1
|
Wang S, Wu H, Cao X, Fan W, Li C, Zhao H, Wu Q. Tartary buckwheat FtMYB30 transcription factor improves the salt/drought tolerance of transgenic Arabidopsis in an ABA-dependent manner. PHYSIOLOGIA PLANTARUM 2022; 174:e13781. [PMID: 36121384 DOI: 10.1111/ppl.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Drought and high salinity affect plant growth, development, yield, and quality. MYB transcription factors (TFs) in plants play an indispensable regulatory role in resisting adverse stress. In this study, screening and functional validation of the TF FtMYB30, which can respond extensively to abiotic stress and abscisic acid (ABA), was achieved in Tartary buckwheat. FtMYB30, one of the SG22 (sub-group 22) family of R2R3-MYB TFs, localized in the nucleus and had transcriptional activation activity. Under drought and salt stress, FtMYB30 overexpression reduced the oxidative damage in transgenic plants by increasing the activity of proline content and antioxidant enzymes and significantly upregulate the expression of RD29A, RD29B, and Cu/ZnSOD, thereby enhancing drought/salt tolerance in transgenic Arabidopsis. Additionally, overexpression of FtMYB30 can reduce the sensitivity of transgenic plants to ABA. Moreover, AtRCAR1/2/3 and AtMPK6 directly interact with the FtMYB30 TF, possibly through the crosstalk between MAPKs (mitogen-activated protein kinases) and the ABA signaling pathway. Taken together, these results suggest that FtMYB30, as a positive regulator, mediates plant tolerance to salt and drought through an ABA-dependent signaling pathway.
Collapse
Affiliation(s)
- Shuang Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xinxian Cao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Wenjing Fan
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
2
|
Molecular Cloning and Characterization of MbMYB108, a Malus baccata MYB Transcription Factor Gene, with Functions in Tolerance to Cold and Drought Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23094846. [PMID: 35563237 PMCID: PMC9099687 DOI: 10.3390/ijms23094846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses of plants to biotic and abiotic stresses, as well as plant growth, development, and metabolic regulation. In the present study, a new MYB TF gene, MbMYB108, from Malus baccata (L.) Borkh, was identified and characterized. The open reading frame (ORF) of MbMYB108 was found to be 903 bp, encoding 300 amino acids. Sequence alignment results and predictions of the protein structure indicated that the MbMYB108 protein contained the conserved MYB domain. Subcellular localization showed that MbMYB108 was localized to the nucleus. The expression of MbMYB108 was enriched in young and mature leaves, and was highly affected by cold and drought treatments in M. baccata seedlings. When MbMYB108 was introduced into Arabidopsis thaliana, it greatly increased the cold and drought tolerances in the transgenic plant. Increased expression of MbMYB108 in transgenic A. thaliana also resulted in higher activities of peroxidase (POD) and catalase (CAT), higher contents of proline and chlorophyll, while malondialdehyde (MDA) content and relative conductivity were lower, especially in response to cold and drought stresses. Therefore, these results suggest that MbMYB108 probably plays an important role in the response to cold and drought stresses in A. thaliana by enhancing the scavenging capability for reactive oxygen species (ROS).
Collapse
|
3
|
Du H, Shi Y, Li D, Fan W, Wang G, Wang C. Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS One 2017; 12:e0188964. [PMID: 29211806 PMCID: PMC5718555 DOI: 10.1371/journal.pone.0188964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Fall dormancy (FD) determines the adaptation of an alfalfa variety and affects alfalfa production and quality. However, the molecular mechanism underlying FD remains poorly understood. Here, 44 genes regulating FD were identified by comparison of the transcriptomes from leaves of Maverick (fall-dormant alfalfa) and CUF101(non-fall-dormant), during FD and non-FD and were classified them depending on their function. The transcription of IAA-amino acid hydrolase ILR1-like 1, abscisic acid receptor PYL8, and monogalactosyldiacylglycerol synthase-3 in Maverick leaves was regulated by daylength and temperature, and the transcription of the abscisic acid receptor PYL8 was mainly affected by daylength. The changes in the expression of these genes and the abundance of their messenger RNA (mRNA) in Maverick leaves differed from those in CUF101 leaves, as evidenced by the correlation analysis of their mRNA abundance profiles obtained from April to October. The present findings suggested that these genes are involved in regulating FD in alfalfa.
Collapse
Affiliation(s)
- Hongqi Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Defeng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Wenna Fan
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Cunha CP, Roberto GG, Vicentini R, Lembke CG, Souza GM, Ribeiro RV, Machado EC, Lagôa AMMA, Menossi M. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening. Sci Rep 2017; 7:43364. [PMID: 28266527 PMCID: PMC5339719 DOI: 10.1038/srep43364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022] Open
Abstract
The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed.
Collapse
Affiliation(s)
- Camila P. Cunha
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| | - Guilherme G. Roberto
- Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, 13001-970, Campinas, Brasil
| | - Renato Vicentini
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| | - Carolina G. Lembke
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brasil
| | - Glaucia M. Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brasil
| | - Rafael V. Ribeiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| | - Eduardo C. Machado
- Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, 13001-970, Campinas, Brasil
| | - Ana M. M. A. Lagôa
- Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, 13001-970, Campinas, Brasil
| | - Marcelo Menossi
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| |
Collapse
|
5
|
Tossi V, Cassia R, Bruzzone S, Zocchi E, Lamattina L. ABA says NO to UV-B: a universal response? TRENDS IN PLANT SCIENCE 2012; 17:510-7. [PMID: 22698377 DOI: 10.1016/j.tplants.2012.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/24/2012] [Accepted: 05/03/2012] [Indexed: 05/21/2023]
Abstract
Abscisic acid (ABA) signaling pathways have been widely characterized in plants, whereas the function of ABA in animals is less well understood. However, recent advances show ABA production by a wide range of lower animals and higher mammals. This enables a new evaluation of ABA signaling pathways in different organisms in response to common environmental stress, such as ultraviolet (UV)-B. In this opinion article, we propose that the induction of common signaling components, such as ABA, nitric oxide (NO) and Ca(2+), in plant and animal cells in response to high doses of UV-B, suggests that the evolution of a general mechanism activated by UV-B is conserved in divergent multicellular organisms challenged by a changing common environment.
