1
|
Shahidi F, Saeid A. Bioactivity of Marine-Derived Peptides and Proteins: A Review. Mar Drugs 2025; 23:157. [PMID: 40278278 PMCID: PMC12028762 DOI: 10.3390/md23040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The marine environment, covering over 70% of the Earth's surface, serves as a reservoir of bioactive molecules, including peptides and proteins. Due to the unique and often extreme marine conditions, these molecules exhibit distinctive structural features and diverse functional properties, making them promising candidates for therapeutic applications. Marine-derived bioactive peptides, typically consisting of 3 to 40 amino acid residues-though most commonly, 2 to 20-are obtained from parent proteins through chemical or enzymatic hydrolysis, microbial fermentation, or gastrointestinal digestion. Like peptides, protein hydrolysates from collagen, a dominant protein of such materials, play an important role. Peptide bioactivities include antioxidant, antihypertensive, antidiabetic, antimicrobial, anti-inflammatory, anticoagulant, and anti-cancer effects as well as immunoregulatory and wound-healing activities. These peptides exert their effects through mechanisms such as enzyme inhibition, receptor modulation, and free radical scavenging, among others. Fish, algae, mollusks, crustaceans, microbes, invertebrates, and marine by-products such as skin, bones, and viscera are some of the key marine sources of bioactive proteins and peptides. The advancements in the extraction and purification processes, e.g., enzymatic hydrolysis, ultrafiltration, ion-exchange chromatography, high-performance liquid chromatography (HPLC), and molecular docking, facilitate easy identification and purification of such bioactive peptides in greater purity and activity. Despite their colossal potential, their production, scale-up, stability, and bioavailability are yet to be enhanced for industrial applications. Additional work needs to be carried out for optimal extraction processes, to unravel the mechanisms of action, and to discover novel marine sources. This review emphasizes the enormous scope of marine-derived peptides and proteins in the pharmaceutical, nutraceutical, cosmeceutical, and functional food industries, emphasizing their role in health promotion and risk reduction of chronic diseases.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | | |
Collapse
|
2
|
Chang JF, Hsieh CY, Chen LN, Lee MH, Ting YH, Yang CY, Lin CC. Perch Hydrolysates from Upcycling of Perch Side Streams Accelerate Wound Healing by Enhancing Fibroblasts to Secrete Procollagen I, Fibronectin, and Hyaluronan. Curr Issues Mol Biol 2025; 47:57. [PMID: 39852171 PMCID: PMC11763970 DOI: 10.3390/cimb47010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Wound healing incurs various challenges, making it an important topic in medicine. Short-chain peptides from fish protein hydrolysates possess wound healing properties that may represent a solution. In this study, perch hydrolysates were produced from perch side steams using a designed commercial complex enzyme via a proprietary pressure extraction technique. The average molecular weight of the perch peptides was 1289 kDa, and 62.60% of the peptides had a low molecular weight (≤1 kDa). Similarly to the beneficial amino acid sequence FPSIVGRP, FPSLVRGP accounted for 6.21% abundance may have a potential antihypertensive effect. The concentrations of collagen composition and branched-chain amino acids were 1183 and 1122 mg/100 g, respectively. In a fibroblast model, active perch peptides accelerated wound healing mainly by increasing the secretion of procollagen I, fibronectin, and hyaluronan. In an SD rat model established to mimic human wounds, orally administered perch hydrolysates with a molecular weight below 2.3 kDa accelerated wound healing, which mainly resulted from collagen-forming amino acids, branched-chain amino acids, and matrikine. Collectively, the residue of perch extract can be upcycled via a hydrolysis technique to produce not only bioactive sequences but also short-chain peptides. Considering the therapeutic potential to promote wound healing, such by-products are of great value and may be developed as dietary nutraceuticals.
Collapse
Affiliation(s)
- Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Branch of Taipei Veterans General Hospital, Taoyuan 330, Taiwan;
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chih-Yu Hsieh
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan; (C.-Y.H.); (L.-N.C.); (M.-H.L.); (Y.-H.T.)
| | - Ling-Ni Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan; (C.-Y.H.); (L.-N.C.); (M.-H.L.); (Y.-H.T.)
- Anyong Biotechnology Inc., Kaohsiung 827, Taiwan
| | - Mao-Hsiang Lee
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan; (C.-Y.H.); (L.-N.C.); (M.-H.L.); (Y.-H.T.)
- Anyong Biotechnology Inc., Kaohsiung 827, Taiwan
| | - Yi-Han Ting
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan; (C.-Y.H.); (L.-N.C.); (M.-H.L.); (Y.-H.T.)
- Anyong Biotechnology Inc., Kaohsiung 827, Taiwan
| | - Chi-Yu Yang
- Animal Toxicity Laboratory, Agricultural Technology Research Institute, Hsinchu 300, Taiwan;
| | - Chih-Cheng Lin
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| |
Collapse
|
3
|
Karma NI, Mellou F, Pavlou P, Siamidi A, Varvaresou A. Compounds of Marine Origin with Possible Applications as Healing Agents. Mar Drugs 2024; 23:5. [PMID: 39852507 PMCID: PMC11766494 DOI: 10.3390/md23010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
It is well established that marine organisms consist of a great variety of active compounds that appear exclusively in the marine environment while having the ability to be vastly reproduced, irrespective of the existing conditions. As a result, marine organisms can be used in many scientific fields, including the ones of pharmaceutics, nutrition, and cosmetic science. As for the latter, marine ingredients have been successfully included in cosmetic formulations for many decades, providing numerous benefits for the skin. In the present review, the contribution of marine compounds in wound healing is thoroughly discussed, focusing on their role both as active ingredients in suitable formulations, designed to contribute to different stages of skin regeneration and restoration and also, indirectly, as a tool for facilitating wound closure as part of a wound dressing. Additionally, the advantages of these marine ingredients are presented, as well as ways of incorporating them effectively in formulations, so as to enhance their performance. Numerous studies have been referenced, showcasing their efficacy in wound healing. Finally, important data in regard to their stability, limitations, and challenges to their use, safety issues, and the existing legislative framework are extensively reviewed.
Collapse
Affiliation(s)
- Nektaria-Ioanna Karma
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
| | - Fotini Mellou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece
| | - Panagoula Pavlou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece
| | - Angeliki Siamidi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, GR-15784 Athens, Greece;
| | - Athanasia Varvaresou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece
| |
Collapse
|
4
|
Li Y, Lu Y, Zhao Y, Zhang N, Zhang Y, Fu Y. Deciphering the Wound-Healing Potential of Collagen Peptides and the Molecular Mechanisms: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26007-26026. [PMID: 39405278 DOI: 10.1021/acs.jafc.4c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Collagen peptides have been reported to display various bioactivities and high bioavailability. Recently, increasing evidence has revealed the excellent wound-healing activity of collagen peptides, but their molecular mechanisms remain incompletely elucidated. This review systematically evaluates the therapeutic efficacy of collagen peptides from diverse sources based on various wound models. Furthermore, the structure-activity relationships of collagen peptides and wound-healing mechanisms are discussed and summarized. Characterized by their low molecular weight and abundant imino acids, collagen peptides facilitate efficient absorption by the body to deliver nutrition throughout the wound-healing process. The specific mechanism of collagen peptide for wound healing is mainly through up-regulation of related cytokines and participation in the activation of relevant signaling pathways, such as TGF-β/Smad and PI3K/Akt/mTOR, which can promote cell proliferation, angiogenesis, collagen synthesis and deposition, re-epithelialization, and ECM remodeling, ultimately achieving the effect of wound healing. Collagen peptides can offer a potential therapeutic approach for treating incision and excision wounds, mucosal injuries, burn wounds, and pressure ulcers, improving the efficiency of wound healing by about 10%-30%. The present review contributes to understanding of the wound-healing potential of collagen peptides and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yunying Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
5
|
Wosicka-Frąckowiak H, Poniedziałek K, Woźny S, Kuprianowicz M, Nyga M, Jadach B, Milanowski B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers (Basel) 2024; 16:2668. [PMID: 39339133 PMCID: PMC11435467 DOI: 10.3390/polym16182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Biomaterials have been the subject of extensive research, and their applications in medicine and pharmacy are expanding rapidly. Collagen and its derivatives stand out as valuable biomaterials due to their high biocompatibility, biodegradability, and lack of toxicity and immunogenicity. This review comprehensively examines collagen from various sources, its extraction and processing methods, and its structural and functional properties. Preserving the native state of collagen is crucial for maintaining its beneficial characteristics. The challenges associated with chemically modifying collagen to tailor its properties for specific clinical needs are also addressed. The review discusses various collagen-based biomaterials, including solutions, hydrogels, powders, sponges, scaffolds, and thin films. These materials have broad applications in regenerative medicine, tissue engineering, drug delivery, and wound healing. Additionally, the review highlights current research trends related to collagen and its derivatives. These trends may significantly influence future developments, such as using collagen-based bioinks for 3D bioprinting or exploring new collagen nanoparticle preparation methods and drug delivery systems.
