1
|
Felicianna, Lo EKK, Chen C, Ismaiah MJ, Zhang F, Leung HKM, El-Nezami H. Low-dose valine attenuates diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) in mice by enhancing leptin sensitivity and modulating the gut microbiome. Mol Metab 2024; 90:102059. [PMID: 39489290 PMCID: PMC11616088 DOI: 10.1016/j.molmet.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES Elevated circulating branched-chain amino acids (BCAAs) have been associated with obesity, insulin resistance, and MASLD. Nonetheless, BCAA supplementation has been shown to provide protective outcomes towards the intervention of MASLD. Currently, there is a lack of study towards the contribution of the BCAA: valine on MASLD. Herein, the effect of low-dose valine supplementation was investigated for its role in the progression of MASLD. METHODS C57BL/6J mice were fed a high-fat/high-cholesterol diet (HFD) to induce MASLD. Upon the establishment of MASLD, valine was supplemented via voluntary oral administration. Clinical and biochemical parameters associated with MASLD were measured, and molecular mechanism and gut microbiota modulation from the effect of valine were investigated. RESULTS Low-dose valine was found to attenuate the progression of MASLD, significantly reducing the gain in body weight, liver weight, and epididymal white adipose tissue (eWAT) weight, while also attenuating hyperglycemia and hyperleptinemia, and improving serum lipid profiles. Mechanistically, in the liver, genes related to hepatic lipogenesis and cholesterol biosynthesis were downregulated, while those associated with fatty acid oxidation, autophagy, and antioxidant capacity were upregulated, and AMPK pathway activity was enhanced. Liver and hypothalamic leptin resistance and inflammation were also attenuated, allowing better appetite control in mice fed a HFD and leading to reduced food intake. Additionally, metabolic flexibility in the eWAT was improved, and the gut microbiome was modulated by low-dose valine supplementation. CONCLUSION Low-dose valine supplementation attenuates MASLD by enhancing systemic leptin sensitivity and modulating the gut microbiome.
Collapse
Affiliation(s)
- Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Emily K K Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Marsena J Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
2
|
Uno M, Bono H. Transcriptional Signatures of Domestication Revealed through Meta-Analysis of Pig, Chicken, Wild Boar, and Red Junglefowl Gene Expression Data. Animals (Basel) 2024; 14:1998. [PMID: 38998110 PMCID: PMC11240496 DOI: 10.3390/ani14131998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Domesticated animals have undergone significant changes in their behavior, morphology, and physiological functions during domestication. To identify the changes in gene expression associated with domestication, we collected the RNA-seq data of pigs, chickens, wild boars, and red junglefowl from public databases and performed a meta-analysis. Gene expression was quantified, and the expression ratio between domesticated animals and their wild ancestors (DW-ratio) was calculated. Genes were classified as "upregulated", "downregulated", or "unchanged" based on their DW-ratio, and the DW-score was calculated for each gene. Gene set enrichment analysis revealed that genes upregulated in pigs were related to defense from viral infection, whereas those upregulated in chickens were associated with aminoglycan and carbohydrate derivative catabolic processes. Genes commonly upregulated in pigs and chickens are involved in the immune response, olfactory learning, epigenetic regulation, cell division, and extracellular matrix. In contrast, genes upregulated in wild boar and red junglefowl are related to stress response, cell proliferation, cardiovascular function, neural regulation, and energy metabolism. These findings provide valuable insights into the genetic basis of the domestication process and highlight potential candidate genes for breeding applications.