Collapse
Affiliation(s)
- Vanesa Tossi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
6
|
Ben-Ari G. The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. PLANT CELL REPORTS 2012; 31:1357-69. [PMID: 22660953 DOI: 10.1007/s00299-012-1292-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 05/08/2023]
Abstract
The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant's response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA signaling cascade. It was only in 2009, that two independent groups identified the PYR/PYL/RCAR protein family as the plant ABA receptor. This finding was followed by a surge of studies on ABA signal transduction, many of them using Arabidopsis as their model. The ABA signaling cascade was found to consist of a double-negative regulatory mechanism assembled from three protein families. These include the ABA receptors, the PP2C family of inhibitors, and the kinase family, SnRK2. It was found that ABA-bound PYR/RCARs inhibit PP2C activity, and that PP2Cs inactivate SnRK2s. Researchers today are examining how the elucidation of the ABA signaling cascade in Arabidopsis can be applied to improvements in commercial agriculture. In this article, we have attempted to review recent studies which address this issue. In it, we discuss various approaches useful in identifying the genetic and protein components involved. Finally, we suggest possible commercial applications of genetic manipulation of ABA signaling to improve crop yields.
Collapse
Affiliation(s)
- Giora Ben-Ari
- Institute of Plant Sciences, The Volcani Center, ARO, Bet Dagan, Israel.
| |
Collapse
|
7
|
Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G. Characterization of potential ABA receptors in Vitis vinifera. PLANT CELL REPORTS 2012; 31:311-21. [PMID: 22016084 DOI: 10.1007/s00299-011-1166-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/20/2011] [Accepted: 09/26/2011] [Indexed: 05/06/2023]
Abstract
Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. The phytohormone abscisic acid (ABA) is a key endogenous messenger in a plant's response to such stresses. A novel ABA binding mechanism which plays a key role in plant cell signaling cascades has recently been uncovered. In the absence of ABA, a type 2C protein phosphatase (PP2C) interacts and inhibits the kinase SnRK2. Binding of ABA to the PYR/PYLs receptors enables interaction between the ABA receptor and the PP2C protein, and abrogates the SnRK2 inactivation. The active SnRK2 is then free to activate the ABA-responsive element Binding Factors which target ABA-dependent gene expression. We used the grape as a model to study the ABA perception mechanism in fruit trees. The grape ABA signaling cascade consists of at least seven ABA receptors and six PP2Cs. We used a yeast two-hybrid system to examine physical interaction in vitro between the grape ABA receptors and their interacting partners, and found that twenty-two receptor-PP2C interactions can occur. Moreover, quantifying these affinities by the use of the LacZ reporter enables us to show that VvPP2C4 and VvPP2C9 are the major binding partners of the ABA receptor. We also tested in vivo the root and leaf gene expression of the various ABA receptors and PP2Cs in the presence of exogenic ABA and under different abiotic stresses such as high salt concentration, cold and drought, and found that many of these genes are regulated by such abiotic environmental factors. Our results indicate organ specificity in the ABA receptor genes and stress specificity in the VvPP2Cs. We suggest that VvPP2C4 is the major PP2C involved in ABA perception in leaves and roots, and VvRCAR6 and VvRCAR5 respectively, are the major receptors involved in ABA perception in these organs. Identification, characterization and manipulation of the central players in the ABA signaling cascades in fruit trees is likely to prove essential for improving their performance in the future.
Collapse
Affiliation(s)
- Uri Boneh
- Institute of Plant Science, Volcani Center, ARO, Bet-Dagan, Israel
| | | | | | | | | |
Collapse
|
8
|
Chai YM, Jia HF, Li CL, Dong QH, Shen YY. FaPYR1 is involved in strawberry fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5079-89. [PMID: 21778181 DOI: 10.1093/jxb/err207] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although the plant hormone abscisic acid (ABA) has been suggested to play a role in the ripening of non-climatic fruit, direct genetic/molecular evidence is lacking. In the present study, a strawberry gene homologous to the Arabidopsis ABA receptor gene PYR1, named FaPYR1, was isolated and characterized. The 627 bp cDNA includes an intact open reading frame that encodes a deduced protein of 208 amino acids, in which putative conserved domains were detected by homology analysis. Using tobacco rattle virus-induced gene silencing (VIGS), the FaPYR1 gene was silenced in strawberry fruit. Down-regulation of the FaPYR1 gene not only significantly delayed fruit ripening, but also markedly altered ABA content, ABA sensitivity, and a set of ABA-responsive gene transcripts, including ABI1 and SnRK2. Furthermore, the loss of red colouring in FaPYR1 RNAi (RNA interference) fruits could not be rescued by exogenously applied ABA, which could promote the ripening of wild-type fruits. Collectively, these results demonstrate that the putative ABA receptor FaPYR1 acts as a positive regulator in strawberry fruit ripening. It was also revealed that the application of the VIGS technique in strawberry fruit could be used as a novel tool for studying strawberry fruit development.
Collapse
Affiliation(s)
- Ye-Mao Chai
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing 102206, PR China
| | | | | | | | | |
Collapse
|