Collapse
Affiliation(s)
- Hanna Wosicka-Frąckowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Kornelia Poniedziałek
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Martyna Nyga
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Bartłomiej Milanowski
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
6
|
Le Faouder J, Guého A, Lavigne R, Wauquier F, Boutin-Wittrant L, Bouvret E, Com E, Wittrant Y, Pineau C. Human Serum, Following Absorption of Fish Cartilage Hydrolysate, Promotes Dermal Fibroblast Healing through Anti-Inflammatory and Immunomodulatory Proteins. Biomedicines 2024; 12:2132. [PMID: 39335645 PMCID: PMC11430497 DOI: 10.3390/biomedicines12092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Marine collagen peptides (MCPs) and glycosaminoglycans (GAGs) have been described as potential wound-healing (WH) agents. Fish cartilage hydrolysate (FCH) is a natural active food ingredient obtained from enzymatic hydrolysis which combines MCPs and GAGs. Recently, the clinical benefits of FCH supplementation for the skin, as well as its mode of action, have been demonstrated. Some of the highlighted mechanisms are common to the WH process. The aim of the study is therefore to investigate the influence of FCH supplementation on the skin healing processes and the underlying mechanisms. Methods: To this end, an ex vivo clinical approach, which takes into account the clinical digestive course of nutrients, coupled with primary cell culture on human dermal fibroblasts (HDFs) and ultra-deep proteomic analysis, was performed. The effects of human serum enriched in circulating metabolites resulting from FCH ingestion (FCH-enriched serum) were assessed on HDF WH via an in vitro scratch wound assay and on the HDF proteome via diaPASEF (Data Independent Acquisition-Parallel Accumulation Serial Fragmentation) proteomic analysis. Results: Results showed that FCH-enriched human serum accelerated wound closure. In support, proteins with anti-inflammatory and immunomodulatory properties and proteins prone to promote hydration and ECM stability showed increased expression in HDFs after exposure to FCH-enriched serum. Conclusions: Taken together, these data provide valuable new insights into the mechanisms that may contribute to FCH's beneficial impact on human skin functionality by supporting WH. Further studies are needed to reinforce these preliminary data and investigate the anti-inflammatory and immunomodulatory properties of FCH.
Collapse
Affiliation(s)
- Julie Le Faouder
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France;
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
| | - Aurélie Guého
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
| | - Régis Lavigne
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fabien Wauquier
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
| | - Line Boutin-Wittrant
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
| | - Elodie Bouvret
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France;
| | - Emmanuelle Com
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Yohann Wittrant
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
- UNH, UMR1019, INRAE, 63009 Clermont-Ferrand, France
- Human Nutrition Unit, Clermont Auvergne University, BP 10448, 63000 Clermont-Ferrand, France
| | - Charles Pineau
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
7
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
8
|
Mistry K, Richardson G, Vleminckx S, Smith R, Gevaert E, Lovat PE. Porcine-derived collagen peptides promote re-epithelialisation through activation of integrin signalling. Wound Repair Regen 2024; 32:475-486. [PMID: 38572659 DOI: 10.1111/wrr.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Chronic non-healing cutaneous wounds represent a major burden to patients and healthcare providers worldwide, emphasising the continued unmet need for credible and efficacious therapeutic approaches for wound healing. We have recently shown the potential for collagen peptides to promote proliferation and migration during cutaneous wound healing. In the present study, we demonstrate that the application of porcine-derived collagen peptides significantly increases keratinocyte and dermal fibroblast expression of integrin α2β1 and activation of an extracellular signal-related kinase (ERK)-focal adhesion kinase (FAK) signalling cascade during wound closure in vitro. SiRNA-mediated knockdown of integrin β1 impaired porcine-derived collagen peptide-induced wound closure and activation of ERK-FAK signalling in keratinocytes but did not impair ERK or FAK signalling in dermal fibroblasts, implying the activation of differing downstream signalling pathways. Studies in ex vivo human 3D skin equivalents subjected to punch biopsy-induced wounding confirmed the ability of porcine-derived collagen peptides to promote wound closure by enhancing re-epithelialisation. Collectively, these data highlight the translational and clinical potential for porcine-derived collagen peptides as a viable therapeutic approach to promote re-epithelialisation of superficial cutaneous wounds.
Collapse
Affiliation(s)
- Krishan Mistry
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- Department of Materials, University of Manchester, Manchester, Greater Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Grant Richardson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- AMLo Biosciences, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Robert Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- AMLo Biosciences, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Penny E Lovat
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- AMLo Biosciences, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
9
|
Mulawarmanti D, Revianti S, Wahjuningsih E. Efficacy of Topical Application of Chum Salmon ( Oncorhynchus keta) Skin-derived Collagen Extracts in Improving Oral Traumatic Ulcer Healing. Contemp Clin Dent 2024; 15:124-128. [PMID: 39206236 PMCID: PMC11349075 DOI: 10.4103/ccd.ccd_544_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Traumatic ulcer is a wound on the oral mucosa that often causes pain and impaired eating function. Healing of these wounds takes a long time and can interfere with an individual's daily activities. One therapeutic approach that is being developed is the use of topical application of chum salmon skin-derived collagen extract. Collagen is the main component of the extracellular matrix and plays a major role in wound healing. The skin of chum salmon (Oncorhynchus keta) contains collagen that is effective for the treatment of wounds. Aim The aim of this study was to evaluate the effectiveness of topical applications of chum salmon (O. keta) skin-derived collagen extracts in improving the healing of traumatic ulcers through analysis of neutrophil and macrophage numbers and collagen density. Materials and Methods Twenty-four male Wistar rats were randomly divided into four groups consisting of six rats each. The labial mucosa of the lower lips of the rats was injured with heated amalgam stoppers to create oral traumatic ulcers. Group 1 was a control group; in Groups 2, 3, and 4, 25%, 50%, and 75% of collagen extracts from chum salmon (O. keta) skin were applied topically once a day for 7 days, respectively. The neutrophil and macrophage numbers were observed by hematoxylin and eosin staining. Masson's Trichrome staining was used to analyze the collagen density. Data were analyzed using one-way analysis of variance and continued with post hoc least significant difference tests. Significance is considered if P < 0.05. Results The oral traumatic ulcers gradually healed until day 7. The number of neutrophils and macrophages was significantly decreased in the treatment groups, and collagen density was increased, compared to the control group (P < 0.05). The decrease of neutrophil and macrophage numbers occurred significantly with the increased collagen extract concentrations (P < 0.05). Collagen density also increased significantly with the increased collagen extract concentrations (P < 0.05). Conclusion Topical applications of chum salmon (O. keta) skin-derived collagen extracts accelerate the healing process of oral traumatic ulcers by decreasing neutrophil and macrophage numbers and increasing collagen density.
