1
|
Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM. Blood-based therapies to combat neurodegenerative diseases. Metab Brain Dis 2024; 39:985-1004. [PMID: 38842660 DOI: 10.1007/s11011-024-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mervyn Chen Xi Lim
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Min Tze Tsen
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Baroncelli S, Galluzzo CM, Orlando S, Mphwere R, Kavalo T, Luhanga R, Amici R, Floridia M, Andreotti M, Ciccacci F, Marazzi MC, Giuliano M. Immunoglobulin G passive transfer from mothers to infants: total IgG, IgG subclasses and specific antipneumococcal IgG in 6-week Malawian infants exposed or unexposed to HIV. BMC Infect Dis 2022; 22:342. [PMID: 35382749 PMCID: PMC8985312 DOI: 10.1186/s12879-022-07335-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Background The impaired transplacental passage of IgG from mothers living with HIV to their infants could be one of the causes of the high vulnerability to infections of HIV-exposed uninfected (HEU) infants, but controversial results have been obtained in different settings. The aim of this study was to assess in 6-week old HEU and HIV-unexposed, uninfected (HUU) Malawian infants the total IgG levels, the subclasses profile and the concentrations of global anti-pneumococcal capsular polysaccharide (anti-PCP) IgG and IgG2. Methods Dried blood spots were collected from 80 infants (40 HEU, 40 HUU) and antibodies concentrations determined by nephelometric method (total IgG and subclasses), or using ELISA (anti-PCP total IgG and IgG2). Results are expressed as median levels with IQR, while the proportions of each subclass out of the total IgG are used to describe the subclasses profile. Results At 6 weeks HEU infants had higher median levels of total IgG and IgG1 and a significantly lower level of IgG2 [0.376 (0.344–0.523) g/l vs 0.485 (0.374–0.781) g/l, p = 0.037] compared to the HUU counterparts. The IgG subclasses distribution confirmed the underrepresentation of IgG2 (IgG2 represented 5.82% of total IgG in HEU and 8.87% in HUU). The anti-PCP IgG and IgG2 levels were significantly lower in HEU infants [8.9 (5.4–15.1) mg/l vs 16.2 (9.61–25.8) mg/l in HUU, p < 0.001, and 2.69 (1.90–4.29) mg/l vs 4.47 (2.96–5.71) mg/l in HUU, p = 0.001, respectively]. Conclusion Compared to HUU infants, HEU infants have IgG abnormalities mainly represented by low IgG2 levels, suggesting that despite maternal antiretroviral therapy, the mechanisms of IgG transplacental passage continue to be impaired in women living with HIV. HEU infants also showed a significantly lower level of specific anti-PCP IgG, possibly favouring a high vulnerability to S. pneumoniae infection at an age when protection is mostly depending on maternal IgG.
Collapse
Affiliation(s)
- Silvia Baroncelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Clementina M Galluzzo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Stefano Orlando
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Robert Mphwere
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Thom Kavalo
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Richard Luhanga
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Roberta Amici
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Marco Floridia
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Fausto Ciccacci
- Saint Camillus International, University of Health Sciences, Rome, Italy
| | | | - Marina Giuliano
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
3
|
Li H, Yuan F, Du Y, Pan T, Wen W, Li S, Wang L, Lu A. Umbilical cord blood stem cells transplantation in a patient with severe progressive supranuclear palsy: a case report. J Med Case Rep 2021; 15:574. [PMID: 34844635 PMCID: PMC8628425 DOI: 10.1186/s13256-021-03139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/01/2021] [Indexed: 12/05/2022] Open
Abstract
Background Progressive supranuclear palsy is a neurodegenerative condition that worsens over time. Given the lack of targeted treatments, patients with severe progressive supranuclear palsy have very low life expectancy. Case presentation We present a case of a 61-year-old Chinese man with severe progressive supranuclear palsy and treated with umbilical cord blood stem cells transplantation. After the umbilical cord blood stem cells therapy, his neurologic symptoms stopped deteriorating, his muscle rigidity was mildly improved, and he remains alive for more than 8 years. Conclusions Umbilical cord blood stem cells transplantation may be an alternative therapy for patients with severe progressive supranuclear palsy.
