1
|
Islam MT, Liu Y, Hassan MM, Abraham PE, Merlet J, Townsend A, Jacobson D, Buell CR, Tuskan GA, Yang X. Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0029. [PMID: 38435807 PMCID: PMC10905259 DOI: 10.34133/bdr.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
Plants are complex systems hierarchically organized and composed of various cell types. To understand the molecular underpinnings of complex plant systems, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for revealing high resolution of gene expression patterns at the cellular level and investigating the cell-type heterogeneity. Furthermore, scRNA-seq analysis of plant biosystems has great potential for generating new knowledge to inform plant biosystems design and synthetic biology, which aims to modify plants genetically/epigenetically through genome editing, engineering, or re-writing based on rational design for increasing crop yield and quality, promoting the bioeconomy and enhancing environmental sustainability. In particular, data from scRNA-seq studies can be utilized to facilitate the development of high-precision Build-Design-Test-Learn capabilities for maximizing the targeted performance of engineered plant biosystems while minimizing unintended side effects. To date, scRNA-seq has been demonstrated in a limited number of plant species, including model plants (e.g., Arabidopsis thaliana), agricultural crops (e.g., Oryza sativa), and bioenergy crops (e.g., Populus spp.). It is expected that future technical advancements will reduce the cost of scRNA-seq and consequently accelerate the application of this emerging technology in plants. In this review, we summarize current technical advancements in plant scRNA-seq, including sample preparation, sequencing, and data analysis, to provide guidance on how to choose the appropriate scRNA-seq methods for different types of plant samples. We then highlight various applications of scRNA-seq in both plant systems biology and plant synthetic biology research. Finally, we discuss the challenges and opportunities for the application of scRNA-seq in plants.
Collapse
Affiliation(s)
- Md Torikul Islam
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding,
Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jean Merlet
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Alice Townsend
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C. Robin Buell
- Center for Applied Genetic Technologies,
University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences,
University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics, and Genomics,
University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
2
|
Albornoz K, Zhou J, Yu J, Beckles DM. Dissecting postharvest chilling injury through biotechnology. Curr Opin Biotechnol 2022; 78:102790. [PMID: 36116331 DOI: 10.1016/j.copbio.2022.102790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Paradoxically, refrigerating many fruits and vegetables destroys their quality, and may even accelerate their spoilage. This phenomenon, known as postharvest chilling injury (PCI), affects produce from tropical and subtropical regions and leads to economic and postharvest loss and waste. Low temperatures are used to pause the physiological processes associated with senescence, but upon rewarming, these processes may resume at an accelerated rate. Chilling-injured produce may be discarded for not meeting consumer expectations or may prematurely deteriorate. In this review, we describe progress made in identifying the cellular and molecular processes underlying PCI, and point to advances in biotechnological approaches for ameliorating symptoms. Further, we identify the gaps in knowledge that must be bridged to develop effective solutions to PCI.
Collapse
Affiliation(s)
- Karin Albornoz
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile
| | - Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jingwei Yu
- SUSTech-PKU Joint Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Liu Y, Yuan G, Hassan MM, Abraham PE, Mitchell JC, Jacobson D, Tuskan GA, Khakhar A, Medford J, Zhao C, Liu CJ, Eckert CA, Doktycz MJ, Tschaplinski TJ, Yang X. Biological and Molecular Components for Genetically Engineering Biosensors in Plants. BIODESIGN RESEARCH 2022; 2022:9863496. [PMID: 37850147 PMCID: PMC10521658 DOI: 10.34133/2022/9863496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/08/2022] [Indexed: 10/19/2023] Open
Abstract
Plants adapt to their changing environments by sensing and responding to physical, biological, and chemical stimuli. Due to their sessile lifestyles, plants experience a vast array of external stimuli and selectively perceive and respond to specific signals. By repurposing the logic circuitry and biological and molecular components used by plants in nature, genetically encoded plant-based biosensors (GEPBs) have been developed by directing signal recognition mechanisms into carefully assembled outcomes that are easily detected. GEPBs allow for in vivo monitoring of biological processes in plants to facilitate basic studies of plant growth and development. GEPBs are also useful for environmental monitoring, plant abiotic and biotic stress management, and accelerating design-build-test-learn cycles of plant bioengineering. With the advent of synthetic biology, biological and molecular components derived from alternate natural organisms (e.g., microbes) and/or de novo parts have been used to build GEPBs. In this review, we summarize the framework for engineering different types of GEPBs. We then highlight representative validated biological components for building plant-based biosensors, along with various applications of plant-based biosensors in basic and applied plant science research. Finally, we discuss challenges and strategies for the identification and design of biological components for plant-based biosensors.