Collapse
Affiliation(s)
- Dian Mulawarmanti
- Department of Oral Biology, Faculty of Dentistry, Hang Tuah University, Surabaya, Indonesia
| | - Syamsulina Revianti
- Department of Oral Biology, Faculty of Dentistry, Hang Tuah University, Surabaya, Indonesia
| | - Endah Wahjuningsih
- Department of Oral Biology, Faculty of Dentistry, Hang Tuah University, Surabaya, Indonesia
| |
Collapse
|
10
|
Becht A, Frączyk J, Waśko J, Menaszek E, Kajdanek J, Miłowska K, Kolesinska B. Selection of collagen IV fragments forming the outer sphere of the native protein: Assessment of biological activity for regenerative medicine. J Pept Sci 2024; 30:e3537. [PMID: 37607826 DOI: 10.1002/psc.3537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV. In the first test, 33 peptides that strongly interacted with the polyclonal anti-collagen IV antibodies were selected from a library of non-overlapping fragments of collagen IV. The selected fragments of collagen IV (cleaved from the cellulose matrix) were tested for their cytotoxicity, their effects on cell viability and proliferation, and their impact on the formation of reactive oxygen species (ROS). The studies used RAW 264.7 mouse macrophage cells and Hs 680.Tr human fibroblasts. PrestoBlue, ToxiLight™, and ToxiLight 100% Lysis Control assays were conducted. The viability of fibroblasts cultured with the addition of increasing concentrations of the peptide mix did not show statistically significant differences from the control. Fragments 161-170, 221-230, 721-730, 1331-1340, 1521-1530, and 1661-1670 of COL4A6 were examined for cytotoxicity against BJ normal human foreskin fibroblasts. None of the collagen fragments were found to be cytotoxic. Further research is underway on the potential uses of collagen IV fragments in regenerative medicine.
Collapse
Affiliation(s)
- Angelika Becht
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Waśko
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Jakub Kajdanek
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
11
|
Zhang X, Zhuang H, Wu S, Mao C, Dai Y, Yan H. Marine Bioactive Peptides: Anti-Photoaging Mechanisms and Potential Skin Protective Effects. Curr Issues Mol Biol 2024; 46:990-1009. [PMID: 38392181 PMCID: PMC10887644 DOI: 10.3390/cimb46020063] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/24/2024] Open
Abstract
Skin photoaging, resulting from prolonged exposure to ultraviolet radiation, is a form of exogenous aging that not only impacts the aesthetic aspect of the skin but also exhibits a strong correlation with the onset of skin cancer. Nonetheless, the safety profile of non-natural anti-photoaging medications and the underlying physiological alterations during the process of photoaging remain inadequately elucidated. Consequently, there exists a pressing necessity to devise more secure interventions involving anti-photoaging drugs. Multiple studies have demonstrated the noteworthy significance of marine biomolecules in addressing safety concerns related to anti-photoaging and safeguarding the skin. Notably, bioactive peptides have gained considerable attention in anti-photoaging research due to their capacity to mitigate the physiological alterations associated with photoaging, including oxidative stress; inflammatory response; the abnormal expression of matrix metalloproteinase, hyaluronidase, and elastase; and excessive melanin synthesis. This review provides a systematic description of the research progress on the anti-photoaging and skin protection mechanism of marine bioactive peptides. The focus is on the utilization of marine bioactive peptides as anti-photoaging agents, aiming to offer theoretical references for the development of novel anti-photoaging drugs and methodologies. Additionally, the future prospects of anti-aging drugs are discussed, providing an initial reference for further research in this field.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
12
|
Md Fadilah NI, Shahabudin NA, Mohd Razif RA, Sanyal A, Ghosh A, Baharin KI, Ahmad H, Maarof M, Motta A, Fauzi MB. Discovery of bioactive peptides as therapeutic agents for skin wound repair. J Tissue Eng 2024; 15:20417314241280359. [PMID: 39398382 PMCID: PMC11468004 DOI: 10.1177/20417314241280359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024] Open
Abstract
Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Shahabudin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Raniya Adiba Mohd Razif
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Arka Sanyal
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | - Anushikha Ghosh
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Haslina Ahmad
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Laasri I, Bakkali M, Mejias L, Laglaoui A. Marine collagen: Unveiling the blue resource-extraction techniques and multifaceted applications. Int J Biol Macromol 2023; 253:127253. [PMID: 37806417 DOI: 10.1016/j.ijbiomac.2023.127253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Marine organisms such as fish and shellfish are composed of compounds with properties and characteristics that have been proven useful in a variety of sectors such as cosmetics, healthcare (wound healing), food industries, and tissue engineering. Collagen extraction from fish waste as a "blue resource" has attracted research attention over the past decade. Around 75 % of fish waste contains a high concentration of collagen. This has driven research in the conversion of these low-cost by-products into valuable products. Collagen extracted by acidic or/and enzymatic methods is gaining a lot of attention today due to its low cost and high yield. Fermentation and enzymatic hydrolysis stand out as one of the most environmentally sustainable and ecologically friendly methods for collagen extraction. Because of its great biocompatibility, excellent bioactivity, and low antigenicity, marine collagen is receiving more attention. Furthermore, collagen-derived peptides may exhibit interesting antioxidant activity, potent antihypertensive activity, and antimicrobial activity against different strains of bacteria. This review focuses on the advancements in extraction and detection methods of marine collagen, both from a technological and legislative standpoint, in addition to exploring its diverse range of application domains.
Collapse
Affiliation(s)
- Ikhlas Laasri
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco; BETA Technological Centre, University of Vic-UCC, Vic, Barcelona 08500, Spain.
| | - Mohammed Bakkali
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco
| | - Laura Mejias
- BETA Technological Centre, University of Vic-UCC, Vic, Barcelona 08500, Spain
| | - Amin Laglaoui
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco
| |
Collapse
|
14
|
Cui P, Shao T, Liu W, Li M, Yu M, Zhao W, Song Y, Ding Y, Liu J. Advanced review on type II collagen and peptide: preparation, functional activities and food industry application. Crit Rev Food Sci Nutr 2023; 64:11302-11319. [PMID: 37459185 DOI: 10.1080/10408398.2023.2236699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Type II collagen is a homologous super-helical structure consisting of three identical α1(II) chains. It is a major component of animal cartilage, and is widely used in the food industry. Type II collagen can be extracted by acids, salts, enzymes, and via auxiliary methods and can be further hydrolyzed chemically and enzymatically to produce collagen peptides. Recent studies have shown that type II collagen and its polypeptides have good self-assembly properties and important biological activities, such as maintaining cartilage tissue integrity, inducing immune tolerance, stimulating chondrocyte growth and redifferentiation, and providing antioxidant benefits. This review focuses specifically on type II collagen and describes its structure, extraction, and purification, as well as the preparation of type II collagen peptides. In particular, the self-assembly properties and functional activities of type II collagen and collagen peptides are reviewed. In addition, recent research advances in the application of type II collagen and collagen peptides in functional foods, food additives, food coating materials, edible films, and carriers for the food industry are presented. This paper provides more detailed and comprehensive information on type II collagen and peptide for their application.