Collapse
Affiliation(s)
- Huiping Li
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Fang Yuan
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yaming Du
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Tao Pan
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Wanxin Wen
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Shaoxue Li
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lixin Wang
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Aili Lu
- Department of Neurocritical Care, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Prieto C, Romero-Moya D, Montes R. Isolation, Culture, and Manipulation of Human Cord Blood Progenitors. Methods Mol Biol 2021; 2185:281-298. [PMID: 33165855 DOI: 10.1007/978-1-0716-0810-4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Umbilical Cord Blood (CB) is a rich source of hematopoietic stem/progenitor cells (HSPCs) with high proliferative capacity and a naïve immune status. These characteristics, among others, make CB a good source of HSPCs not only for transplantation, but also for biomedical research purposes. Here we describe the methods for human CB-HSPCs isolation, as well as their culture and cryopreservation, viral transduction and sorting, and in vivo and in vitro assays in order to study leukemic processes.
Collapse
Affiliation(s)
- Cristina Prieto
- VIB Center for Cancer Biology, Leuven, Belgium.
- KU Leuven Center for Human Genetics, Leuven, Belgium.
| | - Damia Romero-Moya
- Department of Anatomy, University of California, San Francisco, CA, USA.
| | - Rosa Montes
- GENYO Centre for Genomics and Oncological Research, Pfizer-Universidad de Granada - Junta de Andalucia. PTS Granada, Granada, Spain.
| |
Collapse
|
6
|
Kent J, Fannin M, Dowling S. Gender dynamics in the donation field: human tissue donation for research, therapy and feeding. SOCIOLOGY OF HEALTH & ILLNESS 2019; 41:567-584. [PMID: 30105865 PMCID: PMC6446825 DOI: 10.1111/1467-9566.12803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This paper examines how gender dynamics shape human tissue donation for research and for human health. Drawing on research investigating the donation of different types of bodily tissues including blood, plasma, breastmilk, cord blood, foetal tissue and placentae we consider how and why women and men are viewed as different kinds of donors. We situate these donation practices within a broader understanding of gender difference to explain why any sociology of donation needs to take account of gender. In so doing we explore how tissue derived from the bodies of women acquires value in distinctive ways and for distinctive purposes and reasons. Within these gendered bioeconomies of donation, the supply and demand for tissue is structured by social understandings of maternity, parental responsibility, and risk, which in turn affect the experiences of donors.
Collapse
Affiliation(s)
- Julie Kent
- Department of Health and Social SciencesUniversity of the West of EnglandBristolUK
| | - Maria Fannin
- School of Geographical SciencesUniversity of BristolBristolUK
| | - Sally Dowling
- Department of Nursing and MidwiferyUniversity of the West of EnglandBristolUK
| |
Collapse
|
7
|
Marcondes JPDC, Andrade PFB, Sávio ALV, Silveira MAD, Rudge MVC, Salvadori DMF. BCL2 and miR-181a transcriptional alterations in umbilical-cord blood cells can be putative biomarkers for obesity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:90-96. [PMID: 30442352 DOI: 10.1016/j.mrgentox.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Several findings suggest that in utero stressor stimuli can alter fetal development by promoting transcriptional changes, and predisposing the neonate to diseases later in life. This study aimed to investigate whether a hyperglycemic environment in pregnant women with gestational diabetes mellitus (GDM) is able to cause fetal genetic alterations and predispose neonates to obesity. Transcriptional alteration of SIRT1, TP53 and BCL2 genes, miR-181a (a SIRT1 or BCL2 regulator) and telomere length were evaluated in placental and umbilical-cord blood cells. Healthy (HP; n = 20) and GDM (n = 20) pregnant women and their respective neonates were included in the study. Additionally, obese (n = 20) and eutrophic (n = 20) adults also participated as reference populations. Gene expression data showed down-regulation of BCL2 in umbilical-cord and peripheral blood cells from GDM neonates and obese adults, respectively. The miR-181a was down-regulated only in umbilical-cord blood cells of GDM neonates. Telomere length presented no significant difference. In conclusion, our study demonstrated that the GDM hyperglycemic intrauterine environment promotes transcriptional alterations in BCL2 and miR-181a in neonate umbilical-cord blood cells. Furthermore, both GDM neonates and obese subjects share the same transcriptional alteration in BCL2. Considering the relationship between obesity development and the functions regulated by these two genes, BCL2 and miR-181a could be adopted as potential biomarkers for childhood obesity. However, further study designs are recommended to confirm this hypothesis.