Collapse
Affiliation(s)
- Motoki Uno
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
3
|
Yin Y, Gong S, Han M, Wang J, Shi H, Jiang X, Guo L, Duan Y, Guo Q, Chen Q, Li F. Leucine regulates lipid metabolism in adipose tissue through adipokine-mTOR-SIRT1 signaling pathway and bile acid-microbe axis in a finishing pig model. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:158-173. [PMID: 38357569 PMCID: PMC10864217 DOI: 10.1016/j.aninu.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 02/16/2024]
Abstract
This study was conducted to explore the regulatory mechanism of leucine (Leu) on lipid metabolism of finishing pigs. Twenty-four Duroc × Landrace × Large cross pigs with an average body weight of 68.33 ± 0.97 kg were randomly allocated into 3 treatment groups with 8 replicates per group (1 pig per replicate). The dietary treatments were as follows: control group (CON), 0.25% Leu group and 0.50% Leu group. The experimental period was 42 d. The results showed as follows. (1) Compared with the CON, 0.25% and 0.50% Leu increased (P < 0.01) the average daily gain (ADG), while the average backfat thickness (ABT) and the ratio of feed intake to body weight gain (F:G ratio) were decreased (P < 0.05). (2) In the 0.25% Leu group, the relative mRNA expression levels of sterol regulatory element binding protein-1c (SREBP1c), recombinant fatty acid transport protein 1 (FATP1), chemerin and peroxisome proliferator-activated receptor γ (PPARγ) were decreased but the level of fatty acid binding protein 4 (FABP4) and fatty acid translocase (FAT/CD36) were increased in backfat tissue. In the 0.25% Leu group, the protein levels of p-Rictor, p-Raptor, p-eIF4E-binding protein 1 (p-4EBP1), p-silent mating type information regulator 2 homolog 1 (p-SIRT1) and acetylation ribosome s6 protein kinase 1 (Ac-S6K1) were increased (P < 0.05). (3) Compared to the CON, the diversity of gut microbiota in the 0.25% Leu group was increased. Principal component analysis showed that the relative abundance of Bacteroidetes, Lactobacillus and Desulfovibrio was higher in the 0.25% Leu group than the CON, but the relative abundance of Firmicutes, Treponema and Shigella was lower than in the CON (P < 0.05). (4) Four different metabolites were screened out from the serum of finishing pigs including allolithocholic acid (alloLCA), isolithocholic acid (isoLCA), ursodeoxycholic acid (UDCA) and hyodeoxycholic acid (HDCA), which correlate to various degrees with the above microorganisms. In conclusion, Leu could promote adipose tissue lipolysis of finishing pigs through the mTOR-SIRT1 signaling pathway, and S6K1 is acetylated at the same time, and the interaction between gut microbiota and bile acid metabolism is also involved.
Collapse
Affiliation(s)
- Yunju Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Saiming Gong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengmeng Han
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzun Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Hanjing Shi
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
- College of Life Sciences, Hunan Normal University, Changsha 410128, China
| | - Xianji Jiang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Liu Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Qiuping Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Subias-Gusils A, Álvarez-Monell A, Boqué N, Caimari A, Mariné-Casadó R, Escorihuela RM, Solanas M. Effects of a Calorie-Restricted Cafeteria Diet and Oleuropein Supplementation on Adiposity and mRNA Expression of Energy Balance Related Genes in Obese Male Rats. Metabolites 2023; 13:metabo13020147. [PMID: 36837766 PMCID: PMC9965300 DOI: 10.3390/metabo13020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Supplementation with natural bioactive compounds has been proposed to be a complementary tool to the calorie-restricted diets and physical exercise programs used to tackle human overweight, obesity and Metabolic syndrome. Herein, we evaluated the effects of 14 weeks of calorie-restricted cafeteria diet either alone or combined with oral administration of the polyphenol oleuropein in obese adult male rats, compared with a control group fed standard chow and a group fed cafeteria diet. Animals were sacrificed at the age of 26 weeks and several tissues of interest were removed. The results showed that both dietary interventions reduced the adiposity index (p < 0.05 and p < 0.01, respectively), and specifically the abdominal fat depots (mesenteric: p < 0.01 and p < 0.01, respectively; and epididymal: both diets p < 0.001) and restored the decreased soleus skeletal muscle mass. Both interventions decreased leptin mRNA expression in mesenteric white adipose tissue (p < 0.05) and normalized hypothalamic Agrp mRNA expression compared to cafeteria-fed obese rats (p < 0.05). However, only the calorie-restricted cafeteria diet supplemented with oleuropein induced additional lower retroperitoneal adipose accretion (p < 0.05) and increased hypothalamic leptin receptor mRNA levels (p < 0.05). Experiments with female animals, at different doses and longer intervention periods, are needed to better determine the potential benefits of this dietary treatment.
Collapse
Affiliation(s)
- Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adam Álvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Noemi Boqué
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.E.); (M.S.); Tel.: +34-93-5813296 (R.M.E.); +34-93-5811373 (M.S.)
