1
|
Radziszewska A, Peckham H, Restuadi R, Kartawinata M, Moulding D, de Gruijter NM, Robinson GA, Butt M, Deakin CT, Wilkinson MGL, Wedderburn LR, Jury EC, Rosser EC, Ciurtin C. Type I interferon and mitochondrial dysfunction are associated with dysregulated cytotoxic CD8+ T cell responses in juvenile systemic lupus erythematosus. Clin Exp Immunol 2025; 219:uxae127. [PMID: 39719886 PMCID: PMC11748002 DOI: 10.1093/cei/uxae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/26/2024] Open
Abstract
Juvenile systemic lupus erythematosus (JSLE) is an autoimmune condition which causes significant morbidity in children and young adults and is more severe in its presentation than adult-onset SLE. While many aspects of immune dysfunction have been studied extensively in adult-onset SLE, there is limited and contradictory evidence of how cytotoxic CD8+ T cells contribute to disease pathogenesis and studies exploring cytotoxicity in JSLE are virtually non-existent. Here, we report that CD8+ T cell cytotoxic capacity is reduced in JSLE versus healthy controls, irrespective of treatment or disease activity. Transcriptomic and serum metabolomic analysis identified that this reduction in cytotoxic CD8+ T cells in JSLE was associated with upregulated type I interferon (IFN) signalling, mitochondrial dysfunction, and metabolic disturbances when compared to controls. Greater interrogation of the influence of these pathways on altered cytotoxic CD8+ T cell function demonstrated that JSLE CD8+ T cells had enlarged mitochondria and enhanced sensitivity to IFN-α leading to selective apoptosis of effector memory (EM) CD8+ T cells, which are enriched for cytotoxic mediator-expressing cells. This process ultimately contributes to the observed reduction in CD8+ T cell cytotoxicity in JSLE, reinforcing the growing evidence that mitochondrial dysfunction is a key pathogenic factor affecting multiple immune cell populations in type I IFN-driven rheumatic diseases.
Collapse
Affiliation(s)
- Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Restuadi Restuadi
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melissa Kartawinata
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dale Moulding
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - George A Robinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Maryam Butt
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Meredyth G Ll Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C Jury
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, GOSH, London, UK
- Department of Ageing, Rheumatology & Regenerative Medicine, Division of Medicine, UCL, London, UK
| |
Collapse
|
2
|
Kumar R, Thakur A, Kumar S, Hajam YA. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon 2024; 10:e37138. [PMID: 39296128 PMCID: PMC11408027 DOI: 10.1016/j.heliyon.2024.e37138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Royal jelly (RJ), a secretion produced by honeybees, has garnered significant interest for its potential as a therapeutic intervention and functional food supplement. This systematic review aims to synthesize current research on the health benefits, bioactive components, and mechanisms of action of RJ. Comprehensive literature searches were conducted across multiple databases, including PubMed, Scopus, and Web of Science, focusing on studies published from 2000 to 2024 (April). Findings indicate that RJ exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anti-aging effects. Beneficial biological properties of RJ might be due to the presence of flavonoids proteins, peptides, fatty acids. Both preclinical and clinical studies have reported that RJ improves the immune function such as wound healing, and also decreases the severity of chronic diseases including diabetes and cardiovascular disorders. The molecular mechanisms underlying these effects involve modulation of signalling pathways such as NF-κB, MAPK, and AMPK. Despite promising results, the review identifies several gaps in the current knowledge, including the need for standardized dosing regimens and long-term safety assessments. Furthermore, variations in RJ composition due to geographic and botanical factors necessitate more rigorous quality control measures. This review underscores the potential of RJ as a multifunctional therapeutic agent and highlights the necessity for further well designed studies to fully elucidate its health benefits and optimize its use as a functional food supplement.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Ankita Thakur
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Suresh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab -144030, India
| |
Collapse
|
3