Collapse
Affiliation(s)
- João Paulo de Castro Marcondes
- UNESP - São Paulo State University, Medical School, Botucatu, SP, Brazil; UNESP - São Paulo State University, Bioscience Institute, Botucatu, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Dessels C, Alessandrini M, Pepper MS. Factors Influencing the Umbilical Cord Blood Stem Cell Industry: An Evolving Treatment Landscape. Stem Cells Transl Med 2018; 7:643-650. [PMID: 29777574 PMCID: PMC6127225 DOI: 10.1002/sctm.17-0244] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is common practice today for life threatening malignant and non-malignant diseases of the blood and immune systems. Umbilical cord blood (UCB) is rich in hematopoietic stem cells (HSCs) and is an attractive alternative to harvesting HSCs from bone marrow or when mobilized into peripheral blood. One of the most appealing attributes of UCB is that it can be banked for future use and hence provides an off-the-shelf solution for patients in urgent need of a transplantation. This has led to the establishment of publicly funded and private UCB banks, as seen by the rapid growth of the UCB industry in the early part of this century. However, from about 2010, the release of UCB units for treatment purposes plateaued and started to decrease year-on-year from 2013 to 2016. Our interest has been to investigate the factors contributing to these changes. Key drivers influencing the UCB industry include the emergence of haploidentical HSCT and the increasing use of UCB units for regenerative medicine purposes. Further influencing this dynamic is the high cost associated with UCB transplantation, the economic impact of sustaining public bank operations and an active private UCB banking sector. We foresee that these factors will continue in a tug-of-war fashion to shape and finally determine the fate of the UCB industry. Stem Cells Translational Medicine 2018 Stem Cells Translational Medicine 2018;7:643-650.
Collapse
Affiliation(s)
- Carla Dessels
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marco Alessandrini
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Habib A, Hou H, Mori T, Tian J, Zeng J, Fan S, Giunta B, Sanberg PR, Sawmiller D, Tan J. Human Umbilical Cord Blood Serum-derived α-Secretase: Functional Testing in Alzheimer's Disease Mouse Models. Cell Transplant 2018; 27:438-455. [PMID: 29560732 PMCID: PMC6038040 DOI: 10.1177/0963689718759473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related disorder that affects cognition. Our previous studies showed that the neuroprotective fragment of amyloid procurer protein (APP) metabolite, soluble APPα (sAPPα), interferes with β-site APP-cleaving enzyme 1 (BACE1, β-secretase) cleavage and reduces amyloid-β (Aβ) generation. In an attempt to identify approaches to restore sAPPα levels, we found that human cord blood serum (CBS) significantly promotes sAPPα production compared with adult blood serum (ABS) and aged blood serum (AgBS) in Chinese hamster ovary cells stably expressing wild-type human APP. Interestingly, CBS selectively mediated the α-secretase cleavage of human neuron-specific recombinant APP695 in a cell-free system independent of tumor necrosis factor-α converting enzyme (TACE; a disintegrin and metalloproteinase domain-containing protein 17 [ADAM17]) and ADAM. Subsequently, using 3-step chromatographic separation techniques (i.e., diethylaminoethanol, size-exclusion, and ion-exchange chromatography), we purified and ultimately identified a CBS-specific fraction with enhanced α-secretase catalytic activity (termed αCBSF) and found that αCBSF has more than 3,000-fold increased α-secretase catalytic activity compared with the original pooled CBS. Furthermore, intracerebroventricular injection of αCBSF markedly increased cerebral sAPPα levels together with significant decreases in cerebral Aβ production and abnormal tau (Thr231) phosphorylation compared with the AgBS fraction with enhanced α-secretase activity (AgBSF) treatment in triple transgenic Alzheimer’s disease (3xTg-AD) mice. Moreover, AgBSF administered intraperitoneally to transgenic mice with five familial Alzheimer’s disease mutations (5XFAD) via an osmotic mini pump for 6 weeks (wk) ameliorated β-amyloid plaques and reversed cognitive impairment measures. Together, our results propose the necessity for further study aimed at identification and characterization of α-secretase in CBS for novel and effective AD therapy.
Collapse
Affiliation(s)
- Ahsan Habib
