1
|
Wolfson G, Sionov RV, Smoum R, Korem M, Polacheck I, Steinberg D. Anti-Bacterial and Anti-Biofilm Activities of Anandamide against the Cariogenic Streptococcus mutans. Int J Mol Sci 2023; 24:ijms24076177. [PMID: 37047147 PMCID: PMC10094667 DOI: 10.3390/ijms24076177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus mutans is a cariogenic bacterium in the oral cavity involved in plaque formation and dental caries. The endocannabinoid anandamide (AEA), a naturally occurring bioactive lipid, has been shown to have anti-bacterial and anti-biofilm activities against Staphylococcus aureus. We aimed here to study its effects on S. mutans viability, biofilm formation and extracellular polysaccharide substance (EPS) production. S. mutans were cultivated in the absence or presence of various concentrations of AEA, and the planktonic growth was followed by changes in optical density (OD) and colony-forming units (CFU). The resulting biofilms were examined by MTT metabolic assay, Crystal Violet (CV) staining, spinning disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). The EPS production was determined by Congo Red and fluorescent dextran staining. Membrane potential and membrane permeability were determined by diethyloxacarbocyanine iodide (DiOC2(3)) and SYTO 9/propidium iodide (PI) staining, respectively, using flow cytometry. We observed that AEA was bactericidal to S. mutans at 12.5 µg/mL and prevented biofilm formation at the same concentration. AEA reduced the biofilm thickness and biomass with concomitant reduction in total EPS production, although there was a net increase in EPS per bacterium. Preformed biofilms were significantly affected at 50 µg/mL AEA. We further show that AEA increased the membrane permeability and induced membrane hyperpolarization of these bacteria. AEA caused S. mutans to become elongated at the minimum inhibitory concentration (MIC). Gene expression studies showed a significant increase in the cell division gene ftsZ. The concentrations of AEA needed for the anti-bacterial effects were below the cytotoxic concentration for normal Vero epithelial cells. Altogether, our data show that AEA has anti-bacterial and anti-biofilm activities against S. mutans and may have a potential role in preventing biofilms as a therapeutic measure.
Collapse
|
2
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
3
|
Chaiden C, Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Kerdsin A, Nuanualsuwan S. Peptidomics Analysis of Virulent Peptides Involved in Streptococcus suis Pathogenesis. Animals (Basel) 2021; 11:ani11092480. [PMID: 34573446 PMCID: PMC8468194 DOI: 10.3390/ani11092480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The virulence factors and pathogenesis of S. suis are inconclusive. Here, the associated proteins, or their derived peptides, involved in the survival of S. suis when simulated with a blood environment are demonstrated. The results reveal the derived peptides or proteins of S. suis potentially serving as the putative virulence factors. Further studies based on our findings could be used to fulfill the knowledge gap of S. suis pathogenesis. Abstract Streptococcus suis (S. suis) is a zoonotic pathogen causing severe streptococcal disease worldwide. S. suis infections in pigs and humans are frequently associated with the virulent S. suis serotype 2 (SS2). Though various virulence factors of S. suis have been proposed, most of them were not essentially accounted for in the experimental infections. In the present study, we compared the peptidomes of highly virulent SS2 and SS14 in humans, the swine causative serotypes SS7 and SS9, and the rarely reported serotypes SS25 and SS27, and they were cultured in a specified culture medium containing whole blood to simulate their natural host environment. LC-MS/MS could identify 22 unique peptides expressed in the six S. suis serotypes. Under the host-simulated environment, peptides from the ABC-type phosphate transport system (SSU05_1106) and 30S ribosomal protein S2 (rpsB) were detected in the peptidome of virulent SS2 and SS14. Therefore, we suggest that these two proteins or their derived peptides might be involved in the survival of S. suis when simulated with a blood environment.