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Kheirdeh M, Koushkie Jahromi M, Hemmatinafar M, Nemati J. Additive beneficial effects of aerobic training and royal jelly on hippocampal inflammation and function in experimental autoimmune encephalomyelitis rats. Mult Scler Relat Disord 2023; 70:104527. [PMID: 36696832 DOI: 10.1016/j.msard.2023.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Although the beneficial role of training and the use of some antioxidants in physiological and psychological disorders in autoimmune diseases has been reported, the simultaneous effect of aerobic training (AT) and royal jelly (RJ) with different doses is not well understood. The present study aimed to investigate the impact of AT and RJ on inflammatory factors in the hippocampus, as well as depression and anxiety in the experimental autoimmune encephalomyelitis (EAE). METHODS Sprague-Dawley rats with EAE were assigned to seven groups: (1) EAE without any other intervention (EAE); (2) sham, receiving normal saline (Sh); (3) 50 mg/kg RJ (RJ50); (4) 100 mg/kg RJ (RJ100); (5) AT; (6) AT + RJ50; and (7) AT + RJ100. In addition, a healthy control group was assessed. RESULTS EAE significantly increased interleukin 17 (IL-17), transforming growth factor-β (TGF-β) gene expression and immobilization time as well as anxiety and depression indices, and significantly decreased interleukin 10 (IL-10), compared to the control group. AT decreased significantly IL-17, TGF-β gene expression and immobilization time as well as anxiety and depression indices, while it significantly increased IL-10, compared to the EAE group. RJ50 and RJ100 decreased significantly IL-17, IL-23 gene expression, anxiety and depression indices, and significantly increased IL-10 compared to the EAE group. AT + RJ50 and AT + RJ100 significantly decreased IL-17, IL-23, and TGF-β and as well as anxiety and depression indices while significantly increasing IL-10 compared to the EAE group. The effects of AT + RJ100 on significant decreasing IL-17, IL-23, anxiety and depression and increasing TGF-β, IL-10 were more favorable than RJ50. CONCLUSION AT and RJ improved inflammatory and regulatory factors of autoimmunity and reduced anxiety and depression. The RJ combined with AT induced additive effects while using RJ100 was more favorable than RJ50.
Collapse
Affiliation(s)
- Maryam Kheirdeh
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| | | | - Mohammad Hemmatinafar
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| | - Javad Nemati
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| |
Collapse
|
6
|
Miryan M, Moradi S, Soleimani D, Pasdar Y, Jangjoo A, Bagherniya M, Guest PC, Ashari S, Sahebkar A. The Potential Effect of Royal Jelly on Biomarkers Related to COVID-19 Infection and Severe Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:443-455. [PMID: 37378782 DOI: 10.1007/978-3-031-28012-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Royal jelly is a yellowish to white gel-like substance that is known as a "superfood" and consumed by queen bees. There are certain compounds in royal jelly considered to have health-promoting properties, including 10-hydroxy-2-decenoic acid and major royal jelly proteins. Royal jelly has beneficial effects on some disorders such as cardiovascular disease, dyslipidemia, multiple sclerosis, and diabetes. Antiviral, anti-inflammatory, antibacterial, antitumor, and immunomodulatory properties have been ascribed to this substance. This chapter describes the effects of royal jelly on COVID-19 disease.
Collapse
Affiliation(s)
- Mahsa Miryan
- Student Research Committee, Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Moradi
- Student Research Committee, Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Pasdar
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Jangjoo
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sorour Ashari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Radziszewska A, Moulder Z, Jury EC, Ciurtin C. CD8 + T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. Int J Mol Sci 2022; 23:11431. [PMID: 36232733 PMCID: PMC9569696 DOI: 10.3390/ijms231911431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
CD8+ T cells are cytotoxic lymphocytes that destroy pathogen infected and malignant cells through release of cytolytic molecules and proinflammatory cytokines. Although the role of CD8+ T cells in connective tissue diseases (CTDs) has not been explored as thoroughly as that of other immune cells, research focusing on this key component of the immune system has recently gained momentum. Aberrations in cytotoxic cell function may have implications in triggering autoimmunity and may promote tissue damage leading to exacerbation of disease. In this comprehensive review of current literature, we examine the role of CD8+ T cells in systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, polymyositis, and dermatomyositis with specific focus on comparing what is known about CD8+ T cell peripheral blood phenotypes, CD8+ T cell function, and CD8+ T cell organ-specific profiles in adult and juvenile forms of these disorders. Although, the precise role of CD8+ T cells in the initiation of autoimmunity and disease progression remains to be elucidated, increasing evidence indicates that CD8+ T cells are emerging as an attractive target for therapy in CTDs.