Collapse
Affiliation(s)
- Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tianlun Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Mengyu Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Mingxiao Yu
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Weixue Zhao
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yanzhuo Song
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
15
|
Zhou N, Liu YD, Zhang Y, Gu TW, Peng LH. Pharmacological Functions, Synthesis, and Delivery Progress for Collagen as Biodrug and Biomaterial. Pharmaceutics 2023; 15:pharmaceutics15051443. [PMID: 37242685 DOI: 10.3390/pharmaceutics15051443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Collagen has been widely applied as a functional biomaterial in regulating tissue regeneration and drug delivery by participating in cell proliferation, differentiation, migration, intercellular signal transmission, tissue formation, and blood coagulation. However, traditional extraction of collagen from animals potentially induces immunogenicity and requires complicated material treatment and purification steps. Although semi-synthesis strategies such as utilizing recombinant E. coli or yeast expression systems have been explored as alternative methods, the influence of unwanted by-products, foreign substances, and immature synthetic processes have limited its industrial production and clinical applications. Meanwhile, macromolecule collagen products encounter a bottleneck in delivery and absorption by conventional oral and injection vehicles, which promotes the studies of transdermal and topical delivery strategies and implant methods. This review illustrates the physiological and therapeutic effects, synthesis strategies, and delivery technologies of collagen to provide a reference and outlook for the research and development of collagen as a biodrug and biomaterial.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
16
|
Sun JH, Song S, Yang JF. Oral administration of sea cucumber ( Stichopus japonicus) protein exerts wound healing effects via the PI3K/AKT/mTOR signaling pathway. Food Funct 2022; 13:9796-9809. [PMID: 36128874 DOI: 10.1039/d2fo01372j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the effect of the oral administration of sea cucumber protein (SCP) on wound healing. SCP was isolated and purified from the body wall of Stichopus japonicus. A mouse skin incision model was operated on to evaluate the wound repair effect of SCP. The histological changes in the skin at the wound sites of BALB/c mice were observed by staining with haematoxylin and eosin (H&E) and Masson's trichrome. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression of inflammatory cytokines in BALB/c mice. The boost cell migration ability was detected by a scratch assay after HaCaT cells were cultured with digested SCP (dSCP). Western blotting and RT-PCR assays were performed to determine the mechanism of SCP promoting wound healing. As a result, the wound healing rate in the SCP high dose group was 1.3-fold, compared to that in the blank group on day 14. Also, increased epidermal thickness and 1.79-fold collagen deposition contrasted with the blank group. Additionally, SCP could up-regulate the levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α) from day 3 to 7 firstly and decreased from day 7 to 14. IL-8 expression continuously decreased while the level of anti-inflammatory factor (IL-10) increased during the healing stage. Furthermore, the cell closure area reached 67% after being treated with 50 μg mL-1 of dSCP for 48 h. Cell proliferation was associated with the dSCP-activated PI3K/AKT/mTOR pathway. Taken together, SCP can be orally used as an effective agent for wound repair.
Collapse
Affiliation(s)
- Jing-He Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | - Jing-Feng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| |
Collapse
|
17
|
Gao Q, Shang Y, Zhou W, Deng S, Peng C. Marine collagen peptides: A novel biomaterial for the healing of oral mucosal ulcers. Dent Mater J 2022; 41:850-859. [PMID: 35934799 DOI: 10.4012/dmj.2021-323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to analyze the therapeutic effects of marine collagen peptides (MCPs) from tilapia skin on oral mucosal ulcers in a rat model. CCK-8 and wound healing assays were performed in vitro to evaluate proliferation and migration of L929 cells after treatment with MCPs. The effects of MCPs on the healing of oral mucosal ulcers in a rat model were macroscopically and microscopically analyzed in vivo. Results showed that MCPs promoted proliferation and migration of L929 cells. Moreover, 75%MCPs enhanced the ulcer healing process, suppressed inflammatory response and up-regulated the expression levels of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). MCPs are potentially used as a new therapeutic strategy for oral mucosal ulceration.
Collapse
Affiliation(s)
- Qiuying Gao
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Yuli Shang
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Weiwei Zhou
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Shu Deng
- Henry M Goldman School of Dental Medicine, Boston University
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
18
|
Oral delivery of marine shellfish supramolecule peptides for skin wound healing. Colloids Surf B Biointerfaces 2022; 216:112592. [PMID: 35636327 DOI: 10.1016/j.colsurfb.2022.112592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 01/17/2023]
Abstract
Oral administration of peptides/proteins with superior efficacy and fewer side effects is the most advantageous route of administration. In this study, we utilized controllable enzymatic (animal protease) hydrolysis technology to prepare active polypeptide self-assembling supramolecular (APs) from marine shellfish meat to explore the functional mechanism of APs in in vitro and in vivo (oral administration) experiments . In vitro experiments revealed that APs with self-assembly tendency had multifunctional activities. In vivo experiments indicated that oral administration of naturally safe APs could inhibited inflammation, promoted fibroblast proliferation and revascularization, and accelerated the epithelialization process, thus favoring a balanced repair tissue collagen I/III ratio and the promotion of hair follicle regeneration to achieve scarless healing, which was also relevant to "skin-gut" axis. These results showed that APs, as demonstrated in this study, promoted dermal wound healing in mice and may be developed and used to treat skin wounds.
Collapse
|
19
|
Geahchan S, Baharlouei P, Rahman A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Mar Drugs 2022; 20:61. [PMID: 35049916 PMCID: PMC8780088 DOI: 10.3390/md20010061] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Marine organisms harbor numerous bioactive substances that can be utilized in the pharmaceutical and cosmetic industries. Scientific research on various applications of collagen extracted from these organisms has become increasingly prevalent. Marine collagen can be used as a biomaterial because it is water soluble, metabolically compatible, and highly accessible. Upon review of the literature, it is evident that marine collagen is a versatile compound capable of healing skin injuries of varying severity, as well as delaying the natural human aging process. From in vitro to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast migration as well as vascularization of the skin. Additionally, marine collagen and derivatives have proven beneficial and useful for both osteoporosis and osteoarthritis prevention and treatment. Other bone-related diseases may also be targeted by collagen, as it is capable of increasing bone mineral density, mineral deposition, and importantly, osteoblast maturation and proliferation. In this review, we demonstrate the advantages of marine collagen over land animal sources and the biomedical applications of marine collagen related to bone and skin damage. Finally, some limitations of marine collagen are briefly discussed.
Collapse
Affiliation(s)
- Sarah Geahchan
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Parnian Baharlouei
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- Physiology and Human Biology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Azizur Rahman
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- A.R. Environmental Solutions Inc., ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
20
|
Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers (Basel) 2021; 13:polym13223868. [PMID: 34833168 PMCID: PMC8620403 DOI: 10.3390/polym13223868] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen, an abundant extracellular matrix protein, has been found to have a lot of pharmaceuticals, medicine, food, and cosmetics applications. Increased knowledge of collagen sources, extraction techniques, structure, and properties in the last decades has helped develop more collagen-based products and tissue engineering biomaterials. Collagen products have been playing an important role in benefiting the health of the human body, especially for aging people. In this paper, the effects of collagen treatment in different clinical studies including skin regeneration, bone defects, sarcopenia, wound healing, dental therapy, gastroesophageal reflux, osteoarthritis, and rheumatoid arthritis have been reviewed. The collagen treatments were significant in these clinical studies. In addition, the associations between these diseases were discussed. The comorbidity of these diseases might be closely related to collagen deficiency, and collagen treatment might be a good choice when a patient has more than one of these diseases, including the coronavirus disease 2019 (COVID-19). It concludes that collagen-based medication is useful in treating comorbid diseases and preventing complications.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
21
|
Li X, Lei Z, Sheng J, Song Y. Preparation and properties of caffeic-chitosan grafting fish bone collagen peptide. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211046417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel peptide grafted chitosan (CACS-FBP) with high peptide content, excellent moisture-absorption and moisture-retention abilities was prepared. Caffeic acid (CA) was used to modify chitosan, the highly water-soluble intermediate further reacted with fish bone collagen peptide to obtain the final product, and the synthesis of CACS-FBP was confirmed by the Fourier transform infrared spectroscopy (FT-IR), NMR, and UV-vis. The single-factor experiments indicated that the degree of substitution (DS) of CACS-FBP depended on the reaction temperature, reaction time, the mass ratio of fish bone collagen peptide to CACS (mFBP/mCACS) and the mass ratio of MTGase to CACS (mMTGase/mCACS). In addition, the antioxidant assay indicated that CACS-FBP had an excellent antioxidant capacity, and the CACS-FBP showed no cytotoxicity toward L929 mouse fibroblasts, all the results mean that the prepared peptide-containing chitosan derivative has potential application in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Xuqin Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Zhou Lei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, P.R. China
| |
Collapse
|
22
|
Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Mar Drugs 2021; 19:md19070396. [PMID: 34356821 PMCID: PMC8303758 DOI: 10.3390/md19070396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.