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.E.); (M.S.); Tel.: +34-93-5813296 (R.M.E.); +34-93-5811373 (M.S.)
| |
Collapse
|
5
|
Lueders B, Kanney BC, Krone MJ, Gannon NP, Vaughan RA. Effect of branched-chain amino acids on food intake and indicators of hunger and satiety- a narrative summary. HUMAN NUTRITION & METABOLISM 2022; 30:200168. [DOI: 10.1016/j.hnm.2022.200168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Lin Y, Li J, Wang K, Fang Z, Che L, Xu S, Feng B, Zhuo Y, Li J, Wu D. Effects of dietary L-leucine supplementation on testicular development and semen quality in boars. Front Vet Sci 2022; 9:904653. [PMID: 35909677 PMCID: PMC9334790 DOI: 10.3389/fvets.2022.904653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Sperm and seminal plasma are rich in leucine, and leucine can promote the protein synthesis. This property makes it an interesting amino acid to increase sperm quality of human and livestock spermatogenesis. The goal of this study was to explore the effects of dietary leucine supplementation on testicular development and semen quality in boars from weaning to 10 months of age. 30 pure-bred, weaned Duroc boars (8.0 ± 1.0 kg) were randomly divided into two groups: control group (CON; fed the basal diet) and leucine group (LEU; fed the basal diet supplemented with 1.2% leucine); then, their body weight and testicular volume were recorded every 4 weeks. Testes were collected for histological and genes expression analysis from 150-day-old boars. Semen was collected and analyzed. Amino acids contents of blood plasma, seminal plasma, sperm, and testes were determined. Dietary supplementation with leucine increased the testicular volume and weight of boars, compared with CON. Sperm viability, sperm count per ejaculation, and average curve speed of sperm in leucine-supplemented boars were increased. Furthermore, leucine supplementation increased the blood plasma and seminal plasma leucine concentrations, and enhanced the gene expressions of branch chain amino acid transaminase, protein kinase B, mammalian target of rapamycin (mTOR), and cyclinb1 in the testes. Interestingly, the expressions of the p-mTOR and mTOR proteins in the testes were also upregulated. Thus, dietary leucine supplementation increased leucine absorption and utilization in the testes, promoted testicular development, and improved semen quality of boars, partly through the mTOR signaling pathway.
Collapse
|
7
|
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci 2022; 23:5202. [PMID: 35563589 PMCID: PMC9099768 DOI: 10.3390/ijms23095202] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing worldwide health problem, affecting many people due to excessive saturated fat consumption, lack of exercise, or a sedentary lifestyle. Leptin is an adipokine secreted by adipose tissue that increases in obesity and has central actions not only at the hypothalamic level but also in other regions and nuclei of the central nervous system (CNS) such as the cerebral cortex and hippocampus. These regions express the long form of leptin receptor LepRb, which is the unique leptin receptor capable of transmitting complete leptin signaling, and are the first regions to be affected by chronic neurocognitive deficits, such as mild cognitive impairment (MCI) and Alzheimer's Disease (AD). In this review, we discuss different leptin resistance mechanisms that could be implicated in increasing the risk of developing AD, as leptin resistance is frequently associated with obesity, which is a chronic low-grade inflammatory state, and obesity is considered a risk factor for AD. Key players of leptin resistance are SOCS3, PTP1B, and TCPTP whose signalling is related to inflammation and could be worsened in AD. However, some data are controversial, and it is necessary to further investigate the underlying mechanisms of the AD-causing pathological processes and how altered leptin signalling affects such processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Sánchez Pizjuan 4, 41009 Sevilla, Spain; (J.A.F.-C.); (A.P.-P.); (C.J.-C.); (G.A.); (A.F.-B.)
| |
Collapse
|
8
|
Abstract
BACKGROUND Obesity develops due to an imbalance in energy homeostasis, wherein energy intake exceeds energy expenditure. Accumulating evidence shows that manipulations of dietary protein and their component amino acids affect the energy balance, resulting in changes in fat mass and body weight. Amino acids are not only the building blocks of proteins but also serve as signals regulating multiple biological pathways. SCOPE OF REVIEW We present the currently available evidence regarding the effects of dietary alterations of a single essential amino acid (EAA) on energy balance and relevant signaling mechanisms at both central and peripheral levels. We summarize the association between EAAs and obesity in humans and the clinical use of modifying the dietary EAA composition for therapeutic intervention in obesity. Finally, similar mechanisms underlying diets varying in protein levels and diets altered of a single EAA are described. The current review would expand our understanding of the contribution of protein and amino acids to energy balance control, thus helping discover novel therapeutic approaches for obesity and related diseases. MAJOR CONCLUSIONS Changes in circulating EAA levels, particularly increased branched-chain amino acids (BCAAs), have been reported in obese human and animal models. Alterations in dietary EAA intake result in improvements in fat and weight loss in rodents, and each has its distinct mechanism. For example, leucine deprivation increases energy expenditure, reduces food intake and fat mass, primarily through regulation of the general control nonderepressible 2 (GCN2) and mammalian target of rapamycin (mTOR) signaling. Methionine restriction by 80% decreases fat mass and body weight while developing hyperphagia, primarily through fibroblast growth factor 21 (FGF-21) signaling. Some effects of diets with different protein levels on energy homeostasis are mediated by similar mechanisms. However, reports on the effects and underlying mechanisms of dietary EAA imbalances on human body weight are few, and more investigations are needed in future.