Collapse
Affiliation(s)
- Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London WC1E 6JF, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Zachary Moulder
- University College London Medical School, University College London, London WC1E 6DE, UK
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London WC1E 6JF, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
8
|
Ross E, Abulaban K, Kessler E, Cunningham N. Non-pharmacologic therapies in treatment of childhood-onset systemic lupus erythematosus: A systematic review. Lupus 2022; 31:864-879. [PMID: 35442103 DOI: 10.1177/09612033221094704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Childhood-onset systemic lupus erythematosus (cSLE) is a complex multisystem autoimmune disease often associated with pain, fatigue, and mood-related disturbances. cSLE is associated with increased disease severity and higher rates of mortality as compared to adult onset SLE. Therefore, a multi-faceted approach to care, including the use of non-pharmacologic therapies, is essential to ensure optimal patient outcomes. The use of non-pharmacologic therapies as adjunctive treatments has been shown to be beneficial in adults with SLE, yet, their use and effect is less well understood in cSLE. This is the first systematic review to explore the use and quality of evidence of non-pharmacologic approaches to treat cSLE. METHODS A literature review was performed using PRISMA guidelines. Studies until March 2021 with participants diagnosed with cSLE were included. The quality of the evidence was graded via OCEBM levels of evidence guidelines and bias assessed using Cochrane guidelines. Completed clinical trials (via clinicaltrials.gov) were also searched to identify unpublished results. RESULTS Eleven published studies consisting of 1152 patients met inclusion criteria for this review, as well as three additional studies with unpublished data on clinicaltrial.gov. Of the published trials, four studies used patient education/support, three studies used dietary supplementation, three used forms of psychotherapy (e.g., Cognitive behavioral therapy), and 1 used aerobic exercise to target the following issues: treatment adherence (n = 3), quality of life (n = 3), fatigue (n = 2), pain (n = 2), depressive symptoms (n = 1), anxiety (n = 1), and health-related outcomes including disease severity (n = 3), cardiovascular disease risk (Cardiovascular disease; n = 3), and muscle function (n = 1). Across investigations, the quality of the evidence based on study design was moderate/low. In terms of potential outcomes, dietary supplementation methods were successful in 2 of 3 studies and were associated with improvements in disease activity and fatigue. Aerobic exercise was effective in decreasing resting heart rate and increasing cardiorespiratory capacity. Patient education/support was related to significantly increased treatment adherence and decreased cardiovascular risk markers. Two of the three studies examining the impact of psychotherapy showed improvements (e.g., in treatment adherence, depression and fatigue). CONCLUSION This review identifies several promising non-pharmacologic therapies to use as adjunctive treatments to traditional pharmacologic regimens in health and mental health-related outcomes in patients with cSLE. Future well controlled clinical trials would be beneficial to more rigorously evaluate the effects of non-pharmacologic therapies in pediatric populations.
Collapse
Affiliation(s)
- Elizabeth Ross
- 12268Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Khalid Abulaban
- 12268Michigan State University College of Human Medicine, Grand Rapids, MI, USA.,24319Helen DeVos Children's Hospital (Rheumatology), Grand Rapids, MI, USA
| | - Elizabeth Kessler
- 12268Michigan State University College of Human Medicine, Grand Rapids, MI, USA.,24319Helen DeVos Children's Hospital (Rheumatology), Grand Rapids, MI, USA
| | - Natoshia Cunningham
- 12268Michigan State University College of Human Medicine, Grand Rapids, MI, USA.,Department of Family Medicine, 12268Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Shahla J, Dariush H, Bijan SM, Majid E, Zahra A, Bahman Y. Comparative immunomodulatory effects of jelly royal and 10-H2DA on experimental autoimmune encephalomyelitis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Guo J, Wang Z, Chen Y, Cao J, Tian W, Ma B, Dong Y. Active components and biological functions of royal jelly. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
The Effect of Dehydration on the Development of Endothelial Dysfunction in Young Athletes: a Comparative Analysis of the Effectiveness of a New Honey Isotonic Drink and Standard Means of Restoring Hydro-Electrolytic Balance. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Front Immunol 2020; 11:1477. [PMID: 32793202 PMCID: PMC7387408 DOI: 10.3389/fimmu.2020.01477] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
Collapse
Affiliation(s)
- Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Przemysław J Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
13
|
New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. Int J Mol Sci 2020; 21:ijms21020382. [PMID: 31936187 PMCID: PMC7014095 DOI: 10.3390/ijms21020382] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Royal jelly (RJ) is a yellowish-white and acidic secretion of hypopharyngeal and mandibular glands of nurse bees used to feed young worker larvae during the first three days and the entire life of queen bees. RJ is one of the most appreciated and valued natural product which has been mainly used in traditional medicines, health foods, and cosmetics for a long time in different parts of the world. It is also the most studied bee product, aimed at unravelling its bioactivities, such as antimicrobial, antioxidant, anti-aging, immunomodulatory, and general tonic action against laboratory animals, microbial organisms, farm animals, and clinical trials. It is commonly used to supplement various diseases, including cancer, diabetes, cardiovascular, and Alzheimer's disease. Here, we highlight the recent research advances on the main bioactive compounds of RJ, such as proteins, peptides, fatty acids, and phenolics, for a comprehensive understanding of the biochemistry, biological, and pharmaceutical responses to human health promotion and life benefits. This is potentially important to gain novel insight into the biological and pharmaceutical properties of RJ.
