1
|
Marquiegui – Alvaro A, Kottara A, Chacón M, Cliffe L, Brockhurst M, Dixon N. Genetic Bioaugmentation-Mediated Bioremediation of Terephthalate in Soil Microcosms Using an Engineered Environmental Plasmid. Microb Biotechnol 2025; 18:e70071. [PMID: 39801293 PMCID: PMC11725763 DOI: 10.1111/1751-7915.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown. Our engineered plasmid caused a low fitness cost and was stably maintained in terephthalate-contaminated soil by the bacterium P. putida. Plasmid carriers efficiently bioremediated contaminated soil in model soil microcosms, achieving complete breakdown of 3.2 mg/g of terephthalate within 8 days. The engineered plasmid horizontally transferred the synthetic operon to P. fluorescens in situ, and the resulting transconjugants degraded 10 mM terephthalate during a 180-h incubation. Our findings show that environmental plasmids carrying synthetic catabolic operons can be useful tools for in situ engineering of microbial communities to perform clean-up even of complex environments like soil.
Collapse
Affiliation(s)
| | - Anastasia Kottara
- School of Biological SciencesThe University of ManchesterManchesterUK
| | - Micaela Chacón
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | - Lisa Cliffe
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | | | - Neil Dixon
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| |
Collapse
|
2
|
Suman J, Sredlova K, Fraraccio S, Jerabkova M, Strejcek M, Kabickova H, Cajthaml T, Uhlik O. Transformation of hydroxylated polychlorinated biphenyls by bacterial 2-hydroxybiphenyl 3-monooxygenase. CHEMOSPHERE 2024; 349:140909. [PMID: 38070605 DOI: 10.1016/j.chemosphere.2023.140909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Monohydroxylated PCBs (OH-PCBs) are an (eco)toxicologically significant group of compounds, as they arise from the oxidation of polychlorinated biphenyls (PCBs) and, at the same time, may exert even more severe toxic effects than their parent PCB molecules. Despite having been widely detected in environmental samples, plants, and animals, information on the fate of OH-PCBs in the environment is scarce, including on the enzymatic machinery behind their degradation. To date, only a few bacterial taxa capable of OH-PCB transformation have been reported. In this study, we aimed to obtain a deeper insight into the transformation of OH-PCBs in soil bacteria and isolated a Pseudomonas sp. strain P1B16 based on its ability to use o-phenylphenol (2-PP) which, when exposed to the Delor 103-derived OH-PCB mixture, depleted a wide spectrum of mono-, di, and trichlorinated OH-PCBs. In the P1B16 genome, a region designated as hbp was identified, which bears a set of putative genes involved in the transformation of OH-PCBs, namely hbpA encoding for a putative flavin-dependent 2-hydroxybiphenyl monooxygenase, hbpC (2,3-dihydroxybiphenyl-1,2-dioxygenase), hbpD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase), and the transcriptional activator-encoding gene hbpR. The hbpA coding sequence was heterologously expressed, purified, and its substrate specificity was investigated towards the Delor 103-derived OH-PCB mixture, individual OH-PCBs, and multiple (chlorinated) phenolics. Apart from 2-PP and 2-chlorophenol, HbpA was also demonstrated to transform a range of OH-PCBs, including a 3-hydroxy-2,2',4',5,5'-pentachlorobiphenyl. Importantly, this is the first direct evidence of HbpA homologs being involved in the degradation of OH-PCBs. Moreover, using a P1B16-based biosensor strain, the specific induction of hbp genes by 2-PP, 3-phenylphenol, 4-phenylphenol, and the OH-PCB mixture was demonstrated. This study provides direct evidence on the specific enzymatic machinery responsible for the transformation of OH-PCBs in bacteria, with many implications in ecotoxicology, environmental restoration, and microbial ecology in habitats burdened with PCB contamination.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic.
| | - Kamila Sredlova
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Serena Fraraccio
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic
| | - Martina Jerabkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic
| | - Hana Kabickova
- Military Health Institute, Ministry of Defence of the Czech Republic, U Vojenske Nemocnice 1200, 169 02, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 162 08, Prague, Czech Republic.
| |
Collapse
|
3
|
Luo X, Fang G, Chen K, Song Y, Lu T, Tomberlin JK, Zhan S, Huang Y. A gut commensal bacterium promotes black soldier fly larval growth and development partly via modulation of intestinal protein metabolism. mBio 2023; 14:e0117423. [PMID: 37706881 PMCID: PMC10653789 DOI: 10.1128/mbio.01174-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Black solider fly larvae and the gut microbiota can recycle nutrients from various organic wastes into valuable insect biomass. We found that Citrobacter amalonaticus, a gut commensal bacterium of the insect, exerts beneficial effects on larval growth and development and that the expression of many metabolic larval genes was significantly impacted by the symbiont. To identify the larval genes involved in the host-symbiont interaction, we engineered the symbiont to produce double-strand RNA and enabled the strain to silence host genes in the larval gut environment where the interaction takes place. With this approach, we confirmed that two intestinal protease families are involved in the interaction and provided further evidence that intestinal protein metabolism plays a role in the interaction. This work expands the genetic toolkits available to study the insect functional genomics and host-symbiont interaction and provide the prospective for the future application of gut microbiota on the large-scale bioconversion.
Collapse
Affiliation(s)
- Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kuangqin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Yan K, Wei M, Li F, Wu C, Yi S, Tian J, Liu Y, Lu H. Diffusion and enrichment of high-risk antibiotic resistance genes (ARGs) via the transmission chain (mulberry leave, guts and feces of silkworm, and soil) in an ecological restoration area of manganese mining, China: Role of heavy metals. ENVIRONMENTAL RESEARCH 2023; 225:115616. [PMID: 36871940 DOI: 10.1016/j.envres.2023.115616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to β-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces from RA were added into soil for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed at RA, especially some high-risk ARGs carried by pathogens. Thus, greater attentions should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.
Collapse
Affiliation(s)
- Kanxuan Yan
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| |
Collapse
|