Collapse
Affiliation(s)
- Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - June Medford
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Cheng Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Carrie A. Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
4
|
Hu R, Zhang J, Jawdy S, Sreedasyam A, Lipzen A, Wang M, Ng V, Daum C, Keymanesh K, Liu D, Lu H, Ranjan P, Chen JG, Muchero W, Tschaplinski TJ, Tuskan GA, Schmutz J, Yang X. Comparative genomics analysis of drought response between obligate CAM and C 3 photosynthesis plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153791. [PMID: 36027837 DOI: 10.1016/j.jplph.2022.153791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) plants exhibit elevated drought and heat tolerance compared to C3 and C4 plants through an inverted pattern of day/night stomatal closure and opening for CO2 assimilation. However, the molecular responses to water-deficit conditions remain unclear in obligate CAM species. In this study, we presented genome-wide transcription sequencing analysis using leaf samples of an obligate CAM species Kalanchoë fedtschenkoi under moderate and severe drought treatments at two-time points of dawn (2-h before the start of light period) and dusk (2-h before the dark period). Differentially expressed genes were identified in response to environmental drought stress and a whole genome wide co-expression network was created as well. We found that the expression of CAM-related genes was not regulated by drought stimuli in K. fedtschenkoi. Our comparative analysis revealed that CAM species (K. fedtschenkoi) and C3 species (Arabidopsis thaliana, Populus deltoides 'WV94') share some common transcriptional changes in genes involved in multiple biological processes in response to drought stress, including ABA signaling and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jin Zhang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA.
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Mei Wang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Vivian Ng
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Keykhosrow Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA; Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
5
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
6
|
Aragonés V, Aliaga F, Pasin F, Daròs JA. Simplifying plant gene silencing and genome editing logistics by a one-Agrobacterium system for simultaneous delivery of multipartite virus vectors. Biotechnol J 2022; 17:e2100504. [PMID: 35332696 DOI: 10.1002/biot.202100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Viral vectors provide a quick and effective way to express exogenous sequences in eukaryotic cells and to engineer eukaryotic genomes through the delivery of CRISPR/Cas components. Here, we present JoinTRV, an improved vector system based on tobacco rattle virus (TRV) that simplifies gene silencing and genome editing logistics. Our system consists of two mini T-DNA vectors from which TRV RNA1 (pLX-TRV1) and an engineered version of TRV RNA2 (pLX-TRV2) are expressed. The two vectors have compatible origins that allow their cotransformation and maintenance into a single Agrobacterium cell, as well as their simultaneous delivery to plants by a one-Agrobacterium/two-vector approach. The JoinTRV vectors are substantially smaller than those of any known TRV vector system, and pLX-TRV2 can be easily customized to express desired sequences by one-step digestion-ligation and homology-based cloning. The system was successfully used in Nicotiana benthamiana for launching TRV infection, for recombinant protein production, as well as for robust virus-induced gene silencing (VIGS) of endogenous transcripts using bacterial suspensions at low optical densities. JoinTRV-mediated delivery of single-guide RNAs in a Cas9 transgenic host allowed somatic cell editing efficiencies of ≈90%; editing events were heritable and >50% of the progeny seedlings showed mutations at the targeted loci.
