1
|
Razooqi Z, Khzam N, L’Hostis M, Belibasakis GN, Johansson A, Oscarsson J. Prevalence of the oral pathogen Filifactor alocis and its FtxA toxin related to clinical parameters and presence of Aggregatibacter actinomycetemcomitans. Front Cell Infect Microbiol 2025; 14:1501028. [PMID: 39911492 PMCID: PMC11794325 DOI: 10.3389/fcimb.2024.1501028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025] Open
Abstract
The Gram-positive organism Filifactor alocis is implicated in multiple oral diseases including periodontitis, and approximately 50% of known strains encode and produce a recently identified repeat-in-toxin (RTX) protein, FtxA, partly homologous to the Aggregatibacter actinomycetemcomitans leukotoxin. By assessing a longitudinal Ghanaian study population of adolescents, we recently identified a possible correlation between F. alocis levels, ftxA gene carriage, and progression of clinical attachment loss (CAL). To extend knowledge on the possible significance of F. alocis and its FtxA in periodontal disease, we have in the present work analyzed saliva samples in an independent cohort of periodontitis (n=156), collected at two private periodontal specialist practices in Perth, Western Australia. The present results corroborate that high loads of F. alocis and the presence of its ftxA gene together are associated with parameters of periodontal tissue destruction and severity. Moreover, among the individuals carrying A. actinomycetemcomitans, a majority also exhibited an ftxA-positive F. alocis, supporting the notion of the synergistic behavior of these two species. This emphasizes that F. alocis and its ftxA are involved in the pathogenesis of periodontitis and may have ecological roles, with diagnostic and prognostic implications for the disease.
Collapse
Affiliation(s)
| | - Nabil Khzam
- Oral Health Centre of Western Australia, Dental School, The University of Western Australia, Perth, WA, Australia
- NK Periodontics, Perth, WA, Australia
| | | | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umea, Sweden
| |
Collapse
|
2
|
Shaikh HFM, Oswal PU, Kugaji MS, Katti SS, Bhat KG, Kandaswamy E, Joshi VM. Association of F. alocis and D. pneumosintes with Periodontitis Disease Severity and Red Complex Bacteria. Dent J (Basel) 2024; 12:105. [PMID: 38668017 PMCID: PMC11048763 DOI: 10.3390/dj12040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Oral biofilms are considered the principal etiological agent in the development of periodontitis. Novel species that may contribute to periodontitis and dysbiosis have been identified recently. The study aims to evaluate the presence of F. alocis and D. pneumosintes in healthy and diseased patients and their association with clinical parameters and with red complex bacteria. The study included 60 subjects, with 30 patients each in the healthy and periodontitis groups. The clinical parameters were noted, and samples were subjected to DNA extraction followed by a polymerase chain reaction. Statistical analysis was performed using the Graph Pad Prism software. Results: F. alocis and D. pneumosintes were detected at a significantly higher percentage in the periodontitis group compared to the healthy group (p < 0.05). D. pneumosintes was significantly associated with T. forsythia in the periodontitis group (p < 0.05). Both of these organisms were present in sites with higher clinical attachment loss (p < 0.05). This study demonstrated that both F. alocis and D. pneumosintes were detected at a significantly higher percentage in periodontitis subjects and were detected more frequently in sites with a greater clinical attachment loss. It was also evident that both F. alocis and D. pneumosintes can be present independently of other putative periodontal pathogens.
Collapse
Affiliation(s)
- Hawaabi F. M. Shaikh
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi 590019, India; (H.F.M.S.); (P.U.O.); (S.S.K.)
| | - Pratima U. Oswal
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi 590019, India; (H.F.M.S.); (P.U.O.); (S.S.K.)
| | - Manohar Suresh Kugaji
- Centre for Advanced Medical Research, BLDE Deemed to be University, Vijayapura 586103, India
| | - Sandeep S. Katti
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi 590019, India; (H.F.M.S.); (P.U.O.); (S.S.K.)
