollutants (EOPs) by P. aeruginosa are reviewed. The challenges of current studies are highlighted, and new strategies for future research are prospected. Metabolic pathways and critical enzymes must be further deciphered, which is significant for the construction of a bioremediation platform based on this powerful organism.
Collapse
Affiliation(s)
- Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Panlin Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiahuan Ling
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
8
|
Yousefi F, Haghighi M, Shabani M. Potato-on-rod like of Z-scheme plasmon Ag 2CrO 4-Ag 2Mo 2O 7 heterojunction nanophotocatalyst with high stability and accelerated photo-degradation evolution of organic contaminants. ENVIRONMENTAL RESEARCH 2023; 236:116853. [PMID: 37567378 DOI: 10.1016/j.envres.2023.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The shocking increase of resistant dye pollutants in the environment and their harmful effects has become a potential threat to the ecosystem. In the current work, the novel and highly efficient potato-on-rod-like Z-scheme plasmon Ag2CrO4-Ag2Mo2O7 heterojunction nano-photocatalyst was synthesized by precipitation method to photodegrade different organic dyes under artificial sunlight. The required analysises were carried out to characterize nanophotocatalysts. FESEM and TEM results showed the placement way of potato-like Ag2CrO4 between/on rod-like Ag2Mo2O7 which was leading to suitable structure and surface morphology. Besides, the morphology observations released the meso-/macroporous potato-on-rod like architecture self-assembled by nanoparticles. DRS analysis also confirmed two band gap energies of 2.55 and 1.72 eV in Ag2CrO4-Ag2Mo2O7 (3:1) resulting from forming a heterojunction structure and the plasmon Ag. Ag2CrO4-Ag2Mo2O7 (3:1) nanophotocatalyst exhibited the most remarkable activity in the photodegradation of 10 mg/L 2-naphthol orange (97.8%), 10 mg/L rhodamine B (99.7%), 10 mg/L crystal violet (98.9%), and 10 mg/L methyl orange (56.1%) with a catalyst dosage of 0.1 gr for about 90 min. The appropriate energy band gap, the formation of the heterostructure, the presence of meso (0.0038 cm3/g) and macro (0.0044 cm3/g) holes, and pore diameter at about 17.2 nm based on BET-BJH analysis that facilitated the penetration of pollutant molecules, increased pollutant adsorption and demonstrated stunning capability of efficient light harvesting, the reason was electron-hole pairs recombination rate reduction. Moreover, the fabricated samples showed tremendous catalyst constancy and reusability even after the fourth run. Results have shown the remarkable photocatalytic activity under visible light and provide an environment-friendly and green strategy to overcome the challenges of organic pollutants present in aqueous solutions.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Mohammad Haghighi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Maryam Shabani
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| |
Collapse
|
9
|
Ullah Khan A, Zahoor M, Ur Rehman M, Ikram M, Zhu D, Naveed Umar M, Ullah R, Ali EA. Bioremediation of Azo Dye Brown 703 by Pseudomonas aeruginosa: An Effective Treatment Technique for Dye-Polluted Wastewater. MICROBIOLOGY RESEARCH 2023; 14:1049-1066. [DOI: 10.3390/microbiolres14030070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Dye-polluted wastewater poses a serious threat to humans’, animals’ and plants’ health, and to avoid these health risks in the future, the treatment of wastewater containing dyes is necessary before its release to environment. Herein, a biological approach is used; the textile azo dye brown 703 is degraded utilizing Pseudomonas aeruginosa. The bacterial strain was isolated from textile wastewater dumping sites in Mingora, Swat. The optimization for bacterial degradation was carried out on the nutrient broth medium, which was then subjected to a variety of environmental physicochemical conditions and nutritional source supplementation before being tested. Under micro-aerophilic circumstances, the maximum decolorization and degradation of dye occurred at a 20 ppm dye concentration within 3 days of incubation at a neutral pH and 38 °C. The decrease in the intensity of the absorbance peak in the UV–Vis spectrum was used to measure the extent of decolorization. Initially, 15 bacterial strains were isolated from the textile effluent. Out of these strains, Pseudomonas aeruginosa was found to be the most potent degrading bacteria, with a degradation extent of around 71.36% at optimum conditions. The appearance and disappearance of some new peaks in the FT-IR analysis after the degradation of brown 703 showed that the dye was degraded by Pseudomonas aeruginosa. The GC–MS analysis performed helped in identifying the degraded compounds of azo dye that were utilized in illustrating the under-study process of brown 703 degradation. The biodegradation brought about by Pseudomonas aeruginosa can be employed successfully in the future as an eco-friendly approach with far reaching results.