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Huayan Hou
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Takashi Mori
- 2 Departments of Biomedical Sciences and Pathology, Saitama Medical Center and Saitama Medical University, Kawagoe, Saitama, Japan
| | - Jun Tian
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jin Zeng
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Shengnuo Fan
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brian Giunta
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- 3 Department of Neurosurgery and Brain Repair, Center for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Darrell Sawmiller
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tan
- 1 Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
11
|
Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 2017; 10:409-428. [PMID: 28276776 DOI: 10.1080/17512433.2017.1293521] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sherifa A. Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital , Assiut, Egypt
| |
Collapse
|
12
|
Chung S, Rho S, Kim G, Kim SR, Baek KH, Kang M, Lew H. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med 2016; 37:1170-80. [PMID: 26986762 PMCID: PMC4829137 DOI: 10.3892/ijmm.2016.2532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP‑MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB‑MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP‑43) were increased after the injection of CB‑MNCs or CP‑MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP‑MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB‑MNCs or CP‑MSCs may promote axon survival through systemic concomitant mechanisms involving GAP‑43 and HIF‑1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell-based therapeutic strategies with future applications in regenerative medicine, particularly in the management of optic nerve disorders.
Collapse
Affiliation(s)
- Sokjoong Chung
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gijin Kim
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - So-Ra Kim
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Myungseo Kang
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Chernykh ER, Shevela EY, Starostina NM, Morozov SA, Davydova MN, Menyaeva EV, Ostanin AA. Safety and Therapeutic Potential of M2 Macrophages in Stroke Treatment. Cell Transplant 2015; 25:1461-71. [PMID: 26671426 DOI: 10.3727/096368915x690279] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our objective was to evaluate the safety and clinical efficacy of autologous M2 macrophage transplantation in nonacute stroke patients. We also evaluated whether the intrathecal administration of macrophages influences the production of cytokines by peripheral blood cells and whether the levels of cytokines correlate with stroke severity and responsiveness to cell therapy. In this study, 13 patients (12 males and 1 female with a median age of 63 years) diagnosed with ischemic (n = 10) or hemorrhagic (n = 3) stroke were subjected to cell transplantation therapy (study group). On average, 21.9 × 10(6) autologous M2 macrophages were injected intrathecally. Thirteen matched case-control stroke patients who did not receive cell therapy comprised the control group. We did not observe any serious adverse events (i.e., intrahospital mortality, neurological worsening, and seizures) related to the cell injection. One patient in the study group and two patients in the control group died during the 6-month follow-up period due to recurrent stroke. In the study group, the NIHSS score decreased from 11 to 6 (p = 0.007) in 6 months after the therapy, whereas the patients in the control group showed a less pronounced neurological improvement (the NIHSS score decreased from 11 to 8, p = 0.07). The obvious positive response (the improvement of the NIHSS score ≥3) in the study group was observed in 75% versus 18% in the control group (pFET = 0.03). M2 cell introduction did not significantly affect the production of various cytokines. Nevertheless, pretreated levels of IL-8, IL-10, and IL-4 correlated with stroke severity. Moreover, responder patients had lower spontaneous production of IL-10, FGF-β, PDGF, VEGF, and higher stimulation indexes of IL-1β, TNF-α, IFN-γ, and IL-6 than nonresponders. These findings suggest that the intrathecal administration of autologous M2 cells in stroke patients is safe and leads to a better neurological recovery, which could be mediated through the immunomodulatory activity of M2 macrophages.