| | | | - Eswar Kandaswamy
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA;
| | - Vinayak M. Joshi
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA;
| |
Collapse
|
3
|
Ye X, Paul B, Mo J, Reynolds EC, Ghosal D, Veith PD. Ultrastructural and glycoproteomic characterization of Prevotella intermedia: Insights into O-glycosylation and outer membrane vesicles. Microbiologyopen 2024; 13:e1401. [PMID: 38409911 PMCID: PMC10897501 DOI: 10.1002/mbo3.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Prevotella intermedia, a Gram-negative bacterium from the Bacteroidota phylum, is associated with periodontitis. Other species within this phylum are known to possess the general O-glycosylation system. The O-glycoproteome has been characterized in several species, including Tannerella forsythia, Porphyromonas gingivalis, and Flavobacterium johnsoniae. In our study, we used electron cryotomography (cryoET) and glycoproteomics to reveal the ultrastructure of P. intermedia and characterize its O-glycoproteome. Our cryoET analysis unveiled the ultrastructural details of the cell envelope and outer membrane vesicles (OMVs) of P. intermedia. We observed an electron-dense surface layer surrounding both cells and OMVs. The OMVs were often large (>200 nm) and presented two types, with lumens being either electron-dense or translucent. LC-MS/MS analyses of P. intermedia fractions led to the identification of 1655 proteins, which included 62 predicted T9SS cargo proteins. Within the glycoproteome, we identified 443 unique O-glycosylation sites within 224 glycoproteins. Interestingly, the O-glycosylation motif exhibited a broader range than reported in other species, with O-glycosylation found at D(S/T)(A/I/L/M/T/V/S/C/G/F/N/E/Q/D/P). We identified a single O-glycan with a delta mass of 1531.48 Da. Its sequence was determined by MS2 and MS3 analyses using both collision-induced dissociation and high-energy collisional dissociation fragmentation modes. After partial deglycosylation with trifluoromethanesulfonic acid, the O-glycan sequence was confirmed to be dHex-dHex-HexNAc (HPO3 -C6 H12 O5 )-dHex-Hex-HexA-Hex(dHex). Bioinformatic analyses predicted the localization of O-glycoproteins, with 73 periplasmic proteins, 53 inner membrane proteins, 52 lipoproteins, 26 outer membrane proteins, and 14 proteins secreted by the T9SS.
Collapse
Affiliation(s)
- Xi Ye
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Bindusmita Paul
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Joyce Mo
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- ARC Centre for Cryo‐electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Razooqi Z, Tjellström I, Höglund Åberg C, Kwamin F, Claesson R, Haubek D, Johansson A, Oscarsson J. Association of Filifactor alocis and its RTX toxin gene ftxA with periodontal attachment loss, and in synergy with Aggregatibacter actinomycetemcomitans. Front Cell Infect Microbiol 2024; 14:1376358. [PMID: 38596650 PMCID: PMC11002136 DOI: 10.3389/fcimb.2024.1376358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The Gram-positive bacterium, Filifactor alocis is an oral pathogen, and approximately 50% of known strains encode a recently identified repeat-in-toxin (RTX) protein, FtxA. By assessing a longitudinal Ghanaian study population of adolescents (10-19 years of age; mean age 13.2 years), we recently discovered a possible correlation between deep periodontal pockets measured at the two-year follow-up, presence of the ftxA gene, and a high quantity of F. alocis. To further understand the contribution of F. alocis and FtxA in periodontal disease, we used qPCR in the present study to assess the carriage loads of F. alocis and the prevalence of its ftxA gene in subgingival plaque specimens, sampled at baseline from the Ghanaian cohort (n=500). Comparing these results with the recorded clinical attachment loss (CAL) longitudinal progression data from the two-year follow up, we concluded that carriers of ftxA-positive F. alocis typically exhibited higher loads of the bacterium. Moreover, high carriage loads of F. alocis and concomitant presence of the ftxA gene were two factors that were both associated with an enhanced prevalence of CAL progression. Interestingly, CAL progression appeared to be further promoted upon the simultaneous presence of F. alocis and the non-JP2 genotype of Aggregatibacter actinomycetemcomitans. Taken together, our present findings are consistent with the notion that F. alocis and its ftxA gene promotes CAL during periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Francis Kwamin
- Dental School University of Ghana, Korle-Bu, Accra, Ghana
| | - Rolf Claesson
