1
|
Nair SS, DeRolph C, Peterson MJ, McManamay RA, Mathews T. Integrated watershed process model for evaluating mercury sources, transport, and future remediation scenarios in an industrially contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127049. [PMID: 34517300 DOI: 10.1016/j.jhazmat.2021.127049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
We used the Soil Water Assessment Tool (SWAT) as a framework to develop an empirical Hg flux model for Upper East Fork Poplar Creek (UEFPC), a Hg-contaminated watershed in Oak Ridge, Tennessee. By integrating long-term Hg monitoring data with simulated flow and suspended solid loads in a site-specific empirical Hg transport model, we (1) quantified the spatial, temporal, and flow regime controls on daily Hg flux (adjusted R2 = 0.82) and (2) made predictions about Hg flux under future climate, land use, and management scenarios. We found that 62.79% of the average daily Hg flux in the watershed is currently driven by base flow, whereas variability in Hg flux is driven by storm and extreme flow. We estimate an average annual Hg flux of 28.82 g day-1 leaving the watershed under baseline precipitation, with an estimated 43.73% reduction in daily Hg flux under drought conditions and a 296% increase in daily Hg flux in extreme precipitation scenarios. We estimated that a new mercury treatment facility would result in a 24.7% reduction in Hg flux under baseline conditions and a 33.4% reduction under extreme precipitation scenarios. The study demonstrated the merit of this approach, which can be replicated for sites where information on flow, suspended solids, and Hg concentrations is available.
Collapse
Affiliation(s)
| | - Christopher DeRolph
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mark J Peterson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ryan A McManamay
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Teresa Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
2
|
Evaluation of Ecosystem-Based Adaptation Measures for Sediment Yield in a Tropical Watershed in Thailand. WATER 2021. [DOI: 10.3390/w13192767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ecosystem-based adaptation (EbA) can potentially mitigate watershed degradation problems. In this study, various EbA measures were evaluated using a bio-physical model called the Soil and Water Assessment Tool (SWAT), in a small, forested watershed named Hui Ta Poe, in the northeastern region of Thailand. The developed watershed model was first used to investigate the effect of various degraded watersheds due to land-use changes on the sediment yield in the study area. The most degraded watershed produced an annual average sediment yield of 13.5 tons/ha. This degraded watershed was then used to evaluate the effectiveness of various EbA measures such as reforestation, contouring, filter strips, and grassed waterways in reducing the sediment yield. Under all individual and combined EbA scenarios analyzed, there was a significant reduction in sediment yield; however, the maximum reduction of 88% was achieved with a combined scenario of reforestation, grassed waterways, and filter strips. Reforestation alone was found to be the second-best option, which could reduce the sediment yield by 84%. Contouring alone was the least effective, with a reduction in sediment yield of only 23%. This study demonstrates the usefulness of implementing EbA measures for sediment management strategies to address watershed degradation, which is a severe problem across the globe.
Collapse
|
3
|
Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling Approaches. WATER 2020. [DOI: 10.3390/w12071986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The frequency and severity of floods have been found to increase in recent decades, which have adverse effects on the environment, economics, and human lives. The catastrophe of such floods can be confronted with the advance prediction of floods and reliable analyses methods. This study developed a combined flood modeling system for the prediction of floods, and analysis of associated vulnerabilities on urban infrastructures. The application of the method was tested on the Blue River urban watershed in Missouri, USA, a watershed of historical significance for flood impacts and abundance of data availability for such analyses. The combined modeling system included two models: hydrodynamic model HEC-RAS (Hydrologic Engineering Center—River Analysis System) and hydrologic model SWAT (Soil and Water Assessment Tool). The SWAT model was developed for the watershed to predict time-series hydrograph data at desired locations, followed by the setup of HEC-RAS model for the analysis and prediction of flood extent. Both models were calibrated and validated independently using the observed data. The well-calibrated modeling setup was used to assess the extent of impacts of the hazard by identifying the flood risk zones and threatened critical infrastructures in flood zones through inundation mapping. Results demonstrate the usefulness of such combined modeling systems to predict the extent of flood inundation and thus support analyses of management strategies to deal with the risks associated with critical infrastructures in an urban setting. This approach will ultimately help with the integration of flood risk assessment information in the urban planning process.
