1
|
Ziegler CGK, Owings AH, Galeas-Pena M, Kazer SW, Miao VN, Navia AW, Tang Y, Bromley JD, Lotfy P, Sloan M, Laird H, Williams HB, George M, Drake RS, Pride Y, Abraham GE, Senitko M, Robinson TO, Diamond G, Lionakis MS, Shalek AK, Ordovas-Montanes J, Horwitz BH, Glover SC. An enhanced IL17 and muted type I interferon nasal epithelial cell state characterizes severe COVID-19 with fungal coinfection. Microbiol Spectr 2024; 12:e0351623. [PMID: 38687064 PMCID: PMC11237666 DOI: 10.1128/spectrum.03516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.
Collapse
Affiliation(s)
- Carly G. K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anna H. Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michelle Galeas-Pena
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Los Angeles, USA
| | - Samuel W. Kazer
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Vincent N. Miao
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew W. Navia
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter Lotfy
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Meredith Sloan
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hannah Laird
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haley B. Williams
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Micayla George
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Riley S. Drake
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yilianys Pride
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George E. Abraham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Tanya O. Robinson
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Bruce H. Horwitz
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sarah C. Glover
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
2
|
Ziegler CGK, Owings AH, Miao VN, Navia AW, Tang Y, Bromley JD, Lotfy P, Sloan M, Laird H, Williams HB, George M, Drake RS, Pride Y, Abraham GE, Senitko M, Robinson TO, Lionakis MS, Shalek AK, Ordovas-Montanes J, Horwitz BH, Glover SC. Severe COVID-19 is associated with fungal colonization of the nasopharynx and potent induction of IL-17 responses in the nasal epithelium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.25.22281528. [PMID: 36324802 PMCID: PMC9628205 DOI: 10.1101/2022.10.25.22281528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent case reports and epidemiological data suggest fungal infections represent an under-appreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing (scRNA-seq) dataset characterizing the upper respiratory microenvironment during COVID-19, and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals, including confirmatory diagnostic testing demonstrating elevated serum (1, 3)-β-D-glucan and/or confirmed fungal culture of the predicted pathogen. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL-17 stimulation and anti-fungal immunity. Further, we observe significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggests that IL-17 stimulation - in part driven by Candida colonization - and blunted type I/III interferon signaling represents a common feature of severe COVID-19 infection.
Collapse
Affiliation(s)
- Carly G. K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna H. Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Vincent N. Miao
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew W. Navia
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Lotfy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Meredith Sloan
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah Laird
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Haley B. Williams
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Micayla George
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riley S. Drake
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yilianys Pride
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - George E. Abraham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanya O. Robinson
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Bruce H. Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Sarah C. Glover
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
3
|
Czyrski A, Resztak M, Świderski P, Brylak J, Główka FK. The Overview on the Pharmacokinetic and Pharmacodynamic Interactions of Triazoles. Pharmaceutics 2021; 13:pharmaceutics13111961. [PMID: 34834376 PMCID: PMC8620887 DOI: 10.3390/pharmaceutics13111961] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Second generation triazoles are widely used as first-line drugs for the treatment of invasive fungal infections, including aspergillosis and candidiasis. This class, along with itraconazole, voriconazole, posaconazole, and isavuconazole, is characterized by a broad range of activity, however, individual drugs vary considerably in safety, tolerability, pharmacokinetics profiles, and interactions with concomitant medications. The interaction may be encountered on the absorption, distribution, metabolism, and elimination (ADME) step. All triazoles as inhibitors or substrates of CYP isoenzymes can often interact with many drugs, which may result in the change of the activity of the drug and cause serious side effects. Drugs of this class should be used with caution with other agents, and an understanding of their pharmacokinetic profile, safety, and drug-drug interaction profiles is important to provide effective antifungal therapy. The manuscript reviews significant drug interactions of azoles with other medications, as well as with food. The PubMed and Google Scholar bases were searched to collect the literature data. The interactions with anticonvulsants, antibiotics, statins, kinase inhibitors, proton pump inhibitors, non-nucleoside reverse transcriptase inhibitors, opioid analgesics, benzodiazepines, cardiac glycosides, nonsteroidal anti-inflammatory drugs, immunosuppressants, antipsychotics, corticosteroids, biguanides, and anticoagulants are presented. We also paid attention to possible interactions with drugs during experimental therapies for the treatment of COVID-19.
Collapse
Affiliation(s)
- Andrzej Czyrski
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (M.R.); (F.K.G.)
- Correspondence: ; Tel.: +48-61-854-64-33
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (M.R.); (F.K.G.)
| | - Paweł Świderski
- Department of Forensic Medicine, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland;
| | - Jan Brylak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland;
| | - Franciszek K. Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (M.R.); (F.K.G.)
| |
Collapse
|