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Brovst, Denmark
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Piwat S, Basic A, Pahumunto N, Teanpaisan R, Dahlen G. Periodontal diseases in Thai schoolchildren. Clinical and microbiological observations. Odontology 2024; 112:232-241. [PMID: 37154987 PMCID: PMC10776494 DOI: 10.1007/s10266-023-00817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of periodontitis among Thai schoolchildren is unknown. In a cross-sectional study, the prevalence and severity of periodontal diseases, in a group of Thai schoolchildren, along with the presence and numbers of bacterial species commonly associated with periodontitis were investigated. A consent form was sent out to 192 schoolchildren in one school (Chanachanupathom School) in Chana, Southern Thailand (in the age range of 12-18 years) and 119 attended for a clinical and microbiological examination. Clinical recordings included number of teeth present, DMFT, plaque index, bleeding index, clinical attachment loss (CAL), and probing pocket depth (PPD). Pooled plaque samples were analyzed with culture and qPCR against bacteria associated with periodontitis. The children had low caries experience (DMFT = 3.2 ± 2.3), poor oral hygiene, high bleeding scores, and 67 (56.3%) had at least one interproximal site with CAL ≥ 1 mm. Thirty-seven (31.1%) of the children were diagnosed with periodontitis stage I, and sixteen (13.4%) were classified as periodontitis Stage II. Aggregatibacter actinomycetemcomitans was sparsely found in all but the healthy clinical groups (gingivitis, periodontitis Stage I and II), while the groups showed a high prevalence of Fusobacterium spp., Prevotella intermedia/nigrescens, and Campylobacter species as well as of the periodontitis-associated species Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Thai schoolchildren have poor oral hygiene with abundant amounts of plaque and high presence of bleeding. Early onset periodontitis is common but mostly in its mild form and is not associated with the presence of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Supacharin Piwat
- Common Oral Diseases and Epidemiological Research Center, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Amina Basic
- Department of Oral Microbiology and Immunology, Institute of Ododntology, Sahlgrenska Academy, University of Gothenburg, Box 450, 40530, Gothenburg, Sweden
| | - Nuntiya Pahumunto
- Common Oral Diseases and Epidemiological Research Center, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Rawee Teanpaisan
- Common Oral Diseases and Epidemiological Research Center, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Gunnar Dahlen
- Department of Oral Microbiology and Immunology, Institute of Ododntology, Sahlgrenska Academy, University of Gothenburg, Box 450, 40530, Gothenburg, Sweden.
| |
Collapse
|
6
|
Razooqi Z, Höglund Åberg C, Kwamin F, Claesson R, Haubek D, Oscarsson J, Johansson A. Aggregatibacter actinomycetemcomitans and Filifactor alocis as Associated with Periodontal Attachment Loss in a Cohort of Ghanaian Adolescents. Microorganisms 2022; 10:microorganisms10122511. [PMID: 36557764 PMCID: PMC9781193 DOI: 10.3390/microorganisms10122511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The aims of the present study were to document the presence of Aggregatibacter actinomyctemcomitans and the emerging oral pathogen Filifactor alocis, as well as to identify genotypes of these bacterial species with enhanced virulence. In addition, these data were analyzed in relation to periodontal pocket depth (PPD) and the progression of PPD from the sampled periodontal sites during a two-year period. Subgingival plaque samples were collected from 172 periodontal pockets of 68 Ghanaian adolescents. PPD at sampling varied from 3-14 mm and the progression from baseline, i.e., two years earlier up to 8 mm. The levels of A. actinomycetemcomitans and F. alocis were determined with quantitative PCR. The highly leukotoxic JP2-genotype of A. actinomycetemcomitans and the ftxA a gene of F. alocis, encoding a putative Repeats-in-Toxin (RTX) protein, were detected with conventional PCR. The prevalence of A. actinomycetemcomitans was 57%, and 14% of the samples contained the JP2 genotype. F. alocis was detected in 92% of the samples and the ftxA gene in 52%. The levels of these bacterial species were significantly associated with enhanced PPD and progression, with a more pronounced impact in sites positive for the JP2 genotype or the ftxA gene. Taken together, the results indicate that the presence of both A. actinomycetemcomitans and F. alocis with their RTX proteins are linked to increased PPD and progression of disease.