Collapse
Affiliation(s)
- Asad Ullah Khan
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Daochen Zhu
- School of Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, China
| | | | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Ikram M, Zahoor M, Naeem M, Islam NU, Shah AB, Shahzad B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Azo dyes are extremely toxic and pose significant environmental and health risks. Consequently, mineralization and conversion to simple compounds are required to avoid their hazardous effects. A variety of enzymes from the bacterial system are thought to be involved in the degradation and metabolism of azo dyes. Bioremediation, a cost effective and eco-friendly biotechnology, involving bacteria is powered by bacterial enzymes. As mentioned, several enzymes from the bacterial system serve as molecular weapons in the degradation of these dyes. Among these enzymes, azoreductase, oxidoreductase, and laccase are of great interest for the degradation and decolorization of azo dyes. Combination of the oxidative and reductive enzymes is used for the removal of azo dyes from water. The aim of this review article is to provide information on the importance of bacterial enzymes. The review also discusses the genetically modified microorganisms in the biodegradation of azo dyes in polluted water.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Naeem
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Noor Ul Islam
- Department of Chemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus) , Institute of Agriculture and Life Sciences, Gyeongsang National University , Jinju 52828 , Korea
| | - Babar Shahzad
- Department of Biochemistry , Institute of Basic Medical Sciences, Khyber Medical University Peshawar Khyber Pakhtunkhwa , Peshawar , Pakistan
| |
Collapse
|
11
|
Banić N, Šojić Merkulov D, Despotović V, Finčur N, Ivetić T, Bognár S, Jovanović D, Abramović B. Rapid Removal of Organic Pollutants from Aqueous Systems under Solar Irradiation Using ZrO 2/Fe 3O 4 Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228060. [PMID: 36432160 PMCID: PMC9698733 DOI: 10.3390/molecules27228060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Pure water scarcity is an emerging, all-around problem that globally affects both the life quality and the world's economy. Heterogeneous photocatalysis under solar irradiation is a promising technique for the organic pollutants (e.g., pesticides, drugs) removal from an aqueous environment. Furthermore, the drawbacks of commercially available photocatalysts can be successfully overcome by using innovative nanoparticles, such as ZrO2/Fe3O4. Four ZrO2/Fe3O4 nanopowders with a different mass ratio of ZrO2 and Fe3O4 were synthesized using the chemical co-precipitation method. XRD analysis showed the presence of magnetite and hematite Fe-oxide phases in all samples. The content of the magnetite phase increased with the addition of 19% ZrO2. The efficiency of the newly synthesized ZrO2/Fe3O4 nanoparticles was investigated in the rapid removal of selected pollutants under various experimental conditions. Nevertheless, the influence of the water matrix on photocatalytic degradation was also examined. The obtained data showed that using ZrO2/Fe3O4 nanosystems, an appropriate removal rate of the selected pesticides and pharmaceuticals can be reached after 120 min of solar irradiation. Further, the total organic carbon measurements proved the mineralization of the target emerging pollutants. ZrO2/Fe3O4 nanoparticles are economically feasible, as their removal from the suspension can be easily achieved using affordable, environmentally-friendly magnetic separation.
