1
|
Chen Z, Chen J, Wang L, Wang W, Zheng J, Wu S, Sun Y, Pan Y, Li S, Liu M, Cai Z. Effects of Three Kinds of Carbohydrate Pharmaceutical Excipients-Fructose, Lactose and Arabic Gum on Intestinal Absorption of Gastrodin through Glucose Transport Pathway in Rats. Pharm Res 2024; 41:1201-1216. [PMID: 38834905 DOI: 10.1007/s11095-024-03720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Some glucoside drugs can be transported via intestinal glucose transporters (IGTs), and the presence of carbohydrate excipients in pharmaceutical formulations may influence the absorption of them. This study, using gastrodin as probe drug, aimed to explore the effects of fructose, lactose, and arabic gum on intestinal drug absorption mediated by the glucose transport pathway. METHODS The influence of fructose, lactose, and arabic gum on gastrodin absorption was assessed via pharmacokinetic experiments and single-pass intestinal perfusion. The expression of sodium-dependent glucose transporter 1 (SGLT1) and sodium-independent glucose transporter 2 (GLUT2) was quantified via RT‒qPCR and western blotting. Alterations in rat intestinal permeability were evaluated through H&E staining, RT‒qPCR, and immunohistochemistry. RESULTS Fructose reduced the area under the curve (AUC) and peak concentration (Cmax) of gastrodin by 42.7% and 63.71%, respectively (P < 0.05), and decreased the effective permeability coefficient (Peff) in the duodenum and jejunum by 58.1% and 49.2%, respectively (P < 0.05). SGLT1 and GLUT2 expression and intestinal permeability remained unchanged. Lactose enhanced the AUC and Cmax of gastrodin by 31.5% and 65.8%, respectively (P < 0.05), and increased the Peff in the duodenum and jejunum by 33.7% and 26.1%, respectively (P < 0.05). SGLT1 and GLUT2 levels did not significantly differ, intestinal permeability increased. Arabic gum had no notable effect on pharmacokinetic parameters, SGLT1 or GLUT2 expression, or intestinal permeability. CONCLUSION Fructose, lactose, and arabic gum differentially affect intestinal drug absorption through the glucose transport pathway. Fructose competitively inhibited drug absorption, while lactose may enhance absorption by increasing intestinal permeability. Arabic gum had no significant influence.
Collapse
Affiliation(s)
- Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liyang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wentao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqiong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yinzhu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuru Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
2
|
Jia Z, Zou G, Xie Y, Zhang E, Yimingjiang M, Cheng X, Fang C, Wei F. Pharmacokinetic-Pharmacodynamic Correlation Analysis of Rhodiola crenulata in Rats with Myocardial Ischemia. Pharmaceuticals (Basel) 2024; 17:595. [PMID: 38794164 PMCID: PMC11124525 DOI: 10.3390/ph17050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The pharmacokinetics (PK) of Rhodiola crenulata in rats were studied, and pharmacokinetic-pharmacodynamic (PK-PD) correlation analysis was performed to elucidate their time-concentration-effect relationship. The myocardial ischemia model was made with pituitrin. Rats were divided into sham operation, sham operation administration, model, and model administration groups (SG, SDG, MG, and MDG, respectively; n = 6). Blood was collected from the fundus venous plexus at different time points after oral administration. The HPLC-QQQ-MS/MS method was established for the quantification of five components of Rhodiola crenulata. CK, HBDH, SOD, LDH, and AST at different time points were detected via an automatic biochemical analyzer. DAS software was used to analyze PK parameters and PK-PD correlation. The myocardial ischemia model was established successfully. There were significant differences in the PK parameters (AUC0-t, AUC0-∞, Cmax) in MDG when compared with SDG. Two PD indicators, CK and HBDH, conforming to the sigmoid-Emax model, had high correlation with the five components, which indicated a delay in the pharmacological effect relative to the drug concentration in plasma. The difference in the PK parameters between modeled and normal rats was studied, and the time-concentration-effect of composition and effect indicators were investigated. This study can provide reference for the rational clinical application of Rhodiola crenulata and for related studies of other anti-myocardial ischemia drugs.