Collapse
|
14
|
Characterization of sugar composition in Chinese royal jelly by ion chromatography with pulsed amperometric detection. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Hossen MS, Nahar T, Gan SH, Khalil MI. Bioinformatics and Therapeutic Insights on Proteins in Royal Jelly. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666181012113130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
To date, there is no x-ray crystallography or structures from nuclear magnetic resonance (NMR) on royal jelly proteins available in the online data banks. In addition, characterization of proteins in royal jelly is not fully accomplished to date. Although new investigations unravel novel proteins in royal jelly, the majority of a protein family is present in high amounts (80-90%).
Objective:
In this review, we attempted to predict the three-dimensional structure of royal jelly proteins (especially the major royal jelly proteins) to allow visualization of the four protein surface properties (aromaticity, hydrophobicity, ionizability and (hydrogen (H)-bond) by using bioinformatics tools. Furthermore, we gathered the information on available therapeutic activities of crude royal jelly and its proteins.
Methods:
For protein modeling, prediction and analysis, the Phyre2 web portal systematically browsed in which the modeling mode was intensive. On the other side, to build visualized understanding of surface aromaticity, hydrophobicity, ionizability and H-bond of royal jelly proteins, the Discovery Studio 4.1 (Accelrys Software Inc.) was used.
Results:
Our in silico study confirmed that all proteins treasure these properties, including aromaticity, hydrophobicity, ionizability and (hydrogen (H)-bond. Another finding was that newly discovered proteins in royal jelly do not belong to the major royal jelly protein group.
Conclusion:
In conclusion, the three dimensional structure of royal jelly proteins along with its major characteristics were successfully elucidated in this review. Further studies are warranted to elucidate the detailed physiochemical properties and pharmacotherapeutics of royal jelly proteins.
Collapse
Affiliation(s)
- Md. Sakib Hossen
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Taebun Nahar
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Md. Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
16
|
The Proportion of Regulatory T Cells in Patients with Systemic Lupus Erythematosus: A Meta-Analysis. J Immunol Res 2018; 2018:7103219. [PMID: 30255107 PMCID: PMC6140280 DOI: 10.1155/2018/7103219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/21/2018] [Accepted: 07/31/2018] [Indexed: 12/04/2022] Open
Abstract
Background Accumulating evidence indicates that a deficiency in or dysfunction of regulatory T cells (Tregs) is involved in the pathogenesis of systemic lupus erythematosus (SLE). As different markers have been used to identify Tregs, recent studies on the proportions of Tregs in SLE patients have generated controversial results. To clarify the status of Tregs in such patients, we determined the proportions of Tregs present during development of the disease, with special consideration of controversial cellular markers. Methods We identified studies reporting the proportions of Tregs in SLE patients by searching relevant databases through March 2018. Using the PRISMA guidelines, we performed a random effects meta-analysis of the frequencies of Tregs defined in different ways. Inconsistency was evaluated using the I-squared index (I2), and publication bias was assessed by examining funnel plot asymmetry using the Begger and Egger tests. Results Forty-four studies involving 2779 participants were included in the meta-analysis. No significant difference in the proportions of Tregs was evident between 1772 patients and 1007 controls [−0.191, (−0.552, 0.362), p = 0.613, I2 = 95.7%]. We next conducted subanalyses based on individual definitions of Tregs. When the Treg definition included “FOXP3-positive” cells, the proportions did not differ between SLE patients and controls [−0.042, (−0.548, 0.632), p = 0.889, I2 = 96.6%]; this was the case when Tregs were defined as either “CD25low/−FOXP3+” or “CD25high/+FOXP3+” cells. SLE patients had lower proportions of Tregs that were “single CD25-positive” [−1.428, (−1.982, −0.873), p < 0.001, I2 = 93.4%] and “CD127-negative” [−1.093, (−2.002, −0.183), p = 0.018, I2 = 92.6%] compared to controls. Tregs defined as “CD25bright,” “CD25bright/highCD127low/−,” and “CD25highCD127low/−FOXP3+” did not differ in proportion between SLE patients and controls. Conclusions The Treg proportions varied by the cellular identification method used. The proportions of Tregs that were accurately identified and functionally validated fell among patients with SLE. Stricter definitions of Tregs are necessary when evaluating the status of such patients.