Collapse
Affiliation(s)
- Zeinab Razooqi
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | | | - Francis Kwamin
- Dental School University of Ghana, Korle-Bu, Accra KB 460, Ghana
| | - Rolf Claesson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Skolevej 1, DK-9460 Brovst, Denmark
| | - Jan Oscarsson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | - Anders Johansson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
- Correspondence: ; Tel.: +46-90-8856291
| |
Collapse
|
7
|
Ozuna H, Snider I, Belibasakis GN, Oscarsson J, Johansson A, Uriarte SM. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. FRONTIERS IN ORAL HEALTH 2022; 3:981343. [PMID: 36046121 PMCID: PMC9420871 DOI: 10.3389/froh.2022.981343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ian Snider
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Silvia M. Uriarte
| |
Collapse
|
8
|
Proteomic analysis of the periodontal pathogen Prevotella intermedia secretomes in biofilm and planktonic lifestyles. Sci Rep 2022; 12:5636. [PMID: 35379855 PMCID: PMC8980031 DOI: 10.1038/s41598-022-09085-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Prevotella intermedia is an important species associated with periodontitis. Despite the remarkable clinical significance, little is known about the molecular basis for its virulence. The aim of this study was to characterize the secretome of P. intermedia in biofilm and planktonic life mode. The biofilm secretome showed 109 proteins while the planktonic secretome showed 136 proteins. The biofilm and the planktonic secretomes contained 17 and 33 signal-peptide bearing proteins, 13 and 18 lipoproteins, respectively. Superoxide reductase, sensor histidine kinase, C40 family peptidase, elongation factor Tu, threonine synthase etc. were unique to biofilm. Of the ~ 30 proteins with predicted virulence potential from biofilm and planktonic secretomes, only 6 were common between the two groups, implying large differences between biofilm and planktonic modes of P. intermedia. From Gene Ontology biofilm secretome displayed a markedly higher percent proteins compared to planktonic secretome in terms of cellular amino acid metabolic process, nitrogen compound metabolic process etc. Inflammatory cytokine profile analysis revealed that only the biofilm secretome, not the planktonic one, induced important cytokines such as MIP-1α/MIP-1β, IL-1β, and IL-8. In conclusion, the revealed differences in the protein profiles of P. intermedia biofilm and planktonic secretomes may trigger further questions about molecular mechanisms how this species exerts its virulence potential in the oral cavity.
Collapse
|
9
|
Hbibi A, Bouziane A, Lyoussi B, Zouhdi M, Benazza D. Aggregatibacter actinomycetemcomitans: From Basic to Advanced Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:45-67. [DOI: 10.1007/978-3-030-96881-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Thorbert-Mros S, Ali N, Ali M, Ayas M, Trullenque-Eriksson A, Dahlén G. A comparative study on periodontitis and periodontitis-associated bacteria in Somali and non-Somali children and adolescents living in Trollhättan, Sweden. Eur J Oral Sci 2021; 130:e12843. [PMID: 34935215 DOI: 10.1111/eos.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022]
Abstract
The reported prevalence of periodontitis in children and adolescents varies considerably between populations globally. This cross-sectional study compares clinical and microbiological findings on 83 Somali immigrants and 96 non-Somali children aged 10-17 years old living in Trollhättan, Sweden. The clinical examination included registration of bleeding on probing, plaque, and calculus on incisors and first molars. The distance between cemento-enamel junction and bone level was measured on bitewing radiographs. Pooled microbiological samples (1 μL) were taken from the mesial surface of 16, 11, 31, 36, and analyzed by culture and real-time polymerase chain reaction for seven periodontal associated bacterial species. The Somali participants had poorer oral hygiene and more bleeding, plaque, and calculus. Ten of the Somali but none of the non-Somali participants showed periodontal breakdown (radiographical bone loss > 3 mm), corresponding to a prevalence of 12% (95% CI: 5.9, 21.0%). The presence of A. actinomycetemcomitans was almost exclusively associated with Somali participants. Further, the JP2 clone was found in five Somalis (including two periodontitis cases) confirming the association of this clone with African populations. The Somali group showed significantly higher frequencies and numbers of Porphyromonas gingivalis and Treponema denticola, implying a mature and adult type of subgingival microbiota.