Collapse
Affiliation(s)
- Chadaporn Chaiden
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
- Correspondence: (S.R.); (S.N.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (S.R.); (S.N.)
| |
Collapse
|
4
|
Culp DJ, Robinson B, Cash MN. Murine Salivary Amylase Protects Against Streptococcus mutans-Induced Caries. Front Physiol 2021; 12:699104. [PMID: 34276419 PMCID: PMC8283412 DOI: 10.3389/fphys.2021.699104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Saliva protects dental surfaces against cavities (i. e., dental caries), a highly prevalent infectious disease frequently associated with acidogenic Streptococcus mutans. Substantial in vitro evidence supports amylase, a major constituent of saliva, as either protective against caries or supporting caries. We therefore produced mice with targeted deletion of salivary amylase (Amy1) and determined the impact on caries in mice challenged with S. mutans and fed a diet rich in sucrose to promote caries. Total smooth surface and sulcal caries were 2.35-fold and 1.79-fold greater in knockout mice, respectively, plus caries severities were twofold or greater on sulcal and smooth surfaces. In in vitro experiments with samples of whole stimulated saliva, amylase expression did not affect the adherence of S. mutans to saliva-coated hydroxyapatite and slightly increased its aggregation in solution (i.e., oral clearance). Conversely, S. mutans in biofilms formed in saliva with 1% glucose displayed no differences when cultured on polystyrene, but on hydroxyapatite was 40% less with amylase expression, suggesting that recognition by S. mutans of amylase bound to hydroxyapatite suppresses growth. However, this effect was overshadowed in vivo, as the recoveries of S. mutans from dental plaque were similar between both groups of mice, suggesting that amylase expression helps decrease plaque acids from S. mutans that dissolve dental enamel. With amylase deletion, commensal streptococcal species increased from ~75 to 90% of the total oral microbiota, suggesting that amylase may promote higher plaque pH by supporting colonization by base-producing oral commensals. Importantly, collective results indicate that amylase may serve as a biomarker of caries risk.
Collapse
Affiliation(s)
- David J. Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
5
|
Lee HJ, Song J, Kim JN. Genetic Mutations That Confer Fluoride Resistance Modify Gene Expression and Virulence Traits of Streptococcus mutans. Microorganisms 2021; 9:microorganisms9040849. [PMID: 33921039 PMCID: PMC8071458 DOI: 10.3390/microorganisms9040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022] Open
Abstract
Fluoride is an inorganic monatomic anion that is widely used as an anti-cariogenic agent for the control of caries development. The aims of this study were to identify the mutated genes that give rise to fluoride-resistant (FR) strains of the cariogenic pathogen Streptococcus mutans and explore how genetic alterations in the genome of an S. mutans FR strain optimize the metabolism(s) implicated in the expression of virulence-associated traits. Here, we derived an S. mutans FR strain from a wild-type UA159 strain by continuous shifts to a medium supplemented with increasing concentrations of fluoride. The FR strain exhibited a slow growth rate and low yield under aerobic and oxidative stress conditions and was highly sensitive to acid stress. Notably, microscopy observation displayed morphological changes in which the FR strain had a slightly shorter cell length. Next, using the sequencing analyses, we found six mutations in the FR genome, which decreased the gene expression of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Indeed, the ability to intake carbohydrates was relatively reduced in the FR strain. Collectively, our results provide evidence that the genetic mutations in the genome of the FR strain modulate the expression of gene(s) for carbon metabolism(s) and cellular processes, leading to diminished fitness with respect to virulence and persistence.