Collapse
Affiliation(s)
- Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Flavio Aliaga
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
- Centro Experimental La Molina (CELM), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- School of Science, University of Padova, Padova, Italy
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
7
|
Hu XL, Zhang J, Kaundal R, Kataria R, Labbé JL, Mitchell JC, Tschaplinski TJ, Tuskan GA, Cheng ZM(M, Yang X. Diversity and conservation of plant small secreted proteins associated with arbuscular mycorrhizal symbiosis. HORTICULTURE RESEARCH 2022; 9:uhac043. [PMID: 35184190 PMCID: PMC8985099 DOI: 10.1093/hr/uhac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/18/2022] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AMS) is widespread mutualistic association between plants and fungi, which plays an essential role in nutrient exchange, enhancement in plant stress resistance, development of host, and ecosystem sustainability. Previous studies have shown that plant small secreted proteins (SSPs) are involved in beneficial symbiotic interactions. However, the role of SSPs in the evolution of AMS has not been well studied yet. In this study, we performed computational analysis of SSPs in 60 plant species and identified three AMS-specific ortholog groups containing SSPs only from at least 30% of the AMS species in this study and three AMS-preferential ortholog groups containing SSPs from both AMS and non-AMS species, with AMS species containing significantly more SSPs than non-AMS species. We found that independent lineages of monocot and eudicot plants contained genes in the AMS-specific ortholog groups and had significant expansion in the AMS-preferential ortholog groups. Also, two AMS-preferential ortholog groups showed convergent changes, between monocot and eudicot species, in gene expression in response to arbuscular mycorrhizal fungus Rhizophagus irregularis. Furthermore, conserved cis-elements were identified in the promoter regions of the genes showing convergent gene expression. We found that the SSPs, and their closely related homologs, in each of three AMS-preferential ortholog groups, had some local variations in the protein structural alignment. We also identified genes co-expressed with the Populus trichocarpa SSP genes in the AMS-preferential ortholog groups. This first plant kingdom-wide analysis on SSP provides insights on plant-AMS convergent evolution with specific SSP gene expression and local diversification of protein structures.
Collapse
Affiliation(s)
- Xiao-Li Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Rakesh Kaundal
- Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA
| | - Raghav Kataria
- Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA
| | - Jesse L Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zong-Ming (Max) Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Xiaohan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
8
|
Yuan G, Hassan MM, Yao T, Lu H, Vergara MM, Labbé JL, Muchero W, Pan C, Chen JG, Tuskan GA, Qi Y, Abraham PE, Yang X. Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering. ACS Synth Biol 2021; 10:3600-3603. [PMID: 34878784 DOI: 10.1021/acssynbio.1c00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CRISPR/Cas has recently emerged as the most reliable system for genome engineering in various species. However, concerns about risks associated with the CRISPR/Cas technology are increasing on potential unintended DNA changes that might accidentally arise from CRISPR gene editing. Developing a system that can detect and report the presence of active CRISPR/Cas tools in biological systems is therefore very necessary. Here, we developed four real-time detection systems that can spontaneously indicate the presence of active CRISPR-Cas tools for genome editing and gene regulation including CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa in plants. Using the fluorescence-based molecular biosensors, we demonstrated that the activities of CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa can be effectively detected in transient expression via protoplast transformation and leaf infiltration (in Arabidopsis, poplar, and tobacco) and stable transformation in Arabidopsis.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael Melesse Vergara
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jesse L. Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Changtian Pan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Yang X, Liu D, Lu H, Weston DJ, Chen JG, Muchero W, Martin S, Liu Y, Hassan MM, Yuan G, Kalluri UC, Tschaplinski TJ, Mitchell JC, Wullschleger SD, Tuskan GA. Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. BIODESIGN RESEARCH 2021; 2021:9798714. [PMID: 37849951 PMCID: PMC10521660 DOI: 10.34133/2021/9798714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2023] Open