Collapse
Affiliation(s)
- Sara Thorbert-Mros
- Specialist Clinic in Periodontology, Public Dental Health, Gothenburg, VGregion, Sweden
| | - Nawal Ali
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meis Ali
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mert Ayas
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Albaghdadi SZ, Altaher JB, Drobiova H, Bhardwaj RG, Karched M. In vitro Characterization of Biofilm Formation in Prevotella Species. FRONTIERS IN ORAL HEALTH 2021; 2:724194. [PMID: 35048047 PMCID: PMC8757683 DOI: 10.3389/froh.2021.724194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Periodontitis, a chronic inflammatory oral infection is the outcome of disturbances in the homeostasis of the oral biofilm microbiota. A number of studies have found the occurrence of Prevotella species in elevated levels in periodontitis compared to healthy subjects. Even though different aspects of Prevotella as part of oral biofilm have been studied, in vitro biofilms formed by these species have not been characterized systematically. The objective of this study was to characterize biofilms formed by several Prevotella species and further to assess biofilm inhibition and detachment of preformed biofilms. Methods: Biofilms were grown in 24-well plates containing brucella broth in anaerobic conditions for 3 days, and were quantified using crystal violet staining. Images of SYTO 9 Green fluorescent stained biofilms were captured using confocal microscopy. Biofilm inhibition and detachment by proteinase and DNase I was tested. The biochemical characterization included quantification of proteins and DNA in the biofilms and biofilm-supernatants. Results: Prevotella loescheii, Prevotella oralis and Prevotella nigrescens showed highest biofilm formation. P. nigrescens formed significantly higher amounts of biofilms than P. loescheii (P = 0.005) and P. oralis (P = 0.0013). Inhibition of biofilm formation was significant only in the case of P. oralis when treated with proteinase (P = 0.037), whereas with DNase I treatment, the inhibition was not significant (P = 0.531). Overall, proteinase was more effective in biofilm detachment than DNase I. Protein and DNA content were higher in biofilm than the supernatant with the highest amounts found in P. nigrescens biofilm and supernatants. P. oralis biofilms appeared to secrete large amounts of proteins extracellularly into the biofilm-supernatants. Conclusion: Significant differences among Prevotella species to form biofilms may imply their variable abilities to get integrated into oral biofilm communities. Of the species that were able to grow as biofilms, DNase I and proteinase inhibited the biofilm growth or were able to cause biofilm detachment.
Collapse
Affiliation(s)
| | | | | | | | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
12
|
Cranberry Proanthocyanidins Neutralize the Effects of Aggregatibacter actinomycetemcomitans Leukotoxin. Toxins (Basel) 2019; 11:toxins11110662. [PMID: 31739483 PMCID: PMC6891731 DOI: 10.3390/toxins11110662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that has been strongly associated with localized aggressive periodontitis. The capacity of A. actinomycetemcomitans to produce a leukotoxin (LtxA) that activates pyroptosis in macrophages and induces the release of endogenous danger signals is thought to play a key role in the disease process. The aim of the present study was to investigate the effects of cranberry proanthocyanidins (PACs) on gene expression and cytotoxic activities of LtxA. We showed that cranberry PACs dose-dependently attenuate the expression of genes making up the leukotoxin operon, including ltxB and ltxC, in the two strains of A. actinomycetemcomitans tested. Cranberry PACs (≥62.5 µg/mL) protected macrophages against the cytotoxic effect of purified LtxA. Moreover, cranberry PACs reduced caspase-1 activation in LtxA-treated macrophages and consequently decreased the release of both IL-1β and IL-18, which are known as damage-associated molecular patterns (DAMPs) and contribute to the progression of periodontitis by increasing cell migration and osteoclastogenesis. In addition, cranberry PACs reduced the expression of genes encoding the P2X7 receptor and NALP3 (NACHT, LRR and PYD domains-containing protein 3), which play key roles in pore formation and cell death. Lastly, cranberry PACs blocked the binding of LtxA to macrophages and consequently reduced the LtxA-mediated cytotoxicity. In summary, the present study showed that cranberry PACs reduced LtxA gene expression in A. actinomycetemcomitans and neutralized the cytolytic and pro-inflammatory responses of human macrophages treated with LtxA. Given these properties, cranberry PACs may represent promising molecules for prevention and treatment of the aggressive form of periodontitis caused by A. actinomycetemcomitans.