Collapse
|
23
|
Güngör ES, Güzel D, Zebitay AG, İlhan G, Verit FF. The efficacy of onion extract in the management of subsequent abdominal hypertrophic scar formation. J Wound Care 2021; 29:612-616. [PMID: 33052789 DOI: 10.12968/jowc.2020.29.10.612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Development of postoperative scars is often a problem. This study aimed to evaluate the efficacy of gel containing Allium cepa extract, allantoin and heparin (Contractubex, Merz Pharmaceuticals GmbH, Frankfurt, Germany) in reducing scarring after a caesarean section by comparing it with a control group, and also intra-individually, using the Vancouver Scar Scale (VSS). METHOD A total of 120 patients who underwent a second elective caesarean delivery and who presented with hypertrophic scar development after their first caesarean section were included in the study. A scar revision was performed for all patients during the second caesarean operation. Patients in the study group (n=60) were advised to apply the topical scar gel postoperatively for a period of 6 months. The control group (n=60) received no treatment. RESULTS Significant reductions were observed in the vascularity, pigmentation and height subgroups of the VSS for those in the group who continued the treatment to 24 weeks. An intra-individual analysis showed that the gel effectively reduced scarring after the second caesarean section. CONCLUSION The prophylactic use of the gel to reduce scar development offers better results for vascularity, pigmentation and height subscales of the VSS after surgical removal of the primary caesarean scar during the second caesarean section. The results were better both intra-individually, and also in comparison with the control group and support the use of a gel containing Allium cepa extract, allantoin and heparin to reduce scarring after a caesarean section.
Collapse
Affiliation(s)
- Emre Sinan Güngör
- Süleymaniye Maternity Research and Training Hospital, Obstetrics and Gynecology Clinic, Zeytinburnu, Istanbul, Turkey
| | - Duygu Güzel
- Süleymaniye Maternity Research and Training Hospital, Obstetrics and Gynecology Clinic, Zeytinburnu, Istanbul, Turkey
| | - Ali Galip Zebitay
- Süleymaniye Maternity Research and Training Hospital, Obstetrics and Gynecology Clinic, Zeytinburnu, Istanbul, Turkey
| | - Gülşah İlhan
- Süleymaniye Maternity Research and Training Hospital, Obstetrics and Gynecology Clinic, Zeytinburnu, Istanbul, Turkey
| | - Fatma Ferda Verit
- Süleymaniye Maternity Research and Training Hospital, Obstetrics and Gynecology Clinic, Zeytinburnu, Istanbul, Turkey
| |
Collapse
|
24
|
Li D, Ren JW, Xu T, Li L, Liu P, Li Y. Effect of bovine bone collagen oligopeptides on wound healing in mice. Aging (Albany NY) 2021; 13:9028-9042. [PMID: 33690172 PMCID: PMC8034929 DOI: 10.18632/aging.202750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023]
Abstract
Impaired wound healing often brings a set of problems in clinical practice. This study aimed to observe the wound healing potential of bovine bone collagen oligopeptides (BCOP) in mice. After an operation, mice in BCOP-treated groups were given intragastric administration of BCOP, while others were administered vehicle. Mice were sacrificed at different points. The wound healing condition and the tensile strength were observed, serum biochemical indexes and mRNA expression of level of related genes were measured. Compared with the normal control group, albumin (ALB), prealbumin (PA), transferrin (TRF), hydroxyproline (Hyp) levels and tension strength in the BCOP-treated groups increased significantly (p < 0.05). A pathological report showed that neutrophil granulocyte in the BCOP-treated groups decreased, while blood capillary and fibroblasts increased. The levels of serum inflammation indexes like interleukin (IL)-8, tumor necrosis factor (TNF)-α, chemokine (C-C motif) ligand 2 (CCL2) and C-reactive protein (CRP) significantly decreased in full-thickness incision model, whereas increased in full-thickness excision model (p < 0.05). Furthermore, IL-10, stromal cell-derived factor-1 alpha (SDF-1α) levels and the mRNA expression of vascular endothelial growth factor (VEGF) significantly increased in both models (p < 0.05). These results suggested that oral administration of BCOP could promote wound healing in mice.
Collapse
Affiliation(s)
- Di Li
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing 100044, China
| | - Jin-Wei Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Teng Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Lin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Peng Liu
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing 100044, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
25
|
Sato K, Asai TT, Jimi S. Collagen-Derived Di-Peptide, Prolylhydroxyproline (Pro-Hyp): A New Low Molecular Weight Growth-Initiating Factor for Specific Fibroblasts Associated With Wound Healing. Front Cell Dev Biol 2020; 8:548975. [PMID: 33330443 PMCID: PMC7728856 DOI: 10.3389/fcell.2020.548975] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/09/2020] [Indexed: 01/26/2023] Open
Abstract
Many cells and soluble factors are involved in the wound healing process, which can be divided into inflammatory, proliferative, and remodeling phases. Fibroblasts play a crucial role in wound healing, especially during the proliferative phase, and show heterogeneity depending on lineage, tissue distribution, and extent of differentiation. Fibroblasts from tissue stem cells rather than from healthy tissues infiltrate wounds and proliferate. Some fibroblasts in the wound healing site express the mesenchymal stem cell marker, p75NTR. In the cell culture system, fibroblasts attached to collagen fibrils stop growing, even in the presence of protein growth factors, thus mimicking the quiescent nature of fibroblasts in healthy tissues. Fibroblasts in wound healing sites proliferate and are surrounded by collagen fibrils. These facts indicate presence of new growth-initiating factor for fibroblasts attached to collagen fibrils at the wound healing site, where the collagen-derived peptide, prolyl-hydroxyproline (Pro-Hyp), is generated. Pro-Hyp triggers the growth of p75NTR-positive fibroblasts cultured on collagen gel but not p75NTR-negative fibroblasts. Thus, Pro-Hyp is a low molecular weight growth-initiating factor for specific fibroblasts that is involved in the wound healing process. Pro-Hyp is also supplied to tissues by oral administration of gelatin or collagen hydrolysate. Thus, supplementation of gelatin or collagen hydrolysate has therapeutic potential for chronic wounds. Animal studies and human clinical trials have demonstrated that the ingestion of gelatin or collagen hydrolysate enhances the healing of pressure ulcers in animals and humans and improves delayed wound healing in diabetic animals. Therefore, the low molecular weight fibroblast growth-initiating factor, Pro-Hyp, plays a significant role in wound healing and has therapeutic potential for chronic wounds.
Collapse
Affiliation(s)
- Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoko T Asai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Shiro Jimi
- Central Laboratory for Pathology and Morphology, Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
26
|
Elbialy ZI, Atiba A, Abdelnaby A, Al-Hawary II, Elsheshtawy A, El-Serehy HA, Abdel-Daim MM, Fadl SE, Assar DH. Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and α-SMA genes expression. BMC Vet Res 2020; 16:352. [PMID: 32972407 PMCID: PMC7513287 DOI: 10.1186/s12917-020-02566-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Collagen is the most abundant structural protein in the mammalian connective tissue and represents approximately 30% of animal protein. The current study evaluated the potential capacity of collagen extract derived from Nile tilapia skin in improving the cutaneous wound healing in rats and investigated the underlying possible mechanisms. A rat model was used, and the experimental design included a control group (CG) and the tilapia collagen treated group (TCG). Full-thickness wounds were conducted on the back of all the rats under general anesthesia, then the tilapia collagen extract was applied topically on the wound area of TCG. Wound areas of the two experimental groups were measured on days 0, 3, 6, 9, 12, and 15 post-wounding. The stages of the wound granulation tissues were detected by histopathologic examination and the expression of vascular endothelial growth factor (VEGF), and transforming growth factor (TGF-ß1) were investigated using immunohistochemistry. Moreover, relative gene expression analysis of transforming growth factor-beta (TGF-ß1), basic fibroblast growth factor (bFGF), and alpha-smooth muscle actin (α-SMA) were quantified by real-time qPCR. RESULTS The histopathological assessment showed noticeable signs of skin healing in TCG compared to CG. Immunohistochemistry results revealed remarkable enhancement in the expression levels of VEGF and TGF-β1 in TCG. Furthermore, TCG exhibited marked upregulation in the VEGF, bFGF, and α-SMA genes expression. These findings suggested that the topical application of Nile tilapia collagen extract can promote the cutaneous wound healing process in rats, which could be attributed to its stimulating effect on recruiting and activating macrophages to produce chemotactic growth factors, fibroblast proliferation, and angiogenesis. CONCLUSIONS The collagen extract could, therefore, be a potential biomaterial for cutaneous wound healing therapeutics.