Abstract
A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Haiwei Lu
- Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Yuan G, Lu H, Tang D, Hassan MM, Li Y, Chen JG, Tuskan GA, Yang X. Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants. HORTICULTURE RESEARCH 2021; 8:234. [PMID: 34719678 PMCID: PMC8558336 DOI: 10.1038/s41438-021-00663-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 05/08/2023]
Abstract
Green fluorescent protein (GFP) has been widely used for monitoring gene expression and protein localization in diverse organisms. However, highly sensitive imaging equipment, like fluorescence microscope, is usually required for the visualization of GFP, limitings its application to fixed locations in samples. A reporter that can be visualized in real-time regardless the shape, size and location of the target samples will increase the flexibility and efficiency of research work. Here, we report the application of a GFP-like protein, called eYGFPuv, in both transient expression and stable transformation, in two herbaceous plant species (Arabidopsis and tobacco) and two woody plant species (poplar and citrus). We observed bright fluorescence under UV light in all of the four plant species without any effects on plant growth or development. eYGFPuv was shown to be effective for imaging transient expression in leaf and root tissues. With a focus on in vitro transformation, we demonstrated that the transgenic events expressing 1x eYGFPuv could be easily identified visually during the callus stage and the shoot stage, enabling early and efficient selection of transformants. Furthermore, whole-plant level visualization of eYGFPuv revealed its ubiquitous stability in transgenic plants. In addition, our transformation experiments showed that eYGFPuv can also be used to select transgenic plants without antibiotics. This work demonstrates the feasibility of utilizing 1x eYGFPuv in studies of gene expression and plant transformation in diverse plants.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Dan Tang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
- National Center for Citrus Improvement, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
11
|
Huang D, Kosentka PZ, Liu W. Synthetic biology approaches in regulation of targeted gene expression. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102036. [PMID: 33930839 DOI: 10.1016/j.pbi.2021.102036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 05/15/2023]
Abstract
Synthetic biology approaches are highly sought-after to facilitate the regulation of targeted gene expression in plants for functional genomics research and crop trait improvement. To date, synthetic regulation of gene expression predominantly focuses at the transcription level via engineering of synthetic promoters and transcription factors, while pioneering examples have started to emerge for synthetic regulation of gene expression at the levels of mRNA stability, translation, and protein degradation. This review discusses recent advances in plant synthetic biology for the regulation of gene expression at multiple levels, and highlights their future directions.
Collapse
Affiliation(s)
- Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Pawel Z Kosentka
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
12
|
Stepanova AN. Plant Biology Research: What Is Next? FRONTIERS IN PLANT SCIENCE 2021; 12:749104. [PMID: 34659319 PMCID: PMC8514653 DOI: 10.3389/fpls.2021.749104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Anna N. Stepanova
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
13
|
Shrestha HK, Solis MIV, Jawdy SS, Tuskan GA, Yang X, Abraham PE. Temporal dynamics of protein and post-translational modification abundances in Populus leaf across a diurnal period. Proteomics 2021; 21:e2100127. [PMID: 34482644 DOI: 10.1002/pmic.202100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
Populus spp. are dedicated woody biomass feedstocks for advanced biofuels and bioproducts. Proper growth and fitness of poplar as a sustainable feedstock depends on timely perception and response to environmental signals (e.g., light, temperature, water). Poplar leaves, like other C3 photosynthesis plants, have evolved oscillating or circadian rhythms that play important roles in synchronizing biological processes with external cues. To characterize this phenomenon at a molecular level, we employed bottom-up proteomics using high-resolution mass spectrometry and de novo-assisted database searching to identify abundance changes in proteins and post-translational modifications in poplar leaf tissue sampled across a 12/12-hour light/dark diurnal period.