Collapse
Affiliation(s)
- Elena R Chernykh
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
14
|
Yan T, Venkat P, Chopp M, Zacharek A, Ning R, Cui Y, Roberts C, Kuzmin-Nichols N, Sanberg CD, Chen J. Neurorestorative Therapy of Stroke in Type 2 Diabetes Mellitus Rats Treated With Human Umbilical Cord Blood Cells. Stroke 2015; 46:2599-606. [PMID: 26243222 DOI: 10.1161/strokeaha.115.009870] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/07/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus is a high-risk factor for ischemic stroke. Diabetic stroke patients suffer worse outcomes, poor long-term recovery, risk of recurrent strokes, and extensive vascular damage. We investigated the neurorestorative effects and the underlying mechanisms of stroke treatment with human umbilical cord blood cells (HUCBCs) in type 2 diabetes mellitus (T2DM) rats. METHODS Adult male T2DM rats were subjected to 2 hours of middle cerebral artery occlusion (MCAo). Three days after MCAo, rats were treated via tail-vein injection with (1) PBS and (2) HUCBCs (5×10(6)), n=10 per group. RESULTS HUCBC stroke treatment initiated 3 days after MCAo in T2DM rats did not significantly decrease blood-brain barrier leakage (P=0.1) and lesion volume (P=0.078), but significantly improved long-term functional outcome and decreased brain hemorrhage (P<0.05) when compared with the PBS-treated T2DM MCAo control group. HUCBC treatment significantly promoted white matter remodeling as indicated by increased expression of Bielschowsky silver (axons marker), Luxol fast blue (myelin marker), SMI-31 (neurofilament), and Synaptophysin in the ischemic border zone. HUCBC promoted vascular remodeling and significantly increased arterial and vascular density. HUCBC treatment of stroke in T2DM rats significantly increased M2 macrophage polarization (increased M2 macrophage, CD163and CD 206; decreased M1 macrophage, ED1 and inducible nitric oxide synthase expression) in the ischemic brain compared with PBS-treated T2DM MCAo controls (P<0.05). HUCBC also significantly decreased proinflammatory factors, that is, matrix metalloproteinase 9, receptor for advanced glycation end products and toll-like receptor 4 expression in the ischemic brain. CONCLUSIONS HUCBC treatment initiated 3 days after stroke significantly increased white matter and vascular remodeling in the ischemic brain as well as decreased neuroinflammatory factor expression in the ischemic brain in T2DM rats and promoted M2 macrophage polarization. HUCBC reduction of neuroinflammation and increased vascular and white matter axonal remodeling may contribute to the HUCBC-induced beneficial effects in T2DM stroke rats.