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Jihee Song
- Department of Family, Youth, and Community Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jeong Nam Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2269
| |
Collapse
|
6
|
Costa Oliveira BE, Ricomini Filho AP, Burne RA, Zeng L. The Route of Sucrose Utilization by Streptococcus mutans Affects Intracellular Polysaccharide Metabolism. Front Microbiol 2021; 12:636684. [PMID: 33603728 PMCID: PMC7884614 DOI: 10.3389/fmicb.2021.636684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans converts extracellular sucrose (Suc) into exopolysaccharides (EPS) by glucosyl-transferase and fructosyl-transferase enzymes and internalizes Suc for fermentation through the phosphotransferase system (PTS). Here, we examined how altering the routes for sucrose utilization impacts intracellular polysaccharide [IPS; glycogen, (glg)] metabolism during carbohydrate starvation. Strain UA159 (WT), a mutant lacking all exo-enzymes for sucrose utilization (MMZ952), and a CcpA-deficient mutant (∆ccpA) were cultured with sucrose or a combination of glucose and fructose, followed by carbohydrate starvation. At baseline (0h), and after 4 and 24h of starvation, cells were evaluated for mRNA levels of the glg operon, IPS storage, glucose-1-phosphate (G1P) concentrations, viability, and PTS activities. A pH drop assay was performed in the absence of carbohydrates at the baseline to measure acid production. We observed glg operon activation in response to starvation (p<0.05) in all strains, however, such activation was significantly delayed and reduced in magnitude when EPS synthesis was involved (p<0.05). Enhanced acidification and greater G1P concentrations were observed in the sucrose-treated group, but mostly in strains capable of producing EPS (p<0.05). Importantly, only the WT exposed to sucrose was able to synthesize IPS during starvation. Contrary to CcpA-proficient strains, IPS was progressively degraded during starvation in ∆ccpA, which also showed increased glg operon expression and greater PTS activities at baseline. Therefore, sucrose metabolism by secreted enzymes affects the capacity of S. mutans in synthesizing IPS and converting it into organic acids, without necessarily inducing greater expression of the glg operon.
Collapse
Affiliation(s)
- Bárbara Emanoele Costa Oliveira
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States.,Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Grand M, Blancato VS, Espariz M, Deutscher J, Pikis A, Hartke A, Magni C, Sauvageot N. Enterococcus faecalisMalR acts as a repressor of the maltose operons and additionally mediates their catabolite repression via direct interaction with seryl‐phosphorylated‐HPr. Mol Microbiol 2019; 113:464-477. [DOI: 10.1111/mmi.14431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Victor Sebastián Blancato
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | - Martín Espariz
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris‐Saclay Jouy‐en‐Josas France
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico‐Chimique Paris France
| | - Andreas Pikis
- Center for Drug Evaluation and Research, Food and Drug Administration Silver Spring Maryland
- Microbial Biochemistry and Genetics Unit, Laboratory of Cell and Developmental Biology NIDCR, National Institutes of Health Bethesda Maryland
| | | | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | | |
Collapse
|
8
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- JA Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - SR Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - ZT Wen
- Dapartment of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - JK Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - IA Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - LJ Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| |
Collapse
|
9
|
Sato Y, Okamoto-Shibayama K, Azuma T. Additional Glucose-PTS Induction in Streptococcus mutans Mutant Deficient in Mannose- and Cellobiose-PTS. THE BULLETIN OF TOKYO DENTAL COLLEGE 2018; 56:185-18. [PMID: 26370579 DOI: 10.2209/tdcpublication.56.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Streptococcus mutans utilizes maltooligosaccharides, including maltose derived from human dietary starch. We recently reported that the glucose-phosphotransferase system (Glc-PTS) was also involved in the metabolism of glucose derived from intracellular maltooligosaccharides in S. mutans. The activity of the Glc-PTS was mediated by the mannose-(manLMN) and cellobiose-PTSs (celABRCD) in this organism. The purpose of this study was to identify which kind of glucose transporter was involved in this process. A celD, manLM, and glk triple mutant, cm6vU1, was constructed and its growth in maltose or glucose broth measured. When cm6vU1 cells were inoculated into a fresh glucose broth following prolonged incubation with glucose, their growth rate was greater than that in the initial inoculum. This suggested that an additional Glc-PTS was induced in these cells. To investigate this possibility, permeabilized S. mutans cells were constructed and Glc-PTS activity examined by photometrical assay method. Activity in the cells was higher in the secondary inocula than in the initial inocula. These results suggest that S. mutans possesses an additional as yet uncharacterized PTS transporter for glucose in addition to the mannose- and cellobiose-PTSs.
