1
|
Deng Y, Zhu J, Liu X, Dai J, Yu T, Zhu D. A robust vessel-labeling pipeline with high tissue clearing compatibility for 3D mapping of vascular networks. iScience 2024; 27:109730. [PMID: 38706842 PMCID: PMC11068851 DOI: 10.1016/j.isci.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The combination of vessel-labeling, tissue-clearing, and light-sheet imaging techniques provides a potent tool for accurately mapping vascular networks, enabling the assessment of vascular remodeling in vascular-related disorders. However, most vascular labeling methods face challenges such as inadequate labeling efficiency or poor compatibility with current tissue clearing technology, which significantly undermines the image quality. To address this limitation, we introduce a vessel-labeling pipeline, termed Ultralabel, which relies on a specially designed dye hydrogel containing lysine-fixable dextran and gelatins for double enhancement. Ultralabel demonstrates not only excellent vessel-labeling capability but also strong compatibility with all tissue clearing methods tested, which outperforms other vessel-labeling methods. Consequently, Ultralabel enables fine mapping of vascular networks in diverse organs, as well as multi-color labeling alongside other labeling techniques. Ultralabel should provide a robust and user-friendly method for obtaining 3D vascular networks in different biomedical applications.
Collapse
Affiliation(s)
- Yating Deng
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Junyao Dai
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
2
|
Li P, Zhang T, Wu R, Zhang JY, Zhuo Y, Li SG, Wang JJ, Guo WT, Wang ZB, Chen YC. Loss of SHROOM3 affects neuroepithelial cell shape through regulating cytoskeleton proteins in cynomolgus monkey organoids. Zool Res 2024; 45:233-241. [PMID: 38287904 PMCID: PMC11017078 DOI: 10.24272/j.issn.2095-8137.2023.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 01/31/2024] Open
Abstract
Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ruo Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jun-Yu Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yan Zhuo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Shan-Gang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jiao-Jian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wen-Ting Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China. E-mail:
| | - Zheng-Bo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China. E-mail:
| | - Yong-Chang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China. E-mail:
| |
Collapse
|
3
|
Luo Z, Zhang T, Chen S. Exercise Prescription: Pioneering the "Third Pole" for Clinical Health Management. RESEARCH (WASHINGTON, D.C.) 2023; 6:0284. [PMID: 38034085 PMCID: PMC10684289 DOI: 10.34133/research.0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital,
Fudan University, Shanghai 200040, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital,
Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital,
Fudan University, Shanghai 200040, China
| |
Collapse
|
4
|
Lu S, Chen Y, Wang Z. Advances in the pathogenesis of Rett syndrome using cell models. Animal Model Exp Med 2022; 5:532-541. [PMID: 35785421 PMCID: PMC9773312 DOI: 10.1002/ame2.12236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder that occurs mainly in girls with a range of typical symptoms of autism spectrum disorders. MeCP2 protein loss-of-function in neural lineage cells is the main cause of RTT pathogenicity. As it is still hard to understand the mechanism of RTT on the basis of only clinical patients or animal models, cell models cultured in vitro play indispensable roles. Here we reviewed the research progress in the pathogenesis of RTT at the cellular level, summarized the preclinical-research-related applications, and prospected potential future development.
Collapse
Affiliation(s)
- Sijia Lu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| |
Collapse
|