1
|
Wan J, Zhang W, Yu C, Li C, Zhou Y, Zhang W, Fan Z, Jin C, Qu X. Application of ultrasound-guided intranodal lymphangiography in the diagnosis and treatment of chylous ascites after abdominal surgery. Pol J Radiol 2024; 89:e502-e507. [PMID: 39507888 PMCID: PMC11538909 DOI: 10.5114/pjr/193577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Chylous leakage is a serious and challenging postoperative complication. The purpose of this study was to explore the application of ultrasound-guided intranodal lymphangiography in the diagnosis and treatment of chylous ascites following abdominal surgery. Material and methods Ten patients with chylous ascites after abdominal surgery after ineffective conservative treatment such as low-fat diet, parenteral nutrition, and negative pressure drainage were included in this single-center retrospective study. Of these 10 patients, 9 developed chylous ascites after liver surgery, and 1 after a radical gastrectomy. Results Lymphangiography was successfully performed in all 10 patients. The average dosage of lipiodol used was 4.5 ml (range 3.5-7.0 ml). No procedure-related complications were observed after excluding unrelated factors. During lymphangiography, lipiodol leakage was directly observed in 3 cases, and in the other 5 cases, it was detected through abdominal computed tomography post-lymphangiography. Chylous ascites resolved solely through lymphangiography in 6 patients without requiring additional surgical intervention. Conclusions Lymphangiography may help identify leakage sites in patients with chylous ascites unresponsive to conservative treatment and could potentially be effective in treating chylous ascites following abdominal surgery.
Collapse
Affiliation(s)
- Juncheng Wan
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Caihong Yu
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Changyu Li
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Chaoqiao Jin
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| | - Xudong Qu
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, National Clinical Research Center of Interventional Medicine, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhong X, Liu Y, Ardekani AM. A compartment model for subcutaneous injection of monoclonal antibodies. Int J Pharm 2024; 650:123687. [PMID: 38103705 DOI: 10.1016/j.ijpharm.2023.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Despite the growing popularity of subcutaneous (SC) administration for monoclonal antibodies (mAbs), there remains a limited understanding of the significance of mAb transport rate constants within the interstitial space and the lymphatic system on their pharmacokinetics. To bridge this knowledge gap, we introduce a compartmental model for subcutaneously administered mAbs. Our model differentiates FcRn-expressing cells across various sites, and the model predictions agree with experimental data from both human and rat studies. Our findings indicate that the time to reach the maximum mAb concentration in the plasma, denoted by Tmax, displays a weak positive correlation with mAb half-life and a negligible correlation with bioavailability. In contrast, the half-life of mAbs exhibits a strong positive correlation with bioavailability. Moreover, the rate of mAb transport from lymph to plasma significantly affects the mAb half-life. Increasing the transport rates of mAbs from the injection site to the lymph or from lymph to plasma enhances bioavailability. These insights, combined with our compartmental model, contribute to a deeper understanding of the pharmacokinetics of subcutaneously administered mAbs.
Collapse
Affiliation(s)
- Xiaoxu Zhong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Yikai Liu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
3
|
Lan YL, Wang H, Chen A, Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 2023; 168:233-247. [PMID: 35719015 DOI: 10.1111/imm.13517] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjin Wang
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aiqin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Kuroda C, Mochizuki C, Nakamura J, Nakamura M. Size-dependent distribution of fluorescent thiol-organosilica particles in popliteal lymph nodes of mice. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
6
|
Dudchenko N, Chimagomedova A, Vasenina E, Levin O. Glymphatic system. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:20-26. [DOI: 10.17116/jnevro202212207120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Hur S, Jun H, Jeong YS. Novel interventional radiological management for lymphatic leakages after gynecologic surgery: lymphangiography and embolization. Gland Surg 2021; 10:1260-1267. [PMID: 33842273 DOI: 10.21037/gs-2019-ursoc-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Post-operative lymphatic leakage is a common complication of a radical gynecologic surgery involving aggressive lymph node dissection. Its manifestation varies from asymptomatic lymphoceles to life-threatening chylous ascites. In the past, nuclear medicine lymphoscintigraphy was the sole imaging modality for the confirmation of the leakage, of which application is limited due to its poor spatial resolution. While a conservative treatment with percutaneous drainage was the mainstream treatment method, surgical exploration was the last resort for the recalcitrant leakages. Recently, there have been a series of innovations in the field of interventional radiology, including intranodal Lipiodol® lymphangiography, dynamic magnetic resonance (MR) lymphangiography, lymphatic embolization, and mesenteric lymph node lymphangiography. Intranodal Lipiodol® lymphangiography provides very reliable and secure access to the lymphatic system, while requiring only fundamental skills and equipment available to all interventional radiologists. Besides, Lipiodol® is being received a spotlight for its potential therapeutic effects on refractory lymphatic leakage. Dynamic MR lymphangiography plays a vital role in the diagnosis and management of non-traumatic lymphatic diseases, as well as in the post-operative lymphatic leakage with its superior contrast, spatial and temporal resolution. Lymphatic embolization is a technique of using N-BCA glue, a liquid embolic agent, for lymphatic leakages. It can be further described as lymphopseudoaneurysm (LPA) embolization or lymph node embolization, according to which structure is being embolized. Lymphatic embolization opened a new realm of possibilities in the field of interventional lymphology, resulting in the development of treatment approaches for chylous ascites and lymphoceles. Mesenteric lymph node lymphangiography offers the opacification of the upstream mesenteric chylous lymphatic system and can detect lymphatic leakage from the intestinal trunk or the more proximal parts of the mesenteric lymphatic system. With the advent of these latest interventional radiological techniques, more comprehensive approaches to the management of recalcitrant post-operative lymphatic leakages have been enabled.