Collapse
|
17
|
Saad K, Zahran AM, Elsayh KI, Abdelmoghny A, Aboul-Khair MD. Variation of Regulatory T Lymphocytes in the Peripheral Blood of Children with Allergic Rhinitis. Arch Immunol Ther Exp (Warsz) 2018; 66:307-313. [PMID: 29256093 DOI: 10.1007/s00005-017-0498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/23/2017] [Indexed: 02/05/2023]
Abstract
The studies of T-regulatory (Treg) cells in the pediatric allergic disorders, especially allergic rhinitis (AR), are very few and still far from being elucidated. The aim of this study is to assess the frequencies of CD4+CD25+Foxp3+ (CD4+Tregs) and CD8+CD25+highFoxp3+ (CD8+Tregs) regulatory T lymphocytes in the peripheral blood of children with AR. In fresh whole blood of 60 children with AR and 40 healthy controls, the frequencies of CD4+Tregs and CD8+Tregs were examined by flow cytometry. The total IgE concentration in the serum was measured. In AR children, the frequencies of CD4+Tregs and CD8+Tregs were significantly reduced when compared to control group (p = 0.041, p = 0.011, respectively). Moreover, the expressions of Foxp3+ in CD4+CD25+high and CD8+CD25+high cells were significantly lower in patient group than controls. We found a significant negative correlation between the frequencies of CD4+Tregs and the total IgE concentration (p < 0.01). In conclusion, the present study demonstrated that the percentages of CD8+Tregs and CD4+Tregs T cells were significantly decreased in children with AR. This suggests that decreased Treg cells might represent a defect in the compartment of T-cell population in children with AR. Further studies are warranted to fully appreciate the clinical relevance of Tregs in children with AR.
Collapse
Affiliation(s)
- Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71516, Egypt.
| | - Khalid I Elsayh
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
18
|
Liu Y, Zhan F, Zhang X, Lin S. Toll-like receptor-9 is involved in the development of B cell stimulating factor-induced systemic lupus erythematosus. Exp Ther Med 2018; 15:585-591. [PMID: 29387207 DOI: 10.3892/etm.2017.5411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the role of Toll-like receptor (TLR)-9 in B lymphocyte stimulating factor (BLyS)-induced systemic lupus erythematosus (SLE) in mice. The anti-double stranded (ds)DNA antibody titer, levels of complement proteins (C3 and C4), interleukin (IL)-10 and the disease activity [assessed by the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) level] were measured. A total of 21 transgenic female mice (aged 8-10 weeks and weighing 30-40 g) expressing the Epstein-Barr virus membrane antigen, BLLF1, were studied. Mice were randomly divided into the control, the BLyS inhibition and the TLR-9 inhibition groups, with 7 mice in each group. Mice in the blank control group received intraperitoneal injections of normal saline, mice in the BLyS inhibition group received intraperitoneal injections of anti-BR3 monoclonal antibody (5,000 ng/day) and mice in the TLR-9 inhibition group received intraperitoneal injections of anti-human TLR-9 antibody (250 ng/day). The treatment regimens continued for 10 days, followed by the collection of peripheral venous blood. The relative levels of TLR-9 mRNA were measured by reverse transcription-quantitative polymerase chain reaction. Furthermore, the BLyS protein concentration and IL-10 levels were measured by ELISA. TLR-9 mRNA, BLyS, IL-10, anti-dsDNA antibody titer, C3, C4, ESR and CRP levels of the blank control group were significantly higher than those of the other two groups (P<0.05). The differences in comparison of these indexes between the BLyS inhibition and TLR-9 inhibition groups were not statistically significant (P>0.05), with the exception of TLR-9 mRNA and BLyS. In conclusion, the TLR-9 signaling pathway may be important for BLyS-induced SLE, and regulation of the inflammatory immune level.
Collapse
Affiliation(s)
- Ying Liu
- Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Rheumatology and Clinical Immunology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Rheumatology and Clinical Immunology, Hainan General Hospital, Haikou, Hainan 570000, P.R. China
| | - Feng Zhan
- Department of Rheumatology and Clinical Immunology, Hainan General Hospital, Haikou, Hainan 570000, P.R. China
| | - Xiao Zhang
- Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Rheumatology and Clinical Immunology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shudian Lin
- Department of Rheumatology and Clinical Immunology, Hainan General Hospital, Haikou, Hainan 570000, P.R. China
| |
Collapse
|
19
|
Zheng K, Fan Y, Ji R, Ma S. Distinctive effects of pilose antler on mouse peripheral blood immune cell populations. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1332011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kexin Zheng
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Yudan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Ruiqin Ji
- College of Horticulture, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Shiliang Ma
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, People’s Republic of China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| |
Collapse
|