Collapse
Affiliation(s)
- Zhixin Jia
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| | - Guoming Zou
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Yongyan Xie
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Enning Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Mureziya Yimingjiang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Xianlong Cheng
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| | - Cong Fang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| |
Collapse
|
3
|
Huang B, Lin Z, Chen Z, Chen J, Shi B, Jia J, Li Y, Pan Y, Liang Y, Cai Z. Strain differences in the drug transport capacity of intestinal glucose transporters in Sprague-Dawley versus Wistar rats, C57BL/6J versus Kunming mice. Int J Pharm 2023; 640:123000. [PMID: 37254285 DOI: 10.1016/j.ijpharm.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Designing oral drug delivery systems using intestinal glucose transporters (IGTs) may be one of the strategies for improving oral bioavailability of drugs. However, little is known about the biological factors affecting the drug transport capacity of IGTs. Gastrodin is a sedative drug with a structure very similar to glucose. It is a highly water-soluble phenolic glucoside. It can hardly enter the intestine through simple diffusion but exhibits good oral bioavailability of over 80%. We confirmed that gastrodin is absorbed via the intestinal glucose transport pathway. It has the highest oral bioavailability among the reported glycosides' active ingredients through this pathway. Thus, gastrodin is the most selective drug substrate of IGTs and can be used to evaluate the drug transport capacity of IGTs. Obviously, strain is one of the main biological factors affecting drug absorption. This study firstly compared the drug transport capacity of IGTs between SD rats and Wistar rats and between C57 mice and KM mice by pharmacokinetic experiments and single-pass intestinal perfusion experiments of gastrodin. Then, the sodium-dependent glucose transporter type 1 (SGLT1) and sodium-independent glucose transporters type 2 (GLUT2) in the duodenum, jejunum, ileum and colon of these animals were quantified using RT-qPCR and Western blot. The results showed that the oral bioavailability of gastrodin in Wistar rats was significantly higher than in SD rats and significantly higher in KM mice than in C57 mice. Gastrodin absorption significantly differed among different intestinal segments in SD rats, C57 mice and KM mice, except Wistar rats. RT-qPCR and Western blot demonstrated that the intestinal expression distribution of SGLT1 and GLUT2 in SD rats and C57 mice was duodenum ≈ jejunum > ileum > colon. SGLT1 expression did not differ among different intestinal segments in KM mice, whereas the intestinal expression distribution of GLUT2 was duodenum ≈ jejunum ≈ ileum > colon. However, the expression of SGLT1 and GLUT2 did not differ among different intestinal segments in Wistar rats. It was reported that the intestinal expression distribution of SGLT1 and GLUT2 in humans is duodenum > jejunum > ileum > colon. Hence, the intestinal expression distribution of SGLT1 and GLUT2 of SD rats and C57 mice was more similar to that in humans. In conclusion, the drug transport capacity of IGTs differs in different strains of rats and mice. SD rats and C57 mice are more suitable for evaluating the pharmacokinetics of glycosides' active ingredients absorbed via the intestinal glucose transport pathway.
Collapse
Affiliation(s)
- Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Birui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Jingjing Jia
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Yuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yueqing Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuntao Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
4
|
Wang X, Zhao G, Ju C, Dong L, Liu Y, Ding Z, Li W, Peng Y, Zheng J. Reduction of emodin-8-O-ß-D-glucoside content participates in processing-based detoxification of polygoni multiflori radix. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154750. [PMID: 36990007 DOI: 10.1016/j.phymed.2023.154750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The occurrence of severe liver injury by the herbal medicine Polygoni Multiflori Radix (PMR) has drawn significant attention. The fact that processing attenuates PMR-induced hepatotoxicity has been well accepted, but the mechanisms are still ambiguous. PURPOSE This study aimed to illuminate the mechanism of processing-based attenuation of PMR hepatotoxicity. METHODS The contents of emodin-8-O-β-d-glucoside (EG) and emodin (EMD) in raw and processed PMR were quantified. The difference in toxicokinetic behaviors of EG and EMD was determined in vivo, and the disposition properties of EG were investigated in vitro and in vivo. RESULTS Decreased EG content was found in processed (black bean) PMR. Processed PMR showed reduced adverse effects relative to raw PMR. In addition, less hepatic protein adduction derived from EMD was produced in mice after exposure to processed PMR than that in animals receiving raw PMR. Glucose transporters SGLT1 and GLUT2 participated in the absorption of EG, and effective hydrolysis of EG to EMD took place in the intestinal epithelial cells during the process of absorption. Cytosolic broad-specificity β-glucosidase and lactase phlorizin hydrolase, as well as intestinal flora, participated in the hydrolysis of EG. The circulated EMD resulting from the deglycosylation of EG executed the hepatotoxic action. CONCLUSION EG is a pre-toxin and can be metabolically activated to EMD participating in the hepatotoxic event. The reduction of EG content due to processing is a key mechanistic factor that initiates the detoxification of PMR.