Collapse
Affiliation(s)
- Saebeom Hur
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Hoyong Jun
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yoon Soo Jeong
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
10
|
Zarus GM, Muianga C, Hunter CM, Pappas RS. A review of data for quantifying human exposures to micro and nanoplastics and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144010. [PMID: 33310215 PMCID: PMC7775266 DOI: 10.1016/j.scitotenv.2020.144010] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 04/15/2023]
Abstract
Plastic debris have been shown to degenerate to particle sizes that can be transported in air, water, and food. Small particles are documented to enter and exit our bodies and translocate to and from some internal organs. Health effects on respiratory, hepatic, immune, and gastrointestinal systems have been reported in humans and other mammals in response to elevated particle or fiber exposures. These health effects differed by plastic type and size, and there was evidence of dose response for a few health endpoints. We conducted a systematic word search and reviewed published literature to identify microplastic and nanoplastic studies that quantified exposure via the ingestion, inhalation, and subcutaneous absorption (not dermal) exposure pathways; identified translocation, internal dose, and associations with health effects and markers related to exposures to specific sizes and types of plastics. We identified the data gaps in relating exposure data to health effects and biomarkers, most notably the lack of characterization of plastic particles and fibers smaller than 10 μm in most media.
Collapse
Affiliation(s)
- Gregory M Zarus
- Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, Atlanta, GA 30341, USA.
| | - Custodio Muianga
- Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, Atlanta, GA 30341, USA
| | - Candis M Hunter
- National Center for Environmental Health, 4770 Buford Highway, Atlanta, GA 30341, USA
| | - R Steven Pappas
- National Center for Environmental Health, 4770 Buford Highway, Atlanta, GA 30341, USA
| |
Collapse
|
11
|
Kato S, Yoshiba S, Mori S, Kodama T. Optimization of the delivery of molecules into lymph nodes using a lymphatic drug delivery system with ultrasound. Int J Pharm 2021; 597:120324. [PMID: 33540016 DOI: 10.1016/j.ijpharm.2021.120324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 02/01/2023]
Abstract
Conventional treatment for lymph node (LN) metastasis such as systemic chemotherapy have notable disadvantages that lead to the development of unwanted effects. Previously, we have reported the lymphatic administration of drugs into metastatic LNs using a lymphatic drug delivery system (LDDS). However, prior studies of the LDDS have not attempted to optimize the conditions for efficient drug delivery. Here, we investigated the influence of several factors on the efficiency of drug delivery by a LDDS in conjunction with ultrasound (US). First, the effect of the injection rate on delivery efficiency was evaluated. Fluorescent molecules injected into an upstream LN were delivered more effectively into a downstream LN when a lower injection rate was used. Second, the influence of molecular weight on drug delivery efficiency was determined. We found that molecules with a molecular weight >10,000 were poorly delivered into the LN. Finally, we assessed whether the administration route affected the delivery efficiency. We found that the delivery efficiency was higher when molecules were administered into an upstream LN that was close to the target LN. These findings revealed the importance of a drug's physical properties if it is to be administered by LDDS to treat LN metastasis.