Collapse
Affiliation(s)
- Tao Yan
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Poornima Venkat
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Alex Zacharek
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Ruizhuo Ning
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Yisheng Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Cynthia Roberts
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Nicole Kuzmin-Nichols
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Cyndy Davis Sanberg
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.)
| | - Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (T.Y., P.V., M.C., A.Z., R.N., Y.C., C.R., J.C.); Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China (T.Y., J.C.); Department of Physics, Oakland University, Rochester, MI (P.V., M.C.); and Saneron CCEL Therapeutics Inc, Tampa, FL (N.K.-N., C.D.S.).
| |
Collapse
|
15
|
Shahaduzzaman MD, Mehta V, Golden JE, Rowe DD, Green S, Tadinada R, Foran EA, Sanberg PR, Pennypacker KR, Willing AE. Human umbilical cord blood cells induce neuroprotective change in gene expression profile in neurons after ischemia through activation of Akt pathway. Cell Transplant 2015; 24:721-35. [PMID: 25413246 DOI: 10.3727/096368914x685311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human umbilical cord blood (HUCB) cell therapies have shown promising results in reducing brain infarct volume and most importantly in improving neurobehavioral function in rat permanent middle cerebral artery occlusion, a model of stroke. In this study, we examined the gene expression profile in neurons subjected to oxygen-glucose deprivation (OGD) with or without HUCB treatment and identified signaling pathways (Akt/MAPK) important in eliciting HUCB-mediated neuroprotective responses. Gene chip microarray analysis was performed using RNA samples extracted from the neuronal cell cultures from four experimental groups: normoxia, normoxia+HUCB, OGD, and OGD+HUCB. Both quantitative RT-PCR and immunohistochemistry were carried out to verify the microarray results. Using the Genomatix software program, promoter regions of selected genes were compared to reveal common transcription factor-binding sites and, subsequently, signal transduction pathways. Under OGD condition, HUCB cells significantly reduced neuronal loss from 68% to 44% [one-way ANOVA, F(3, 16)=11, p=0.0003]. Microarray analysis identified mRNA expression of Prdx5, Vcam1, CCL20, Alcam, and Pax6 as being significantly altered by HUCB cell treatment. Inhibition of the Akt pathway significantly abolished the neuroprotective effect of HUCB cells [one-way ANOVA, F(3, 11)=8.663, p=0.0031]. Our observations show that HUCB neuroprotection is dependent on the activation of the Akt signaling pathway that increases transcription of the Prdx5 gene. We concluded that HUCB cell therapy would be a promising treatment for stroke and other forms of brain injury by modifying acute gene expression to promote neural cell protection.
Collapse
Affiliation(s)
- M D Shahaduzzaman
- Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Galindo-Albarrán AO, Ramírez-Pliego O, Labastida-Conde RG, Melchy-Pérez EI, Liquitaya-Montiel A, Esquivel-Guadarrama FR, Rosas-Salgado G, Rosenstein Y, Santana MA. CD43 signals prepare human T cells to receive cytokine differentiation signals. J Cell Physiol 2014; 229:172-80. [PMID: 24328034 DOI: 10.1002/jcp.24430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cells are increasingly used for passive immunotherapy and bone marrow transplantation. Proper ex-vivo management of the cells is important for the desired therapeutic effects. For differentiation into effector cells of the Th1 and Th2 phenotypes, T-cells require signals from IFNγ and IL-4, respectively. Naïve cells have an extremely low expression of the specific receptors that recognize these cytokines, indicating that in order to differentiate, cells need to perceive other signals that will enable them to sense the cytokine milieu. CD43 has been proposed as one of the molecules that make the initial contacts with antigen presenting cells. We report here that in cord blood, adult naïve and total human T cells, CD43 signals induced the expression of both IFNγ and IL-4 receptors, mediate their capping, increased their signaling and augmented differentiation mediated by these receptors. CD43 signals also stimulated the expression of IFNγ and in neonatal cells that of IL-4 as well. These data demonstrate an important role for CD43 signals in T-cell preparedness for differentiation into effector cells.