Collapse
Affiliation(s)
- Nemanja Banić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Daniela Šojić Merkulov
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Despotović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Nina Finčur
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Tamara Ivetić
- Department of Physics, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Szabolcs Bognár
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Dušica Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Biljana Abramović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
12
|
Rezić I, Kracher D, Oros D, Mujadžić S, Anđelini M, Kurtanjek Ž, Ludwig R, Rezić T. Application of Causality Modelling for Prediction of Molecular Properties for Textile Dyes Degradation by LPMO. Molecules 2022; 27:molecules27196390. [PMID: 36234925 PMCID: PMC9572501 DOI: 10.3390/molecules27196390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
The textile industry is one of the largest water-polluting industries in the world. Due to an increased application of chromophores and a more frequent presence in wastewaters, the need for an ecologically favorable dye degradation process emerged. To predict the decolorization rate of textile dyes with Lytic polysaccharide monooxygenase (LPMO), we developed, validated, and utilized the molecular descriptor structural causality model (SCM) based on the decision tree algorithm (DTM). Combining mathematical models and theories with decolorization experiments, we have elucidated the most important molecular properties of the dyes and confirm the accuracy of SCM model results. Besides the potential utilization of the developed model in the treatment of textile dye-containing wastewater, the model is a good base for the prediction of the molecular properties of the molecule. This is important for selecting chromophores as the reagents in determining LPMO activities. Dyes with azo- or triarylmethane groups are good candidates for colorimetric LPMO assays and the determination of LPMO activity. An adequate methodology for the LPMO activity determination is an important step in the characterization of LPMO properties. Therefore, the SCM/DTM model validated with the 59 dyes molecules is a powerful tool in the selection of adequate chromophores as reagents in the LPMO activity determination and it could reduce experimentation in the screening experiments.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, Prilaz b. Filipovića 28a, 10000 Zagreb, Croatia
- Correspondence: (I.R.); (T.R.); Tel.: +385-1-3712-500 (I.R.); +385-1-4605-056 (T.R.)
| | - Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Damir Oros
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Sven Mujadžić
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Magdalena Anđelini
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Želimir Kurtanjek
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Tonči Rezić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence: (I.R.); (T.R.); Tel.: +385-1-3712-500 (I.R.); +385-1-4605-056 (T.R.)
| |
Collapse
|
13
|
Bacillus subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II. Int J Mol Sci 2022; 23:ijms231810637. [PMID: 36142543 PMCID: PMC9505759 DOI: 10.3390/ijms231810637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
The azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary. Herein, initially, we tested 11 bacterial strains for their capabilities in the degradation of orange II dye. It was revealed in the preliminary data that B. subtilis can more potently degrade the selected dye, which was thus used in the subsequent experiments. To achieve maximum decolorization, the experimental conditions were optimized whereby maximum degradation was achieved at: a 25 ppm dye concentration, pH 7, a temperature of 35 °C, a 1000 mg/L concentration of glucose, a 1000 mg/L urea concentration, a 666.66 mg/L NaCl concentration, an incubation period of 3 days, and with hydroquinone as a redox mediator at a concentration of 66.66 mg/L. The effects of the interaction of the operational factors were further confirmed using response surface methodology, which revealed that at optimum conditions of pH 6.45, a dye concentration of 17.07 mg/L, and an incubation time of 9.96 h at 45.38 °C, the maximum degradation of orange II can be obtained at a desirability coefficient of 1, estimated using the central composite design (CCD). To understand the underlying principles of degradation of the metabolites in the aliquot mixture at the optimized condition, the study steps were extracted and analyzed using GC-MS(Gas Chromatography Mass Spectrometry), FTIR(Fourier Transform Infrared Spectroscopy), 1H and carbon 13 NMR(Nuclear Magnetic Resonance Spectroscopy). The GC-MS pattern revealed that the original dye was degraded into o-xylene and naphthalene. Naphthalene was even obtained in a pure state through silica gel column isolation and confirmed using 1H and 13C NMR spectroscopic analysis. Phytotoxicity tests on Vigna radiata were also conducted and the results confirmed that the dye metabolites were less toxic than the parent dye. These results emphasize that B. subtilis should be used as a potential strain for the bioremediation of textile effluents containing orange II and other toxic azo dyes.