Collapse
Affiliation(s)
- Shigeki Kato
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shota Yoshiba
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
12
|
Jun H, Hur S. Interventional Radiology Treatment for Postoperative Chylothorax. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 53:200-204. [PMID: 32793452 PMCID: PMC7409884 DOI: 10.5090/kjtcs.2020.53.4.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 01/26/2023]
Abstract
Postoperative chylothorax is a rare occurrence after various thoracic surgical procedures, but it poses a substantial risk of morbidity and mortality. Thoracic duct embolization (TDE) is currently deemed the optimal treatment due to its safety and efficacy. This review offers an introduction to interventional options in this setting, detailing the steps of TDE for the edification of those engaged in postoperative care.
Collapse
Affiliation(s)
- Hoyong Jun
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Saebeom Hur
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
13
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
14
|
Bae YH, Park K. Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv Drug Deliv Rev 2020; 158:4-16. [PMID: 32592727 PMCID: PMC7736191 DOI: 10.1016/j.addr.2020.06.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022]
Abstract
Drug delivery systems are developed to maximize drug efficacy and minimize side effects. As drug delivery technologies improve, the drug becomes safer and more comfortable for patients to use. During the last seven decades, extraordinary progress has been made in drug delivery technologies, such as systems for long-term delivery for months and years, localized delivery, and targeted delivery. The advances, however, will face a next phase considering the future technologies we need to overcome many physicochemical barriers for new formulation development and biological unknowns for treating various diseases. For immediate and long-term progress into the future, the drug delivery field should use time and resources for more translatable research ideas. The drug delivery discipline has to continue working on basic, applied, translational, and clinical research in a concerted manner to produce drug delivery systems that work for patients. It is a time to focus our attention on things that matter. It is also a time to develop realistic research goals and outcomes, diversify drug delivery technologies, and take the collective responsibility for our actions.
Collapse
Affiliation(s)
- You Han Bae
- University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, United States of America.
| | - Kinam Park
- Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, United States of America
| |
Collapse
|
15
|
Abstract
Lipiodol is an iodinated poppy seed oil first synthesized in 1901. Originally developed for therapeutic purposes, it has mainly become a diagnostic contrast medium since the 1920s. At the end of the 20th century, Lipiodol underwent a transition back to a therapeutic agent, as exemplified by its increasing use in lymphangiography and lymphatic interventions. Nowadays, indications for lymphangiography include chylothorax, chylous ascites, chyluria, and peripheral lymphatic fistula or lymphoceles. In these indications, Lipiodol alone has a therapeutic effect with clinical success in 51% to 100% of cases. The 2 main access sites to the lymphatic system for lymphangiography are cannulation of lymphatic vessels in the foot (transpedal) and direct puncture of (mainly inguinal) lymph nodes (transnodal). In case of failure of lymphangiography alone to occlude the leaking lymphatic vessel as well as in indications such as protein-losing enteropathy, postoperative hepatic lymphorrhea, or plastic bronchitis, lymphatic vessels can also be embolized directly by injecting a mixture of Lipiodol and surgical glues (most commonly in thoracic duct embolization). The aim of this article is to review the historical role of Lipiodol and the evolution of its clinical application in lymphangiography over time until the current state-of-the-art lymphatic imaging techniques and interventions.
Collapse
|
16
|
Lymphatic vessels in human adipose tissue. Cell Tissue Res 2019; 379:511-520. [DOI: 10.1007/s00441-019-03108-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 09/19/2019] [Indexed: 12/01/2022]
Abstract
AbstractDespite being considered present in most vascularised tissues, lymphatic vessels have not been properly shown in human adipose tissue (AT). Our goal in this study is to investigate an unanswered question in AT biology, regarding lymphatic network presence in tissue parenchyma. Using human subcutaneous (S-) and visceral (V-) AT samples with whole mount staining for lymphatic specific markers and three-dimensional imaging, we showed lymphatic capillaries and larger lymphatic vessels in the human VAT. Conversely, in the human SAT, microcirculatory lymphatic vascular structures were rarely detected and no initial lymphatics were found.