Collapse
Affiliation(s)
- Fei Xiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
9
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Amino Acids in Health and Endocrine Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:97-109. [PMID: 32761572 DOI: 10.1007/978-3-030-45328-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dietary amino acids play an important role in maintaining health. Branched chain amino acids can adversely increase blood pressure whereas arginine and citrulline can reduce it. D-amino acids play important roles in several cell types including testis, the nervous system and adrenal glands. Several amino acids also can have dramatic effects on diabetes; branched chain amino acids, phenylalanine and tyrosine have been implicated while others, namely arginine and citrulline can improve outcomes. Leucine has been shown to play important roles in muscle primarily through the mTOR pathway though this effect does not translate across every population. Glutamine, arginine and D-aspartate also exert their muscle effects through mTOR. Relationships between amino acids and endocrine function include that of glucocorticoids, thyroid function, glucagon-like peptide 1 (GLP-1), ghrelin, insulin-like growth factor-1 (IGF-1) and leptin. Leucine, for example, can alleviate the effect of dexamethasone on muscle protein accretion. Interestingly, amino acid transporters play an important role in thyroid function. Several amino acids have been shown to increase GLP-1 levels in non-diabetics when administered orally. Similarly, several amino acids increase ghrelin levels in different species while cysteine can decrease it in mice. There is evidence to suggest that the arginine/NO pathway may be involved in modulating some of the effects of ghrelin on cells. In regard to IGF-1, branched chain amino acids can increase levels in adults while tryptophan and phenylalanine have been shown to increase levels in infants. Finally, leptin levels can be elevated by branched chain amino acids while restricting leucine in high fat diets can increase leptin sensitivity.
Collapse
|
11
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
12
|
Cai BB, Lu YN, Xu M. Acid sphingomyelinase downregulation alleviates vascular endothelial leptin resistance in rats. Acta Pharmacol Sin 2020; 41:650-660. [PMID: 31848475 PMCID: PMC7471453 DOI: 10.1038/s41401-019-0328-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
Leptin resistance in endothelial cells leads to vascular endothelial dysfunction, which is the beginning and crucial link of atherosclerosis. However, the mechanism of leptin resistance remains obscure. Acid sphingomyelinase (ASM) catalyzes the hydrolysis of sphingomyelin to produce ceramide, which plays an important role in the progression of metabolic and cardiovascular diseases. In this study, we investigated whether ASM could regulate leptin resistance in vascular endothelial cells. We induced endothelial leptin resistance in rat aortic endothelial cells through treatment with palmitic acid (0.3 mM) or knockdown of leptin receptor (Ob-Rb), which resulted in the increase of suppressor of cytokine signaling 3 expression, the decrease of Ob-Rb expression, and signal transducer and activator of transcription 3 (STAT3) phosphorylation at Tyr705. We found that these indicators of leptin resistance were reversed by knockdown of ASM or by the selective ASM inhibitors amitriptyline (AMI) and imipramine (IMI). Supplementation of ceramide inhibited Ob-Rb expression and STAT3 phosphorylation by inhibiting extracellular signal-regulated kinase 1/2 activation. Furthermore, we found that knockdown of ASM enhanced endothelial nitric oxide (NO) synthase activity and NO production, as well as the Akt phosphorylation at ser473, which was regulated by STAT3. High-fat diet (HFD) feeding-induced leptin resistance in rats in vivo; administration of AMI and IMI (10 mg· kg−1 per day, intraperitoneally, for 2 weeks) increased the release of endothelial NO to relieve the vasodilatory response and improved the endothelial leptin resistance in the aorta of HFD-fed rats. These results suggest that ASM downregulation reverses endothelial leptin resistance, and consequently improves vascular endothelial dysfunction. This study highlighted ASM as a potential therapeutic target for endothelial leptin resistance.