Collapse
|
14
|
Ikram M, Naeem M, Zahoor M, Rahim A, Hanafiah MM, Oyekanmi AA, Shah AB, Mahnashi MH, Al Ali A, Jalal NA, Bantun F, Sadiq A. Biodegradation of Azo Dye Methyl Red by Pseudomonas aeruginosa: Optimization of Process Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19169962. [PMID: 36011598 PMCID: PMC9408507 DOI: 10.3390/ijerph19169962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Water pollution due to textile dyes is a serious threat to every life form. Bacteria can degrade and detoxify toxic dyes present in textile effluents and wastewater. The present study aimed to evaluate the degradation potential of eleven bacterial strains for azo dye methyl red. The optimum degradation efficiency was obtained using P. aeruginosa. It was found from initial screening results that P. aeruginosa is the most potent strain with 81.49% degradation activity and hence it was subsequently used in other degradation experiments. To optimize the degradation conditions, a number of experiments were conducted where only one variable was varied at a time and where maximum degradation was observed at 20 ppm dye concentration, 1666.67 mg/L glucose concentration, 666.66 mg/L sodium chloride concentration, pH 9, temperature 40 °C, 1000 mg/L urea concentration, 3 days incubation period, and 66.66 mg/L hydroquinone (redox mediator). The interactive effect of pH, incubation time, temperature, and dye concentration in a second-order quadratic optimization of process conditions was found to further enhance the biodegradation efficiency of P. aeruginosa by 88.37%. The metabolites of the aliquot mixture of the optimized conditions were analyzed using Fourier transform infrared (FTIR), GC-MS, proton, and carbon 13 Nuclear Magnetic Resonance (NMR) spectroscopic techniques. FTIR results confirmed the reduction of the azo bond of methyl red. The Gas Chromatography-Mass Spectrometry (GC-MS) results revealed that the degraded dye contains benzoic acid and o-xylene as the predominant constituents. Even benzoic acid was isolated from the silica gel column and identified by 1H and 13C NMR spectroscopy. These results indicated that P. aeruginosa can be utilized as an efficient strain for the detoxification and remediation of industrial wastewater containing methyl red and other azo dyes.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mohammad Naeem
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand at Chakdara, Chakdara 18800, Dir Lower Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand at Chakdara, Chakdara 18800, Dir Lower Khyber Pakhtunkhwa, Pakistan
| | - Marlia Mohd Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Adeleke Abdulrahman Oyekanmi
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Naif A. Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Dir Lower Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. WATER 2022. [DOI: 10.3390/w14132063] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, initially 11 different bacterial strains were tested for the degradation capabilities against Basic Orange 2 dye. In initial screening with 78.90% degradation activity, Escherichia coli emerged as the most promising strain to degrade the selected dye, and was then employed in subsequent experiments. For further enhancing the degradation capability of selected bacteria, the effects of various physicochemical parameters were also evaluated. Among the tested parameters, 20 ppm dye concentration, 1666 mg/L glucose concentration, a temperature of 40 °C, 666 mg/L sodium chloride concentration, pH 7, 1000 mg/L urea concentration, a 3-day incubation period and the use of sodium benzoate as a redox mediator (666 mg/L) were found to be ideal conditions to get the highest decolorization/degradation activities. Finally, all the mentioned parameters were combined in a single set of experiments, and the decolorization capacity of the bacteria was enhanced to 89.88%. The effect of pH, dye concentration, incubation time and temperature were found to be responsible for the optimum degradation of dye (p < 0.05), as predicted from the ANOVA (analysis of variance) of the response surface methodology. The metabolites were collected after completion of the process and characterized through Fourier transform irradiation (FTIR) and gas chromatography mass spectrometry (GC-MS). From the data obtained, a proposed mechanism was deduced where it was assumed that the azo bond of the dye was broken by the azoreductase enzyme of the bacteria, resulting in the formation of aniline and 3, 4-diaminobezeminium chloride. The aniline was then further converted to benzene by deamination by the action of the bacterial deaminase enzyme. The benzene ring, after subsequent methylation, was transformed into o-xylene, while 3, 4-diaminobezeminium chloride was converted to p-xylene by enzymatic action. These findings suggest that Escherichia coli is a capable strain to be used in the bioremediation of textile effluents containing azo dyes. However, the selected bacterial strain may need to be further investigated for other dyes as well.
Collapse
|