Collapse
|
17
|
Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, Gupta N. Active Lymphatic Drainage From the Eye Measured by Noninvasive Photoacoustic Imaging of Near-Infrared Nanoparticles. Invest Ophthalmol Vis Sci 2019; 59:2699-2707. [PMID: 29860456 DOI: 10.1167/iovs.17-22850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To visualize and quantify lymphatic drainage of aqueous humor from the eye to cervical lymph nodes in the dynamic state. Methods A near-infrared tracer was injected into the right eye anterior chamber of 10 mice under general anesthesia. Mice were imaged with photoacoustic tomography before and 20 minutes, 2, 4, and 6 hours after injection. Tracer signal intensity was measured in both eyes and right and left neck lymph nodes at every time point and signal intensity slopes were calculated. Slope differences between right and left eyes and right and left nodes were compared using paired t-test. Neck nodes were examined with fluorescence optical imaging and histologically for the presence of tracer. Results Following right eye intracameral injection of tracer, an exponential decrease in tracer signal was observed from 20 minutes to 6 hours in all mice. Slope differences of the signal intensity between right and left eyes were significant (P < 0.001). Simultaneously, increasing tracer signal was observed in the right neck node from 20 minutes to 6 hours. Slope differences of the signal intensity between right and left neck nodes were significant (P = 0.0051). Ex vivo optical fluorescence imaging and histopathologic examination of neck nodes confirmed tracer presence within submandibular nodes. Conclusions Active lymphatic drainage of aqueous from the eye to cervical lymph nodes was measured noninvasively by photoacoustic imaging of near-infrared nanoparticles. This unique in vivo assay may help to uncover novel drugs that target alternative outflow routes to lower IOP in glaucoma and may provide new insights into lymphatic drainage in eye health and disease.
Collapse
Affiliation(s)
- Yeni H Yücel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Ryerson University, Toronto, Ontario, Canada.,Department of Mechanical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Ontario, Canada
| | - Kirsten Cardinell
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Shireen Khattak
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xun Zhou
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael Lapinski
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fang Cheng
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Glaucoma Unit, St. Michael's Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology 2018; 65:106-119. [PMID: 29996134 DOI: 10.1159/000490349] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
The glymphatic system is a glial-dependent waste clearance pathway in the brain, in place of lymphatic vessels, dedicated to drain away soluble waste proteins and metabolic products. Specifically, the glymphatic network serves as a "front end" for waste clearance, and is connected downstream to an authentic lymphatic network, associated with dura covering the brain as well as cranial nerves and large vessels at the skull exits. The anatomical and functional interconnections between these two networks are not completely understood. Several key physiological processes have been identified that control glymphatic transport function and waste clearance from brain. In this review, we aim to provide an overview and discussion of the concept behind the glymphatic system, current evidence, and controversies, while specifically focusing on the consequences of aging and evidence of its existence in human brain. Discovering novel strategies for optimizing and maintaining efficient brain waste clearance across the lifespan may in the future prove to be important for preventing cognitive decline and sustaining healthy aging.
Collapse
Affiliation(s)
- Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut,
| | - Xiaodan Liu
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA.,Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Simon Sanggaard
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joanna Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Yadav P, McLeod VM, Nowell CJ, Selby LI, Johnston APR, Kaminskas LM, Trevaskis NL. Distribution of therapeutic proteins into thoracic lymph after intravenous administration is protein size-dependent and primarily occurs within the liver and mesentery. J Control Release 2018; 272:17-28. [PMID: 29305921 DOI: 10.1016/j.jconrel.2017.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/15/2017] [Accepted: 12/28/2017] [Indexed: 11/19/2022]
Abstract
Therapeutic proteins can facilitate the targeting and treatment of lymphatic diseases (such as cancer metastases, infections and inflammatory diseases) since they are cleared via the lymphatics following interstitial (SC or IM) administration. However, therapeutic proteins are often administered intravenously (IV). Recently therapeutic proteins have been found to access the thoracic lymph in surprisingly high quantities after IV administration. The aim of this study was to determine, for the first time, the major sites of thoracic lymph access of therapeutic proteins, and the protein properties that enhance lymph access, after IV administration. In order to achieve this, novel methods were developed or optimized to collect hepatic, mesenteric or thoracic lymph from male SD rats. Four different sized PEGylated or non-PEGylated therapeutic proteins (native interferon α2b (IFN, 19kDa), PEGylated interferon α2b (IFN-PEG12, 31kDa), PEGylated interferon α2a (IFN-PEG40, 60kDa) or trastuzumab (150kDa)) were then administered via short IV infusion, and plasma and lymph concentrations of the proteins determined via ELISA. The recovery of the therapeutic proteins in the thoracic lymph duct, which collects lymph from most of the body, was significantly greater for trastuzumab, IFN-PEG40 and IFN-PEG12 (all >3% dose over 8h) when compared to native IFN (0.9% dose). Conversely, the thoracic lymph/plasma (L/P) concentration ratio and thus efficiency of extravasation and transport through the interstitium to lymph was highest for the smaller proteins IFN and IFN-PEG12 (at 90-100% vs 15-30% for trastuzumab and IFN-PEG40). The lower total recovery of IFN and IFN-PEG12 in thoracic lymph reflected more rapid systemic clearance and thus lower systemic exposure. For all therapeutic proteins, the majority (>80%) of lymph access occurred via the hepatic and mesenteric lymphatics. This lymphatic distribution pattern was supported by quantitative imaging of the lymph node distribution of IV administered Cy5 labelled trastuzumab. Optimizing the properties of IV administered therapeutic proteins represents a viable approach to better target and treat pathological states involving the lymphatics, particularly in the liver and mesentery. This includes cancer metastases, infections and inflammatory diseases. Successful development of the novel technique to collect hepatic lymph will also enable future work to evaluate tissue-specific lymph transport in health and disease.