Collapse
Affiliation(s)
- Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Chengguo Ju
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, PR China
| | - Lingwen Dong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Yuyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004 Guizhou, PR China.
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
5
|
Qi T, Ge BK, Zhao L, Ma Y, Li XR, Xu PX, Xue M. Cytosolic β-glucosidase inhibition and renal blood flow suppression are leading causes for the enhanced systemic exposure of salidroside in hypoxic rats. RSC Adv 2018; 8:8469-8483. [PMID: 35539855 PMCID: PMC9078534 DOI: 10.1039/c7ra13295f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/18/2018] [Indexed: 01/02/2023] Open
Abstract
The promising benefits of salidroside (SAL) in alleviating high altitude sickness boost investigations on its pharmacokinetics and biological activity. However, the transportation and disposition process of SAL under hypoxic conditions has never been explored. The current study was proposed to investigate the pharmacokinetics of SAL in hypoxic rats and to explore the underlying mechanisms for the distinct metabolic fate of SAL under hypoxia. Pharmacokinetic studies on SAL was conducted in both hypoxic and normoxic rats. The transport properties of SAL were investigated on both hypoxic and normoxic Caco-2 monolayer models. Enzymes involved in SAL metabolism were identified and the effects of hypoxia on these enzymes were assessed by real-time PCR, western blotting analyses, and rat liver homogenate incubation. The renal clearance (CLr) of SAL, effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) in both hypoxic and normoxic rats were also determined for renal function assessment. It was found that the systemic exposure of SAL in hypoxic rats was remarkably higher than that in normoxic rats. The barrier function of Caco-2 monolayer was weakened under hypoxia due to the impaired brush border microvilli and decreased expression of tight junction protein. Hepatic metabolism of SAL in hypoxic rats was attenuated due to the reduced activity of cytosolic β-glucosidase (CBG). Moreover, CLr of SAL was reduced in hypoxic rats due to the suppressed ERPF. Our findings suggest the potential need for dose-adjustment of SAL or its structural analogs under hypoxic conditions. CBG inhibition and renal blood flow suppression are leading causes for the enhanced systemic exposure of SAL in hypoxic rats.![]()
Collapse
Affiliation(s)
- Te Qi
- Department of Pharmacology
- Beijing Laboratory for Biomedical Detection Technology and Instrument
- School of Basic Medical Sciences
- Capital Medical University
- Beijing
| | - Bei-kang Ge
- Department of Pharmacology
- Beijing Laboratory for Biomedical Detection Technology and Instrument
- School of Basic Medical Sciences
- Capital Medical University
- Beijing
| | - Liang Zhao
- Department of Pharmacology
- Beijing Laboratory for Biomedical Detection Technology and Instrument
- School of Basic Medical Sciences
- Capital Medical University
- Beijing
| | - Yi Ma
- Department of Pharmacology
- Beijing Laboratory for Biomedical Detection Technology and Instrument
- School of Basic Medical Sciences
- Capital Medical University
- Beijing
| | - Xiao-rong Li
- Department of Pharmacology
- Beijing Laboratory for Biomedical Detection Technology and Instrument
- School of Basic Medical Sciences
- Capital Medical University
- Beijing
| | - Ping-xiang Xu
- Department of Pharmacology
- Beijing Laboratory for Biomedical Detection Technology and Instrument
- School of Basic Medical Sciences
- Capital Medical University
- Beijing
| | - Ming Xue
- Department of Pharmacology
- Beijing Laboratory for Biomedical Detection Technology and Instrument
- School of Basic Medical Sciences
- Capital Medical University
- Beijing
| |
Collapse
|
6
|
Cai Z, Huang J, Luo H, Lei X, Yang Z, Mai Y, Liu Z. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability. J Drug Target 2013; 21:574-80. [DOI: 10.3109/1061186x.2013.778263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|