Collapse
|
4
|
Abstract
Lhasa River Basin being the socio-economic hotspot of Qinghai-Tibetan Plateau is experiencing an increased hydropower capacity in the form of damming and reservoir construction. The Pangduo hydropower station, commenced in 2013, is one of these developments. Lhasa River discharge is analyzed for spatial variability under the reservoir operation at Pondo and Lhasa gauging station. The Mann–Kendall Trend analysis reveals an increased precipitation and a decreased Lhasa River discharge trend upstream and downstream the reservoir. However, the discharge received at Lhasa gauging station is experiencing a greater decline revealed by Sen’s slope estimator. Soil and Water Assessment Tool (SWAT) modelling of the Lhasa River discharge for both the hydrometric stations from 2008–2016 reveals better simulation results for Pondo hydrometric station in terms of R2, NSE and PBIAS values. The modelling results for Pondo station correspond comparatively well to the reservoir operation procedures including water level and inflow despite of data availability constraint. However, the importance of non-simulated processes (e.g., groundwater abstractions) to the accurate prediction of the Lhasa flow regime particularly at the downstream flow gauge is recommended. The study can prove beneficial for local water distribution measures in Lhasa River Basin.
Collapse
|
5
|
Nair SS, McManamay RA, Derolph CR, Allen-Dumas M. Methods for integrating high-resolution land, climate, and infrastructure scenarios in a hydrologic simulation model. MethodsX 2020; 7:100699. [PMID: 32300540 PMCID: PMC7153296 DOI: 10.1016/j.mex.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022] Open
Abstract
Global alterations of the hydrologic cycle by humans have led to alarming rates of water shortages and irreversible ecosystem change. Our ability to manage water resources lies in accurately modeling water availability at scales meaningful to management. Although hydrologic models have been used to understand the implications of future climate and land cover change on regional water availability, many modeling approaches fail to integrate human infrastructures (HI) with bio-geophysical drivers to facilitate sustainable regional water resource management. This paper presents an integrated framework, inclusive of modeling and data needs, to quantify the effects of both bio-geophysical and HI influence on regional surface water hydrology. The framework enables the integration of high spatial and temporal anthropogenic alterations of water availability for identifying hot-spots and hot-moments of hydrological stresses within individual river-segments using a hydrologic simulation model, Soil and Water Analysis Tool (SWAT). •A high-resolution river network for the study region with a greater spatial granularity compared to contemporary SWAT applications attempted to account for HI.•The anthropogenic influence on water balance for each river segment was estimated using data on human infrastructures, such as water intakes, power production facilities, discharges, dams, and land transformation.