Collapse
|
13
|
Fine DH, Patil AG, Loos BG. Classification and diagnosis of aggressive periodontitis. J Periodontol 2018; 89 Suppl 1:S103-S119. [DOI: 10.1002/jper.16-0712] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology; Rutgers School of Dental Medicine; Rutgers University - Newark; NJ USA
| | - Amey G. Patil
- Department of Oral Biology; Rutgers School of Dental Medicine; Rutgers University - Newark; NJ USA
| | - Bruno G. Loos
- Department of Periodontology; Academic Center of Dentistry Amsterdam (ACTA); University of Amsterdam and Vrije Universiteit; Amsterdam The Netherlands
| |
Collapse
|
14
|
Fine DH, Patil AG, Loos BG. Classification and diagnosis of aggressive periodontitis. J Clin Periodontol 2018; 45 Suppl 20:S95-S111. [DOI: 10.1111/jcpe.12942] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology; Rutgers School of Dental Medicine; Rutgers University - Newark; NJ USA
| | - Amey G. Patil
- Department of Oral Biology; Rutgers School of Dental Medicine; Rutgers University - Newark; NJ USA
| | - Bruno G. Loos
- Department of Periodontology; Academic Center of Dentistry Amsterdam (ACTA); University of Amsterdam and Vrije Universiteit; Amsterdam The Netherlands
| |
Collapse
|
15
|
Apatzidou DA, Nile C, Bakopoulou A, Konstantinidis A, Lappin DF. Stem cell-like populations and immunoregulatory molecules in periodontal granulation tissue. J Periodontal Res 2018; 53:610-621. [PMID: 29687448 DOI: 10.1111/jre.12551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Determine the presence of mesenchymal stem cells (MSCs) in healthy periodontal tissue and periodontal granulation tissue (GT) and explore associations between immuno-regulatory molecules and selected subgingival microorganisms. MATERIAL AND METHODS Mesenchymal stem cells were isolated, propagated and characterised by flow cytometry from a region of healthy gingival tissue and inflamed GT of 10 systemically healthy non-smokers with chronic periodontitis. Tissue levels of immunoregulatory molecules were determined by qPCR and Gingival Crevicular Fluid (GCF) levels by ELISA. Subgingival plaque levels of periodontal pathogens were determined by qPCR RESULTS: Cells with MSC-properties were isolated from both inflamed GT and healthy gingival (G) tissue. A pro-inflammatory process predominated in GT which was partly reflected in GCF and putative periodontal pathogens were higher at diseased sites. However, there was no significant difference in surface levels of mesenchymal (CD90, CD73, CD146, CD271, STRO-1), endothelial (CD105, CD106), hematopoietic (CD34, CD45) and embryonic (SSEA-4) stem cell markers between MSCs isolated from GT and G tissue. CONCLUSION Periodontal lesions, albeit inflamed, retain healing potential as inferred by the presence of MSC-like cells with similar immunophenotypic characteristics to those found in healthy periodontal tissue. Therefore, there might be merits for healing in preserving sufficient GT in-situ during periodontal surgery.
Collapse
Affiliation(s)
- D A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - C Nile
- Infection and Immunity Research group, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - A Bakopoulou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - D F Lappin
- Infection and Immunity Research group, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Hashim N, Linden G, Winning L, Ibrahim M, Gismalla B, Lundy F, El Karim I. Putative periodontal pathogens in the subgingival plaque of Sudanese subjects with aggressive periodontitis. Arch Oral Biol 2017; 81:97-102. [DOI: 10.1016/j.archoralbio.2017.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
|
17
|
Proteomic shifts in multi-species oral biofilms caused by Anaeroglobus geminatus. Sci Rep 2017; 7:4409. [PMID: 28667274 PMCID: PMC5493653 DOI: 10.1038/s41598-017-04594-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
Abstract
Anaeroglobus geminatus is a relatively newly discovered putative pathogen, with a potential role in the microbial shift associated with periodontitis, a disease that causes inflammatory destruction of the periodontal tissues, and eventually tooth loss. This study aimed to introduce A. geminatus into a polymicrobial biofilm model of relevance to periodontitis, and monitor the proteomic responses exerted to the rest of the biofilm community. A. geminatus was grown together with another 10-species in a well-established "subgingival" in vitro biofilm model. Its effects on the other species were quantitatively evaluated by qPCR and label-free proteomics. A. geminatus caused a significant increase in P. intermedia numbers, but not the other species in the biofilm. Whole cell proteome profiling of the biofilms by LC-MS/MS identified a total of 3213 proteins. Label-free quantitative proteomics revealed that 187 proteins belonging to the other 10 species were differentially abundant when A. geminatus was present in the biofilm. The species with most up-regulated and down-regulated proteins were P. intermedia and S. oralis, respectively. Regulated proteins were of primarily of ribosomal origin, and other affected categories involved proteolysis, carbon metabolism and iron transport. In conclusion, A. geminatus can be successfully grown in a polymicrobial biofilm community, causing quantitative proteomic shifts commensurate with increased virulence properties.
