1
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
2
|
Affiliation(s)
- Naoya Kobayashi
- JSOPMB Issue Department of Surgery Okayama University Graduate School of Medicine and Denistry 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Nibourg GAA, Chamuleau RAFM, van Gulik TM, Hoekstra R. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opin Biol Ther 2012; 12:905-21. [DOI: 10.1517/14712598.2012.685714] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Mohajerani SA, Nourbakhsh M, Cadili A, Lakey JR, Kneteman NM. Transplant of Primary Human Hepatocytes Cocultured With Bone Marrow Stromal Cells to SCID Alb-uPA Mice. CELL MEDICINE 2010; 1:81-92. [PMID: 26966632 DOI: 10.3727/215517910x536627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocytes are vulnerable to loss of function and viability in culture. Modified culture methods have been applied to maintain their functional status. Heterotypic interactions between hepatocytes and nonparenchymal neighbors in liver milieu are thought to modulate cell differentiation. Cocultivation of hepatocyte with various cell types has been applied to mimic the hepatic environment. Bone marrow stromal cells (BMSC) are plastic cell lines capable of transforming to other cell types. In this study hepatocyte coculture with BMSCs achieved long-term function of human hepatocytes in culture for 4 weeks. In vitro functional status of human hepatocytes in BMSC coculture was compared with fibroblast coculture and collagen culture by measuring albumin, human-α-1-antitrypsin (hAAT), urea secretion, CYP450 activity, and staining for intracellular albumin and glycogen. After 2 weeks in culture hepatocytes were retrieved and transplanted to severe combined immunodeficiency/albumin linked-urokinase type plasminogen activator (SCID Alb-uPA) mice and engraft-ment capacity was analyzed by human hepatic-specific function measured by hAAT levels in mouse serum, and Alu staining of mouse liver for human hepatocytes. Hepatocytes from BMSC coculture had significantly higher albumin, hAAT secretion, urea production, and cytochrome P450 (CYP450) activity than other culture groups. Staining confirmed the higher functional status in BMSC coculture. Transplantation of hepatocytes detached from BMSC cocultures showed significantly higher engraftment function than hepatocytes from other culture groups measured by hAAT levels in mouse serum. In conclusion, BMSC coculture has excellent potential for hepatocyte function preservation in vitro and in vivo after transplant. It is possible to use BMSC hepatocyte coculture as a supply of cell therapy in liver disease.
Collapse
Affiliation(s)
- S A Mohajerani
- Department of Surgery, University of Alberta , Edmonton, Alberta , Canada
| | - M Nourbakhsh
- Department of Surgery, University of Alberta , Edmonton, Alberta , Canada
| | - A Cadili
- Department of Surgery, University of Alberta , Edmonton, Alberta , Canada
| | - J R Lakey
- † Division of Surgical Research, Department of Surgery, University of California , Irvine, CA , USA
| | - N M Kneteman
- Department of Surgery, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
6
|
Qi X, Shao M, Peng H, Bi Z, Su Z, Li H. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system. J Clin Neurosci 2010; 17:908-13. [DOI: 10.1016/j.jocn.2009.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/13/2009] [Indexed: 12/14/2022]
|
7
|
Abstract
Extracorporeal therapy has expanded significantly over the past few decades from solely artificial renal replacement therapy. In patients with multiple organ dysfunction syndrome, it becomes necessary to provide multiple organ support therapy. Technological advances have opened the door to a multifaceted intervention directed at supporting the function of multiple organs through the treatment of blood. Indications for "old" therapies such as hemofiltration and adsorption have been expanded, and using these therapies in combination further enhances blood detoxification capabilities. Furthermore, new devices are constantly in development. Nanotechnology allows us to refine membrane characteristics and design innovative monitoring/biofeedback devices. Miniaturization is leading down the path of wearable/implantable devices. With the incorporation of viable cells within medical devices, these instruments become capable not only of detoxification but synthetic functions as well, bringing us closer to the holy grail of complete replacement of organ function. This article provides a brief overview of current and future direction in extracorporeal support in the critical care setting.
Collapse
|