Collapse
Affiliation(s)
- Sujithkumar Surendran Nair
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States.,Urban Dynamics Institute Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States
| | - Ryan A McManamay
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States.,Urban Dynamics Institute Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States.,Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Christopher R Derolph
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States.,Urban Dynamics Institute Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States
| | - Melissa Allen-Dumas
- Urban Dynamics Institute Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States.,Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37922, United States
| |
Collapse
|
6
|
Chiang LC, Chuang YT, Han CC. Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020266. [PMID: 30669282 PMCID: PMC6352231 DOI: 10.3390/ijerph16020266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 11/16/2022]
Abstract
The Chenyulan watershed, located in the central mountain area of Taiwan, has been suffering from earthquakes, typhoons, and heavy rainfalls in recent decades. These sequential natural disturbances have a cumulative impact on the watershed, leading to more fragile and fragmented land cover and loss of capacity of soil water conservation. In this study, the Soil and Water Assessment Tool (SWAT) and a landscape metrics tool (FRAGSTATS) were used to assess the direct impact (e.g., by annual rainfall) and indirect impact (e.g., by landscape configuration and composition) of natural disturbances on the ecohydrological processes of the Chenyulan watershed. Six SPOT satellite images from 2008 to 2013 were analyzed by using the nearest feature line embedding (NFLE) approach and reclassified into six land cover types: forest, cultivated land, grassland, river, landslide, and built-up. Forest was found to have the largest patch size, indicating that it is more resilient to disturbances, while agricultural land tended to expand from the river side toward the hill. Two land cover change scenarios were compared in the SWAT model. The results showed that there was no significant difference in simulated streamflow during 2004–2015 and sediment loading during 2004–2009; however, the model performed better for sediment loading during 2010–2015 with dynamic land cover change (coefficient of determination (R2) = 0.66, Nash-Sutcliffe efficiency coefficient (NSE) = 0.62, percent bias (PBIAS) = 10.5%, root mean square error observation standard deviation ratio (RSR) = 0.62) than with constant land cover (R2 = 0.61, NSE = 0.54, PBIAS = −17.3%, RSR = 0.68), indicating that long-term land cover change should be considered in hydrologic modeling. Changes in landslides during 2008–2013 were found to significantly affect ecohydrological processes, especially after 2011. In general, annual precipitation plays a dominant role, and landscape composition had by far the strongest influence on water yield and sediment yield compared to landscape configuration. The results can be useful for understanding the effects of land cover change on ecohydrological processes in the Chenyulan watershed and the potential impact of ecohydrological changes on the environment and public health.
Collapse
Affiliation(s)
- Li-Chi Chiang
- Department of Civil and Disaster Prevention Engineering, National United University, Miaoli City 36063, Taiwan.
| | - Yi-Ting Chuang
- Department of Civil and Disaster Prevention Engineering, National United University, Miaoli City 36063, Taiwan.
| | - Chin-Chuan Han
- Department of Computer Science and Information Engineering, National United University, Miaoli City 36063, Taiwan.
| |
Collapse
|
7
|
Satellite Soil Moisture Validation Using Hydrological SWAT Model: A Case Study of Puerto Rico, USA. HYDROLOGY 2017. [DOI: 10.3390/hydrology4040045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China. WATER 2017. [DOI: 10.3390/w9030169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Teshager AD, Gassman PW, Secchi S, Schoof JT, Misgna G. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. ENVIRONMENTAL MANAGEMENT 2016; 57:894-911. [PMID: 26616430 PMCID: PMC4785226 DOI: 10.1007/s00267-015-0636-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/18/2015] [Indexed: 05/27/2023]
Abstract
Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.
Collapse
Affiliation(s)
- Awoke Dagnew Teshager
- Environmental Resources and Policy, Southern Illinois University Carbondale, 1400 Douglas Dr, Carbondale, IL, 62901, USA.
| | - Philip W Gassman
- Department of Economics, Center for Agricultural and Rural Development, Iowa State University, 560A Heady Hall, Ames, IA, 50011, USA.
| | - Silvia Secchi
- Department of Geography and Environmental Resources, Southern Illinois University Carbondale, Faner Hall, Carbondale, IL, 62901, USA.
| | - Justin T Schoof
- Department of Geography and Environmental Resources, Southern Illinois University Carbondale, 4537 Faner Hall, Carbondale, IL, 62901, USA.
| | - Girmaye Misgna
- Environmental Resources and Policy, Southern Illinois University Carbondale, 1400 Douglas Dr, Carbondale, IL, 62901, USA.
| |
Collapse
|
10
|
da Silva MG, de Aguiar Netto ADO, de Jesus Neves RJ, do Vasco AN, Almeida C, Faccioli GG. Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jep.2015.68076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Simulating Water Resource Availability under Data Scarcity—A Case Study for the Ferghana Valley (Central Asia). WATER 2014. [DOI: 10.3390/w6113270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|