Collapse
Affiliation(s)
- Zizy I Elbialy
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Ayman Atiba
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Aml Abdelnaby
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Ibrahim I Al-Hawary
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Ahmed Elsheshtawy
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| | - Sabreen E Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, 51744, Matrouh, Egypt.
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| |
Collapse
|
27
|
Mistry K, van der Steen B, Clifford T, van Holthoon F, Kleinnijenhuis A, Prawitt J, Labus M, Vanhoecke B, Lovat PE, McConnell A. Potentiating cutaneous wound healing in young and aged skin with nutraceutical collagen peptides. Clin Exp Dermatol 2020; 46:109-117. [PMID: 32687652 DOI: 10.1111/ced.14392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chronic wounds continue to be a burden to healthcare systems, with ageing linked to increased prevalence of chronic wound development. Nutraceutical collagen peptides have been shown to reduce signs of skin ageing, but their therapeutic potential for cutaneous wound healing remains undefined. AIM To determine the potential for nutraceutical collagen peptides to promote cutaneous wound healing in vitro in the context of age. METHODS The potential for bovine- or porcine-derived nutraceutical collagen peptides to promote wound healing of primary cutaneous fibroblasts and keratinocytes derived from young and aged individuals in vitro was assessed by two-dimensional scratch and cell-viability assays and by immunofluorescence for the cell proliferation marker, Ki67. The achievement of peptide concentrations in vivo, equivalent to those exerting a beneficial effect on wound healing in vitro, was confirmed by pharmacokinetic studies of hydroxyproline, a biomarker for collagen peptide absorption, following peptide ingestion by healthy individuals over a wide age range. RESULTS Results demonstrated significant nutraceutical collagen peptide-induced wound closure of both young and aged fibroblasts and keratinocytes, mediated by enhanced cellular proliferation and migration. Analysis of blood levels of hydroxyproline in young and aged individuals following porcine collagen peptide ingestion revealed peak serum/plasma levels after 2 h at similar concentrations to those exerting beneficial effects on wound healing in vitro. CONCLUSION These data demonstrate the capacity for nutraceutical collagen peptides to promote cutaneous wound closure in vitro, at pharmacologically achievable concentrations in vivo, thereby offering a potential novel therapeutic strategy for the management of cutaneous wounds in young and aged individuals.
Collapse
Affiliation(s)
- K Mistry
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| | | | - T Clifford
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | | | | | - J Prawitt
- Rousselot BVBA, Meulestedekaai, Ghent, Belgium
| | - M Labus
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| | - B Vanhoecke
- Rousselot BVBA, Meulestedekaai, Ghent, Belgium
| | - P E Lovat
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| | - A McConnell
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| |
Collapse
|
28
|
Peng X, Xu J, Tian Y, Liu W, Peng B. Marine fish peptides (collagen peptides) compound intake promotes wound healing in rats after cesarean section. Food Nutr Res 2020; 64:4247. [PMID: 33061887 PMCID: PMC7534952 DOI: 10.29219/fnr.v64.4247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023] Open
Abstract
Background Wound complications are a major source of morbidity after cesarean section (CS) and contribute to increased risks in subsequent pregnancies. In the present study, we aim to investigate the wound healing potential of a kind of oligopeptide compound, mainly derived from the marine fish peptides (MFPs), in rats after CS by biomechanical, biochemical, and histological methods. Methods Eighty-four pregnant Sprague–Dawleyrats were randomly assigned to four groups, namely the control group and 1.1, 2.2, and 4.4 mg/kg MFP groups, respectively. The MFPs or normal saline of the equal volume was intragastrically administered every morning on the second day after CS. On days 5, 10, and 15 after the surgery, seven rats from each group were randomly selected. The samples of skin wound and uterus were harvested and then used for the following experiments and analyses. Results Using the CS rat model, this study demonstrated that in the MFP groups, the skin tensile strength, uterine bursting pressure, and hydroxyproline (Hyp) were significantly higher than those in the control group at all three time points (P < 0.05). The formation of collagen and smooth muscle fibers and the expression of CD34 and connective tissue growth factor at the incision site were increasingly observed in the MFP groups (P < 0.05). Conclusions MFPs have a great potential to accelerate the process and quality of wound healing in rats after CS.
Collapse
Affiliation(s)
- Xue Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jinfeng Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Wenjun Liu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Bing Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
29
|
Yang F, Qin X, Zhang T, Zhang C, Lin H. Effect of Oral Administration of Active Peptides of Pinctada Martensii on the Repair of Skin Wounds. Mar Drugs 2019; 17:md17120697. [PMID: 31842313 PMCID: PMC6950544 DOI: 10.3390/md17120697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Skin wound healing, especially chronic wound healing, is a common challenging clinical problem. It is urgent to broaden the sources of bioactive substances that can safely and efficiently promote skin wound healing. This study aimed to observe the effects of active peptides (APs) of the mantle of Pinctada martensii on wound healing. After physicochemical analysis of amino acids and mass spectrometry of APs, the effect of APs on promoting healing was studied through a whole cortex wound model on the back of mice for 18 consecutive days. The results showed that APs consisted of polypeptides with molecular weights in the range 302.17–2936.43 Da. The content of polypeptides containing 2–15 amino acids accounted for 73.87%, and the hydrophobic amino acids accounted for 56.51%. Results of in vitro experimentation showed that mice in APs-L group which were fed a low dose of APs (0.5 g/kg bw) had a shortened epithelialization time due to a shortening inflammatory period (p < 0.05). Mechanistically, this relied on its specific ability to promote the proliferation of CD31, FGF and EGF which accelerated the percentage of wound closure. Moreover, the APs-L group mice had enhanced collagen synthesis and increased type III collagen content in their wounds through a TGF-β/Smad signaling pathway (p > 0.05). Consequently, scar formation was inhibited and wound healing efficiency was significantly improved. These results show that the APs of Pinctada martensii promote dermal wound healing in mice and have tremendous potential for development and utilization in skin wound healing.
Collapse
Affiliation(s)
- Faming Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (C.Z.); (H.L.)
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (C.Z.); (H.L.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
- Correspondence: ; Tel.: +86-0759-2396027
| | - Ting Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (C.Z.); (H.L.)
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (C.Z.); (H.L.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (C.Z.); (H.L.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
30
|
Yang F, Qin X, Zhang T, Lin H, Zhang C. Evaluation of Small Molecular Polypeptides from the Mantle of Pinctada Martensii on Promoting Skin Wound Healing in Mice. Molecules 2019; 24:E4231. [PMID: 31766365 PMCID: PMC6930615 DOI: 10.3390/molecules24234231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Skin wound healing, especially chronic wound healing, is a common challenging clinical problem. It is urgent to broaden the sources of bioactive substances that can safely and efficiently promote skin wound healing. This study aimed to observe the effects of small molecular peptides (SMPs) of the mantle of Pinctada martensii on wound healing. After physicochemical analysis of amino acids and mass spectrometry of SMPs, the effect of SMPs on promoting healing was studied through a whole cortex wound model on the back of mice for 18 consecutive days. The results showed that SMPs consisted of polypeptides with a molecular weight of 302.17-2936.43 Da. The content of polypeptides containing 2-15 amino acids accounted for 73.87%, and the hydrophobic amino acids accounted for 56.51%. Results of in vitro experimentation showed that SMPs possess a procoagulant effect, but no antibacterial activity. Results of in vivo experiments indicated that SMPs inhibit inflammatory response by secretion of anti-inflammatory factor IL-10 during the inflammatory phase; during the proliferative phase, SMPs promote the proliferation of fibroblasts and keratinocytes. The secretion of transforming growth factor-β1 and cyclin D1 accelerates the epithelialization and contraction of wounds. In the proliferative phase, SMPs effectively promote collagen deposition and partially inhibit superficial scar hyperplasia. These results show that SMPs promotes dermal wound healing in mice and have a tremendous potential for development and utilization in skin wound healing.