Collapse
|
18
|
Basic A, Blomqvist M, Dahlén G, Svensäter G. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine. BMC Microbiol 2017; 17:61. [PMID: 28288582 PMCID: PMC5348791 DOI: 10.1186/s12866-017-0967-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H2S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H2S-producing enzymes; Sulfide from H2S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). RESULTS Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H2S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H2S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. CONCLUSIONS Numerous enzymes, identified as cysteine synthase, were involved in the production of H2S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H2S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.
Collapse
Affiliation(s)
- Amina Basic
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Madeleine Blomqvist
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden
| | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
19
|
Dahlén G, Luan WM, Dahlgren U, Papapanou PP, Baelum V, Fejerskov O. Subgingival bacterial clusters and serum antibody response as markers of extent and severity of periodontitis in adult Chinese. Eur J Oral Sci 2016; 124:179-87. [DOI: 10.1111/eos.12256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Gunnar Dahlén
- Department of Oral Microbiology and Immunology; Institute of Odontology; Sahlgrenska Academy; Gothenburg University; Gothenburg Sweden
| | | | - Ulf Dahlgren
- Department of Oral Microbiology and Immunology; Institute of Odontology; Sahlgrenska Academy; Gothenburg University; Gothenburg Sweden
| | - Panos P. Papapanou
- Section of Oral and Diagnostic Sciences; Division of Periodontics; College of Dental Medicine; Columbia University; New York NY USA
| | - Vibeke Baelum
- Department of Dentistry, Health; Aarhus University; Aarhus Denmark
| | - Ole Fejerskov
- Department of Biomedicine, Health; Aarhus University; Aarhus Denmark
| |
Collapse
|
20
|
Åberg CH, Kelk P, Johansson A. Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence 2016; 6:188-95. [PMID: 25494963 PMCID: PMC4601274 DOI: 10.4161/21505594.2014.982428] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an infection-induced inflammatory disease that causes loss of the tooth supporting tissues. Much focus has been put on comparison of the microbial biofilm in the healthy periodontium with the diseased one. The information arising from such studies is limited due to difficulties to compare the microbial composition in these two completely different ecological niches. A few longitudinal studies have contributed with information that makes it possible to predict which individuals who might have an increased risk of developing aggressive forms of periodontitis, and the predictors are either microbial or/and host-derived factors. The most conspicuous condition that is associated with disease risk is the presence of Aggregatibacter actinomycetemcomitans at the individual level. This Gram-negative bacterium has a great genetic variation with a number of virulence factors. In this review we focus in particular on the leukotoxin that, based on resent knowledge, might be one of the most important virulence factors of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- a Division of Molecular Periodontology; Department of Odontology; Faculty of Medicine; Umeå University ; Umeå , Sweden
| | | | | |
Collapse
|
21
|
Abstract
A paradigm shift several decades ago elucidated that aggressive periodontitis (AgP) was not a degenerative disorder but a rapid progressive form of plaque-induced inflammatory periodontal disease. Ensuing years of research have led to linkage analysis identification of specific genetic defects responsible for AgP in some families and to the finding that subgingival detection of A. actinomycet-emcomitans JP2 clone is a predictive factor for disease onset and progression. However, rather disappointingly, these ‘proven’ risk factors are only detected in a small subset of AgP cases. Recent advances are leading to a new paradigm shift, with the realization that genetically-driven dysbiotic changes in the subgingival microbiota may predispose to a cascade of events leading to the rapid periodontal tissue destruction seen in AgP. This review tries to dissect the existing literature on the host response-microbial axis of AgP and to propose possible pathogenic pathways in line with current theories.