Collapse
Affiliation(s)
- Yutaka Sato
- Department of Biochemistry, Tokyo Dental College
| | | | | |
Collapse
|
10
|
Sato Y, Okamoto-Shibayama K, Azuma T. Glucose-PTS Involvement in Maltose Metabolism by Streptococcus mutans. THE BULLETIN OF TOKYO DENTAL COLLEGE 2018; 56:93-103. [PMID: 26084997 DOI: 10.2209/tdcpublication.56.93] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Streptococcus mutans grows with starch-derived maltose in the presence of saliva. Maltose transported into the cells is mediated by the MalQ protein (4-alpha-glucanotransferase) to produce glucose and maltooligosaccharides. Glucose can be phosphorylated to glucose 6-phosphate, which can enter the glycolysis pathway. The MalQ enzyme is essential in the catabolism of maltose when it is the sole carbon source, suggesting the presence of a downstream glucokinase of the MalQ enzyme reaction. However, a glucokinase gene-inactivated mutant (glk mutant) grew with maltose as the sole carbon source, with no residual glucokinase activity. This left a phosphoenolpyruvate-dependent phosphotransferase system (PTS) as the only candidate pathway for the phosphorylation of glucose in its transport as a substrate. Our hypothesis was that intracellular glucose derived from maltose mediated by the MalQ protein was released into the extracellular environment, and that such glucose was transported back into the cells by a PTS. The mannose PTS encoded by the manL, manM, and manN genes transports glucose into cells as a high affinity system with concomitant phosphorylation. The purpose of this study was to investigate extracellular glucose by using an enzyme-linked photometrical method, monitoring absorbance changes at 340 nm in supernatant of S. mutans cells. A significant amount of glucose was detected in the extracellular fluid of a glk, manLM double mutant. These results suggest that the glk and manLMN genes participate in maltose catabolism in this organism. The significance of multiple metabolic pathways for important energy sources, including maltose, in the oral environment is discussed.
Collapse
Affiliation(s)
- Yutaka Sato
- Department of Biochemistry, Tokyo Dental College
| | | | | |
Collapse
|
11
|
Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities. Appl Environ Microbiol 2017; 83:AEM.00038-17. [PMID: 28455338 DOI: 10.1128/aem.00038-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023] Open
Abstract
Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose.IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis.
Collapse
|
12
|
Stegues CG, Arthur RA, Hashizume LN. Effect of the association of maltodextrin and sucrose on the acidogenicity and adherence of cariogenic bacteria. Arch Oral Biol 2016; 65:72-6. [DOI: 10.1016/j.archoralbio.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
13
|
Afzal M, Shafeeq S, Manzoor I, Kuipers OP. Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae. PLoS One 2015; 10:e0127579. [PMID: 26030923 PMCID: PMC4451989 DOI: 10.1371/journal.pone.0127579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
The maltose regulon (mal regulon) has previously been shown to consist of the mal gene cluster (malMP, malXCD and malAR operons) in Streptococcus pneumoniae. In this study, we have further elucidated the complete mal regulon in S. pneumoniae D39 using microarray analyses and β-galactosidase assays. In addition to the mal gene cluster, the complete mal regulon of S. pneumoniae D39 consists of a pullulanase (PulA), a glucosidase (DexB), a glucokinase (RokB), a PTS component (PtsG) and an amylase (AmyA2). Our microarray studies and β-galactosidase assays further showed that the LacI-family transcriptional regulator MalR represses the expression of the mal regulon in the absence of maltose. Furthermore, the role of the pleiotropic transcriptional regulator CcpA in the regulation of the mal regulon in the presence of maltose was explored. Our microarray analysis with a ΔccpA strain showed that CcpA only represses the expression of the malXCD operon and the pulA gene in the presence of maltose. Hence, we extend the mal regulon now consisting of pulA, dexB, rokB, ptsG and amyA2 in addition to malMP, malXCD and malAR operons.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary α-Amylase, and Starch. Appl Environ Microbiol 2015; 81:5363-74. [PMID: 26025889 DOI: 10.1128/aem.01221-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 01/14/2023] Open
Abstract
Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA(-) mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance.
Collapse
|