Collapse
Affiliation(s)
- Faming Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| | - Ting Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.Y.); (T.Z.); (H.L.); (C.Z.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
31
|
Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar Drugs 2019; 17:E467. [PMID: 31405173 PMCID: PMC6723527 DOI: 10.3390/md17080467] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold-a three-dimensional (3D) structure fabricated from biomaterials-is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.
Collapse
Affiliation(s)
- Ye-Seon Lim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ye-Jin Ok
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seon-Yeong Hwang
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
32
|
Kumar A, Elavarasan K, Hanjabam MD, Binsi P, Mohan C, Zynudheen A, Kumar K A. Marine collagen peptide as a fortificant for biscuit: Effects on biscuit attributes. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Felician FF, Yu RH, Li MZ, Li CJ, Chen HQ, Jiang Y, Tang T, Qi WY, Xu HM. The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chin J Traumatol 2019; 22:12-20. [PMID: 30827814 PMCID: PMC6529365 DOI: 10.1016/j.cjtee.2018.10.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Wound represents a major health challenge as they consume a large amount of healthcare resources to improve patient's quality of life. Many scientific studies have been conducted in search of ideal biomaterials with wound-healing activity for clinical use and collagen has been proven to be a suitable candidate biomaterial. This study intended to investigate the wound healing activity of collagen peptides derived from jellyfish following oral administration. METHODS In this study, collagen was extracted from the jellyfish--Rhopilema esculentum using 1% pepsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fourier transform infrared (FTIR) were used to identify and determine the molecular weight of the jellyfish collagen. Collagenase II, papain and alkaline proteinase were used to breakdown jellyfish collagen into collagen peptides. Wound scratch assay (in vitro) was done to determine migration potential of human umbilical vein endothelial cells (HUVEC) covering the artificial wound created on the cell monolayer following treatment with collagen peptides. In vivo studies were conducted to determine the effects of collagen peptides on wound healing by examining wound contraction, re-epithelialization, tissue regeneration and collagen deposition on the wounded skin of mice. Confidence level (p < 0.05) was considered significant using GraphPad Prism software. RESULTS The yield of collagen was 4.31%. The SDS-PAGE and FTIR showed that extracted collagen from jellyfish was type I. Enzymatic hydrolysis of this collagen using collagenase II produced collagen peptides (CP1) and hydrolysis with alkaline proteinase/papain resulted into collagen peptides (CP2). Tricine SDS-PAGE revealed that collagen peptides consisted of protein fragments with molecular weight <25 kDa. Wound scratch assay showed that there were significant effects on the scratch closure on cells treated with collagen peptides at a concentration of 6.25 μg/mL for 48 h as compared to the vehicle treated cells. Overall treatment with collagen peptide on mice with full thickness excised wounds had a positive result in wound contraction as compared with the control. Histological assessment of peptides treated mice models showed remarkable sign of re-epithelialization, tissue regeneration and increased collagen deposition. Immunohistochemistry of the skin sections showed a significant increase in β-fibroblast growth factor (β-FGF) and the transforming growth factor-β1 (TGF-β1) expression on collagen peptides treated group. CONCLUSION Collagen peptides derived from the jellyfish-Rhopilema esculentum can accelerate the wound healing process thus could be a therapeutic potential product that may be beneficial in wound clinics in the future.
Collapse
Affiliation(s)
- Fatuma Felix Felician
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Rui-He Yu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Meng-Zhen Li
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chun-Jie Li
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hui-Qin Chen
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Jiang
- Department of Marine Pharmacy, College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Tang
- Department of Marine Pharmacy, College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wei-Yan Qi
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Department of Marine Pharmacy, College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Han-Mei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China; Department of Marine Pharmacy, College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
34
|
Ito N, Seki S, Ueda F. Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions and Plasma IGF-1 Levels-A Randomized, Double-Blind, Placebo-Controlled Trial. Mar Drugs 2018; 16:md16120482. [PMID: 30513923 PMCID: PMC6315531 DOI: 10.3390/md16120482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Aging-associated changes of skin conditions are a major concern for maintaining quality of life. Therefore, the improvement of skin conditions by dietary supplementation is a topic of public interest. In this study, we hypothesized that a composite supplement containing fish derived-collagen peptide and ornithine (CPO) could improve skin conditions by increasing plasma growth hormone and/or insulin-like growth factor-1 (IGF-1) levels. Twenty-two healthy Japanese participants were enrolled in an 8-week double-blind placebo-controlled pilot study. They were assigned to either a CPO group, who were supplemented with a drink containing CPO, or an identical placebo group. We examined skin conditions including elasticity and transepidermal water loss (TEWL), as well as plasma growth hormone and IGF-1 levels. Skin elasticity and TEWL were significantly improved in the CPO group compared with the placebo group. Furthermore, only the CPO group showed increased plasma IGF-1 levels after 8 weeks of supplementation compared with the baseline. Our results might suggest the novel possibility for the use of CPO to improve skin conditions by increasing plasma IGF-1 levels.
Collapse
Affiliation(s)
- Naoki Ito
- Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.
| | - Shinobu Seki
- Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.
| | - Fumitaka Ueda
- Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.
| |
Collapse
|
35
|
Fan WJ, Hou YT, Sun XH, Li XQ, Wang ZF, Guo M, Zhu LM, Wang N, Yu K, Li JN, Ke MY, Fang XC. Effect of high-fat, standard, and functional food meals on esophageal and gastric pH in patients with gastroesophageal reflux disease and healthy subjects. J Dig Dis 2018; 19:664-673. [PMID: 30270576 DOI: 10.1111/1751-2980.12676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To investigate the effects of different test meals on esophageal and intragastric pH in patients with gastroesophageal reflux disease (GERD) and healthy subjects and to demonstrate the relationship between esophageal acid exposure (EAE) and gastric pH. METHODS We enrolled patients with reflux esophagitis (RE; n = 15), nonerosive reflux disease (NERD; n = 12) and healthy subjects (n = 10). Four pH electrodes were used to monitor the pH of the distal esophagus, upper border of the lower esophageal sphincter, gastric fundus, and gastric body for 26 hours. Isocaloric and isovolumetric high-fat, standard, and functional meals were supplied randomly to the participants. The EAE and gastric acidity of each meal in fasting and postprandial states were compared. RESULTS High-fat meals significantly increased postprandial EAE in patients with RE and NERD. EAE was higher after a high-fat meal than after a standard or functional food meals at the fourth hour postprandially in patients with RE (P < 0.05). Patients with NERD reported fewer symptoms after a functional food meal than after high-fat and standard meals (0 [interquartile range {IQR} 0-1] vs 1 [IQR 0-2] vs 3 [IQR 1-4], P = 0.014). Compared with high-fat and standard meals, functional food meal significantly decreased gastric acidity in patients with RE. EAE was significantly related to gastric acidity in patients with RE. CONCLUSIONS High-fat meals increased EAE in patients with RE and NERD. Functional food could serve as adjuvant therapy in GERD patients. EAE was related to gastric acidity in RE patients.