Collapse
Affiliation(s)
- Preeti Yadav
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Victoria M McLeod
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Laura I Selby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Excellence in Convergent Bio-Nanoscience and Technology, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Excellence in Convergent Bio-Nanoscience and Technology, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Lisa M Kaminskas
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
20
|
Itkin M, Nadolski GJ. Modern Techniques of Lymphangiography and Interventions: Current Status and Future Development. Cardiovasc Intervent Radiol 2017; 41:366-376. [PMID: 29256071 DOI: 10.1007/s00270-017-1863-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
One of the crucial functions of the lymphatic system is maintenance of fluid balance. Nonetheless, due to lack of clinical imaging and interventional techniques, the lymphatic system has been under the radar of the medical community. The recently developed intranodal lymphangiography and dynamic contrast-enhanced MR lymphangiography provide new insight into lymphatic pathology. Thoracic duct embolization has become the method of choice for the treatment of patients with chylous leaks. Interstitial lymphatic embolization further expanded the lymphatic embolization approaches. Liver lymphatic lymphangiography and embolization allow treatment of postsurgical liver lymphorrhea and protein-losing enteropathy. The potential for further growth of lymphatic interventions is vast and includes liver lymphatic procedures and advanced thoracic duct interventions, such as thoracic duct externalization and stenting. These current and future advances will open up a realm of new treatments and diagnostic opportunities.
Collapse
Affiliation(s)
- Maxim Itkin
- HUP/CHOP Center for Lymphatic Imaging and Interventions, Penn Medicine, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Gregory J Nadolski
- HUP/CHOP Center for Lymphatic Imaging and Interventions, Penn Medicine, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
Synthesis and in vitro characterization of a pH-responsive chitosan- polyethylenimine nanosystem for the delivery of therapeutic proteins. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Benveniste H, Lee H, Volkow ND. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist 2017; 23:454-465. [PMID: 28466758 DOI: 10.1177/1073858417691030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.
Collapse
Affiliation(s)
| | - Hedok Lee
- 1 Department of Anesthesiology, Yale University, New Haven, CT, USA
| | - Nora D Volkow
- 2 Laboratory for Neuroimaging, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, USA
| |
Collapse
|
23
|
Dautriche CN, Tian Y, Xie Y, Sharfstein ST. A Closer Look at Schlemm's Canal Cell Physiology: Implications for Biomimetics. J Funct Biomater 2015; 6:963-85. [PMID: 26402712 PMCID: PMC4598687 DOI: 10.3390/jfb6030963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 12/13/2022] Open
Abstract
Among ocular pathologies, glaucoma is the second leading cause of progressive vision loss, expected to affect 80 million people worldwide by 2020. A primary cause of glaucoma appears to be damage to the conventional outflow tract. Conventional outflow tissues, a composite of the trabecular meshwork and the Schlemm's canal, regulate and maintain homeostatic responses to intraocular pressure. In glaucoma, filtration of aqueous humor into the Schlemm's canal is hindered, leading to an increase in intraocular pressure and subsequent damage to the optic nerve, with progressive vision loss. The Schlemm's canal encompasses a unique endothelium. Recent advances in culturing and manipulating Schlemm's canal cells have elucidated several aspects of their physiology, including ultrastructure, cell-specific marker expression, and biomechanical properties. This review highlights these advances and discusses implications for engineering a 3D, biomimetic, in vitro model of the Schlemm's canal endothelium to further advance glaucoma research, including drug testing and gene therapy screening.
Collapse
Affiliation(s)
- Cula N Dautriche
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| | - Yangzi Tian
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| | - Yubing Xie
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| | - Susan T Sharfstein
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|