Collapse
|
13
|
Seridi L, Leo GC, Dohm GL, Pories WJ, Lenhard J. Time course metabolome of Roux-en-Y gastric bypass confirms correlation between leptin, body weight and the microbiome. PLoS One 2018; 13:e0198156. [PMID: 29851973 PMCID: PMC5979615 DOI: 10.1371/journal.pone.0198156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) is an effective way to lose weight and reverse type 2 diabetes. We profiled the metabolome of 18 obese patients (nine euglycemic and nine diabetics) that underwent RYGB surgery and seven lean subjects. Plasma samples from the obese patients were collected before the surgery and one week and three months after the surgery. We analyzed the metabolome in association to five hormones (Adiponectin, Insulin, Ghrelin, Leptin, and Resistin), four peptide hormones (GIP, Glucagon, GLP1, and PYY), and two cytokines (IL-6 and TNF). PCA showed samples cluster by surgery time and many microbially driven metabolites (indoles in particular) correlated with the three months after the surgery. Network analysis of metabolites revealed a connection between carbohydrate (mannosamine and glucosamine) and glyoxylate and confirms glyoxylate association to diabetes. Only leptin and IL-6 had a significant association with the measured metabolites. Leptin decreased immediately after RYGB (before significant weight loss), whereas IL-6 showed no consistent response to RYGB. Moreover, leptin associated with tryptophan in support of the possible role of leptin in the regulation of serotonin synthesis pathways in the gut. These results suggest a potential link between gastric leptin and microbial-derived metabolites in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Loqmane Seridi
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
- * E-mail:
| | - Gregory C. Leo
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
| | - G. Lynis Dohm
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Walter J. Pories
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - James Lenhard
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
| |
Collapse
|
14
|
Perez-Suarez I, Ponce-González JG, de La Calle-Herrero J, Losa-Reyna J, Martin-Rincon M, Morales-Alamo D, Santana A, Holmberg HC, Calbet JAL. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle. J Appl Physiol (1985) 2017; 123:1276-1287. [DOI: 10.1152/japplphysiol.00454.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 07/19/2017] [Indexed: 11/22/2022] Open
Abstract
In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt−1·day−1) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt−1·day−1). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr1141OBR, phospho-Tyr985OBR, JAK2, and phospho-Tyr1007/1008JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr705STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r = −0.75), phospho-Tyr985OBR ( r = 0.88), and phospho-Tyr705STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in response to a severe energy deficit, contributing to increase maximal fat oxidation. The responses are more prominent in the arm muscles than in the legs but partly blunted by whey protein ingestion and high volume of exercise. This occurs despite an increase of protein tyrosine phosphatase 1B protein expression, a known inhibitor of insulin and leptin signaling.
Collapse
Affiliation(s)
- Ismael Perez-Suarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain; and
| | | | - Jaime de La Calle-Herrero
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jose Losa-Reyna
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain; and
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain; and
| | - Alfredo Santana
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain; and
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Jose A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain; and
| |
Collapse
|
15
|
Jiao J, Han SF, Zhang W, Xu JY, Tong X, Yin XB, Yuan LX, Qin LQ. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr Res 2016; 60:31304. [PMID: 27616737 PMCID: PMC5018683 DOI: 10.3402/fnr.v60.31304] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Background Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD). Design C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group) or 3% leucine (HFCD+3% Leu group) for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC), triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT) browning were determined. Results Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase) and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion This study demonstrated that chronic leucine supplementation reduced the body weight and improved the lipid profile of mice fed with a HFCD. This beneficial effect was ascribed to hepatic lipogenesis, adipocyte lipolysis, and WAT browning.
Collapse
Affiliation(s)
- Jun Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Shu-Fen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xing Tong
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Xue-Bin Yin
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China
| | - Lin-Xi Yuan
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China;
| |
Collapse
|
16
|
Aragonès G, Ardid-Ruiz A, Ibars M, Suárez M, Bladé C. Modulation of leptin resistance by food compounds. Mol Nutr Food Res 2016; 60:1789-803. [DOI: 10.1002/mnfr.201500964] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Gerard Aragonès
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Andrea Ardid-Ruiz
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Maria Ibars
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Cinta Bladé
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|