Collapse
Affiliation(s)
- Wen Juan Fan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tao Hou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Hong Sun
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Qing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Feng Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Guo
- Beijing Wei Di Kang Tai Medical Equipment Ltd., Beijing, China
| | - Li Ming Zhu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Wang
- Beijing Tongrentang Health Pharmaceutical Co., Ltd., Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Nan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yun Ke
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiu Cai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Effects of oral administration of peptides with low molecular weight from Alaska Pollock (Theragra chalcogramma) on cutaneous wound healing. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
37
|
Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chem 2018; 258:174-180. [DOI: 10.1016/j.foodchem.2018.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/22/2022]
|
38
|
Felician FF, Xia C, Qi W, Xu H. Collagen from Marine Biological Sources and Medical Applications. Chem Biodivers 2018. [DOI: 10.1002/cbdv.201700557] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fatuma Felix Felician
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| | - Chunlei Xia
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| | - Weiyan Qi
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
- Department of Marine Pharmacy; College of Life Science and Technology; P. R. China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
- Department of Marine Pharmacy; College of Life Science and Technology; P. R. China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| |
Collapse
|
39
|
Yamamoto T, Nakanishi S, Mitamura K, Taga A. Collagen peptides from soft‑shelled turtle induce calpain‑1 expression and regulate inflammatory cytokine expression in HaCaT human skin keratinocytes. Int J Mol Med 2018; 42:1168-1180. [DOI: 10.3892/ijmm.2018.3659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Saori Nakanishi
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| |
Collapse
|
40
|
Benjakul S, Karnjanapratum S, Visessanguan W. Hydrolysed collagen from Lates calcarifer
skin: its acute toxicity and impact on cell proliferation and collagen production of fibroblasts. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13772] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soottawat Benjakul
- Department of Food Technology; Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Supatra Karnjanapratum
- Department of Food Technology; Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
- Faculty of Agro-Industry; King Mongkut's Institute of Technology Ladkrabang; Ladkrabang Bangkok 10520 Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC); 113 Thailand Science Park Phahonyothin Road Pathumthani 12120 Thailand
| |
Collapse
|
41
|
Fu Y, Therkildsen M, Aluko RE, Lametsch R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit Rev Food Sci Nutr 2018; 59:2011-2027. [DOI: 10.1080/10408398.2018.1436038] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Fu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Rotimi E. Aluko
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Winnipeg, Canada
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
42
|
Hong H, Chaplot S, Chalamaiah M, Roy BC, Bruce HL, Wu J. Removing Cross-Linked Telopeptides Enhances the Production of Low-Molecular-Weight Collagen Peptides from Spent Hens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7491-7499. [PMID: 28745049 DOI: 10.1021/acs.jafc.7b02319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The low-molecular-weight (LMW) peptides derived from collagen have shown a potential for various nutritional and pharmaceutical applications. However, production of LMW peptides from vertebrate collagen remains a challenge. Herein, we report a new method to produce LMW collagen peptides using pepsin pretreatment that removed cross-linked telopeptides in collagen molecules. After the pretreatment, the proportion of LMW collagen peptides (<1.4 kDa) that were obtained from pepsin-soluble collagen increased to 32.59% compared to heat-soluble collagen peptides (16.10%). Fourier transform infrared spectroscopy results indicated that telopeptide cleavage retained the triple-helical conformation of collagen. Liquid chromatography-tandem mass spectrometry analysis suggested that Gly-X-Y (X is often proline, while Y is either hydroxyproline or hydroxylysine) repeats were not the main factors that hindered the enzymatic hydrolysis of collagen molecules. However, cross-link quantification demonstrated that trivalent cross-links that included pyridinolines and pyrroles were the primary obstacles to producing small peptides from collagen of spent hens. This study demonstrated for the first time that removing cross-linked telopeptides could enhance the production of LMW peptides from spent hen collagen, which is also of interest to manufacturers who produce LMW collagen peptides from other vertebrate animals, such as bovids and porcids.
Collapse
Affiliation(s)
- Hui Hong
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Shreyak Chaplot
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Meram Chalamaiah
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
43
|
Fish Scale Collagen Peptides Protect against CoCl 2/TNF- α-Induced Cytotoxicity and Inflammation via Inhibition of ROS, MAPK, and NF- κB Pathways in HaCaT Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9703609. [PMID: 28717410 PMCID: PMC5498912 DOI: 10.1155/2017/9703609] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022]
Abstract
Skin diseases associated with inflammation or oxidative stress represent the most common problem in dermatology. The present study demonstrates that fish scale collagen peptides (FSCP) protect against CoCl2-induced cytotoxicity and TNF-α-induced inflammatory responses in human HaCaT keratinocyte cells. Our study is the first to report that FSCP increase cell viability and ameliorate oxidative injury in HaCaT cells through mechanisms mediated by the downregulation of key proinflammatory cytokines, namely, TNF-α, IL-1β, IL-8, and iNOS. FSCP also prevent cell apoptosis by repressing Bax expression, caspase-3 activity, and cytochrome c release and by upregulating Bcl-2 protein levels in CoCl2- or TNF-α-stimulated HaCaT cells. In addition, the inhibitory effects of FSCP on cytotoxicity and the induction of proinflammatory cytokine expression were found to be associated with suppression of the ROS, MAPK (p38/MAPK, ERK, and JNK), and NF-κB signaling pathways. Taken together, our data suggest that FSCP are useful as immunomodulatory agents in inflammatory or immune-mediated skin diseases. Furthermore, our results provide new insights into the potential therapeutic use of FSCP in the prevention and treatment of various oxidative- or inflammatory stress-related inflammation and injuries.
Collapse
|
44
|
Effects of marine collagen peptides on glucose metabolism and insulin resistance in type 2 diabetic rats. Journal of Food Science and Technology 2017; 54:2260-2269. [PMID: 28740282 DOI: 10.1007/s13197-017-2663-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The present study was conducted to investigate the effects of marine collagen peptides (MCPs) on glucose metabolism and insulin resistance using a rat model of type 2 diabetes mellitus (T2DM). Forty T2DM obese Wistar rats were randomly assigned to receive varying doses of MCPs or a vehicle control for 4 weeks. Blood glucose and insulin levels, as well as oxidative stress and inflammation were measured. The expression of glucose transporter type 4 (GLUT4) in skeletal muscles and peroxisome proliferator-activated receptor-α (PPAR-α) in livers of T2DM rats was also measured. It was found that in the group of 9.0 g/kg/day MCPs significantly improved glucose, insulin, and homeostatic model assessment-insulin resistance, and increased the insulin sensitivity index (ISI). In addition, the groups of 4.5 and 2.25 g/kg/day MCPs significantly improved liver steatosis. It was also found that MCPs decreased expression of oxidative stress biomarkers and inflammatory cytokines and adipocytokines in T2DM rats. In conclusion, medium and high doses of MCPs (≥4.5 g/kg/day) improved glucose metabolism and insulin sensitivity in T2DM rats. These beneficial effects of MCPs may be mediated by decreasing oxidative stress and inflammation and by up-regulating GLUT4, and PPAR-α activity.
Collapse
|
45
|
Pal GK, Suresh P. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.015] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Skin Antiageing and Systemic Redox Effects of Supplementation with Marine Collagen Peptides and Plant-Derived Antioxidants: A Single-Blind Case-Control Clinical Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4389410. [PMID: 26904164 PMCID: PMC4745978 DOI: 10.1155/2016/4389410] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023]
Abstract
Recently, development and research of nutraceuticals based on marine collagen peptides (MCPs) have been growing due to their high homology with human collagens, safety, bioavailability through gut, and numerous bioactivities. The major concern regarding safety of MCPs intake relates to increased risk of oxidative stress connected with collagen synthesis (likewise in fibrosis) and to ROS production by MCPs-stimulated phagocytes. In this clinical-laboratory study, fish skin MCPs combined with plant-derived skin-targeting antioxidants (AO) (coenzyme Q10 + grape-skin extract + luteolin + selenium) were administered to volunteers (n = 41). Skin properties (moisture, elasticity, sebum production, and biological age) and ultrasonic markers (epidermal/dermal thickness and acoustic density) were measured thrice (2 months before treatment and before and after cessation of 2-month oral intake). The supplementation remarkably improved skin elasticity, sebum production, and dermal ultrasonic markers. Metabolic data showed significant increase of plasma hydroxyproline and ATP storage in erythrocytes. Redox parameters, GSH/coenzyme Q10 content, and GPx/GST activities were unchanged, while NO and MDA were moderately increased within, however, normal range of values. Conclusions. A combination of MCPs with skin-targeting AOs could be effective and safe supplement to improve skin properties without risk of oxidative damage.
Collapse
|