Collapse
Affiliation(s)
- Luigi Nibali
- a Periodontology Unit and Department of Clinical Research; UCL Eastman Dental Institute ; London , UK
| |
Collapse
|
22
|
Borsanelli AC, Gaetti-Jardim Júnior E, Schweitzer CM, Döbereiner J, Dutra IS. Presence of Porphyromonas and Prevotella species in the oral microflora of cattle with periodontitis. PESQUISA VETERINARIA BRASILEIRA 2015. [DOI: 10.1590/s0100-736x2015001000002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstratc: Bovine periodontitis is a progressive purulent infectious process associated with the presence of strictly and facultative anaerobic subgingival biofilm and epidemiologically related to soil management in large geographic areas of Brazil. This study aimed to detect species of the genera Porphyromonas and Prevotella, which occurr in periodontal pockets of cattle with lesions deeper than 5mm (n=26) and in gingival sulcus of animals considered periodontally healthy (n=25). Presence of the microorganisms was evaluated by independent-culture medium diagnostic method, using polymerase chain reaction (PCR) with specific primers of Porphyromonas asaccharolytica, P. endodontalis, P. gingivalis, P. gulae, Prevotella buccae, P. intermedia, P. loescheii, P. melaninogenica, P. nigrescens, P. oralis and P. tannerae. The species P. endodontalis (80.7%), P. melaninogenica (73.1%) and P. intermedia (61.5%) were the most predominant in samples of cattle with periodontitis. Regarding non-injured gingival sulcus of cattle, P. endodontalis (40%) and P. loeschei (40%) prevailed. Porphyromonas gingivalis, P. gulae and Prevotella tannerae were not detected in the 51 samples studied. Data evaluation by T test, enabled to verify that ocorrence of Porphyromonas asaccharolytica (p=0.000003), P. endodontalis (p=0.0023), Prevotella buccae (p=0.0017), P. intermedia (p=0.0020), P. melaninogenica (p=0.00006) and P. oralis (p=0.0028) is correlated with bovine periodontitis.
Collapse
|
23
|
Bao K, Bostanci N, Selevsek N, Thurnheer T, Belibasakis GN. Quantitative proteomics reveal distinct protein regulations caused by Aggregatibacter actinomycetemcomitans within subgingival biofilms. PLoS One 2015; 10:e0119222. [PMID: 25756960 PMCID: PMC4355292 DOI: 10.1371/journal.pone.0119222] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is an infectious disease that causes the inflammatory destruction of the tooth-supporting (periodontal) tissues, caused by polymicrobial biofilm communities growing on the tooth surface. Aggressive periodontitis is strongly associated with the presence of Aggregatibacter actinomycetemcomitans in the subgingival biofilms. Nevertheless, whether and how A. actinomycetemcomitans orchestrates molecular changes within the biofilm is unclear. The aim of this work was to decipher the interactions between A. actinomycetemcomitans and other bacterial species in a multi-species biofilm using proteomic analysis. An in vitro 10-species "subgingival" biofilm model, or its derivative that included additionally A. actinomycetemcomitans, were anaerobically cultivated on hydroxyapatite discs for 64 h. When present, A. actinomycetemcomitans formed dense intra-species clumps within the biofilm mass, and did not affect the numbers of the other species in the biofilm. Liquid chromatography-tandem mass spectrometry was used to identify the proteomic content of the biofilm lysate. A total of 3225 and 3352 proteins were identified in the biofilm, in presence or absence of A. actinomycetemcomitans, respectively. Label-free quantitative proteomics revealed that 483 out of the 728 quantified bacterial proteins (excluding those of A. actinomycetemcomitans) were accordingly regulated. Interestingly, all quantified proteins from Prevotella intermedia were up-regulated, and most quantified proteins from Campylobacter rectus, Streptococcus anginosus, and Porphyromonas gingivalis were down-regulated in presence of A. actinomycetemcomitans. Enrichment of Gene Ontology pathway analysis showed that the regulated groups of proteins were responsible primarily for changes in the metabolic rate, the ferric iron-binding, and the 5S RNA binding capacities, on the universal biofilm level. While the presence of A. actinomycetemcomitans did not affect the numeric composition or absolute protein numbers of the other biofilm species, it caused qualitative changes in their overall protein expression profile. These molecular shifts within the biofilm warrant further investigation on their potential impact on its virulence properties, and association with periodontal pathogenesis.
Collapse
Affiliation(s)
- Kai Bao
- Oral Translational Research, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nathalie Selevsek
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N. Belibasakis
- Oral Microbiology and Immunology, Institute for Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|