Collapse
Affiliation(s)
- Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | | | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
14
|
Hu Z, Nie Z, Yan C, Huang H, Ma X, Wang Y, Ye N, Tuskan GA, Yang X, Yin H. Transcriptome and Degradome Profiling Reveals a Role of miR530 in the Circadian Regulation of Gene Expression in Kalanchoë marnieriana. Cells 2021; 10:1526. [PMID: 34204368 PMCID: PMC8233840 DOI: 10.3390/cells10061526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Crassulacean acid metabolism (CAM) is an important photosynthetic pathway for plant adaptation to dry environments. CAM plants feature a coordinated interaction between mesophyll and epidermis functions that involves refined regulations of gene expression. Plant microRNAs (miRNAs) are crucial post-transcription regulators of gene expression, however, their roles underlying the CAM pathway remain poorly investigated. Here, we present a study characterizing the expression of miRNAs in an obligate CAM species Kalanchoë marnieriana. Through sequencing of transcriptome and degradome in mesophyll and epidermal tissues under the drought treatments, we identified differentially expressed miRNAs that were potentially involved in the regulation of CAM. In total, we obtained 84 miRNA genes, and eight of them were determined to be Kalanchoë-specific miRNAs. It is widely accepted that CAM pathway is regulated by circadian clock. We showed that miR530 was substantially downregulated in epidermal peels under drought conditions; miR530 targeted two tandem zinc knuckle/PLU3 domain encoding genes (TZPs) that were potentially involved in light signaling and circadian clock pathways. Our work suggests that the miR530-TZPs module might play a role of regulating CAM-related gene expression in Kalanchoë.
Collapse
Affiliation(s)
- Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ziyan Nie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Chao Yan
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi 336600, China;
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; (G.A.T.); (X.Y.)
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; (G.A.T.); (X.Y.)
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
15
|
Hu XL, Lu H, Hassan MM, Zhang J, Yuan G, Abraham PE, Shrestha HK, Villalobos Solis MI, Chen JG, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Cheng ZMM, Yang X. Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. HORTICULTURE RESEARCH 2021; 8:130. [PMID: 34059650 PMCID: PMC8167165 DOI: 10.1038/s41438-021-00570-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 05/02/2023]
Abstract
Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant-microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants.
Collapse
Affiliation(s)
- Xiao-Li Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zong-Ming Max Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Xiaohan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
16
|
Pasin F. Oligonucleotide abundance biases aid design of a type IIS synthetic genomics framework with plant virome capacity. Biotechnol J 2021; 16:e2000354. [PMID: 33410597 DOI: 10.1002/biot.202000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Synthetic genomics-driven dematerialization of genetic resources facilitates flexible hypothesis testing and rapid product development. Biological sequences have compositional biases, which, I reasoned, could be exploited for engineering of enhanced synthetic genomics systems. In proof-of-concept assays reported herein, the abundance of random oligonucleotides in viral genomic components was analyzed and used for the rational design of a synthetic genomics framework with plant virome capacity (SynViP). Type IIS endonucleases with low abundance in the plant virome, as well as Golden Gate and No See'm principles were combined with DNA chemical synthesis for seamless viral clone assembly by one-step digestion-ligation. The framework described does not require subcloning steps, is insensitive to insert terminal sequences, and was used with linear and circular DNA molecules. Based on a digital template, DNA fragments were chemically synthesized and assembled by one-step cloning to yield a scar-free infectious clone of a plant virus suitable for Agrobacterium-mediated delivery. SynViP allowed rescue of a genuine virus without biological material, and has the potential to greatly accelerate biological characterization and engineering of plant viruses as well as derived biotechnological tools. Finally, computational identification of compositional biases in biological sequences might become a common standard to aid scalable biosystems design and engineering.
Collapse
Affiliation(s)
- Fabio Pasin
- School of Science, University of Padova, Padova, Italy.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|