Collapse
|
17
|
Yang WZ, Shu GJ, Zhang Y, Wu F, Ye BY, Hu X. Human cord blood-derived mononuclear cell transplantation for viral encephalitis-associated cognitive impairment: a case report. J Med Case Rep 2013; 7:181. [PMID: 23835552 PMCID: PMC3710245 DOI: 10.1186/1752-1947-7-181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 05/28/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Herpes simplex virus is the most common cause of sporadic viral encephalitis. Cognitive impairments persist in most patients who survive herpes simplex virus-caused encephalitis after undergoing currently available treatments. This is the first report on the development of human cord blood-derived mononuclear cell transplantation as a new treatment intervention to improve the prognosis of sequelae of viral encephalitis. CASE PRESENTATION An 11-year-old Han Chinese boy developed sequelae of viral encephalitis with cognitive, mental and motor impairments in the 8 months following routine treatments. Since receiving allogeneic cord blood-derived mononuclear cell transplantation combined with comprehensive rehabilitation therapies 7 years ago, the patient's health has significantly improved and remained stable. CONCLUSIONS Human cord blood-derived mononuclear cell transplantation may be a potential therapeutic strategy for treating the neuropsychiatric and neurobehavioral sequelae of viral encephalitis.
Collapse
Affiliation(s)
- Wan-Zhang Yang
- Department of Rehabilitation Medicine, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| | - Guo-Jian Shu
- Department of Rehabilitation Medicine, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| | - Yun Zhang
- Shenzhen Beike Cell Engineering Research Institute, 2/F, Yuanxing Technology Building, #1 Songpingshan Street, North Area, Hi-Tech Industrial Park, Shenzhen 518057, China
| | - Fang Wu
- Department of Rehabilitation Medicine, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| | - Bi-Yu Ye
- Department of Rehabilitation Medicine, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| | - Xiang Hu
- Shenzhen Beike Cell Engineering Research Institute, 2/F, Yuanxing Technology Building, #1 Songpingshan Street, North Area, Hi-Tech Industrial Park, Shenzhen 518057, China
| |
Collapse
|
18
|
Sun LX, Li YQ, Song XN, Jiang J, Chang YJ. A direct comparison of expression profiles of adhesion molecules on naïve T cells between cord blood and steady-state bone marrow grafts of healthy donors. Transplant Proc 2013; 45:415-9. [PMID: 23375331 DOI: 10.1016/j.transproceed.2012.05.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 02/17/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022]
Abstract
INTRODUCTION We compared the profiles of adhesion molecule expression on naïve T cells between umbilical cord blood (UCB) and steady-state bone marrow (SS-BM) grafts. METHODS The expressions of 4 adhesion molecules, including very late antigen 4 (VLA-4), intercellular adhesion molecule-1 (ICAM-1), L-selectin, and lymophocyte function-associated antigen-1 (LFA-1) on naïve T cells in UCB (n = 25) and SS-BM (n = 10) were analyzed using flow cytometry. RESULTS The expressions of ICAM-1 and L-selectin on CD4(+) T cells and CD8(+) T cells in UCB were significantly lower than those on SS-BM (P < .05 for all). The expressions of VLA-4 and LFA-1 on CD8(+) T cells in UCB were significantly lower than those of SS-BM (P = .002 and .047, respectively). Compared with SS-BM, we observed lower expression of ICAM-1 on naïve CD4(+) and CD8(+) T cells in UCB (P < .001 for all). The percentages of interferon (IFN)-γ positive cells among naïve CD4(+) and CD8(+) T-cell subsets were significantly lower in UCB, leading to ready polarization of naïve UCB T cells from a Th1 to Th2 phenotype versus those on SS-BM. CONCLUSIONS Our results among UCB suggested lower intensities of ICAM-1 expression on naïve T cells and their easier polarization from Th1 to Th2 elements.
Collapse
Affiliation(s)
- L-X Sun
- Department of Hematology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.
| | | | | | | | | |
Collapse
|
19
|
Eve DJ, Marty PJ, McDermott RJ, Klasko SK, Sanberg PR. Stem Cell Research and Health Education. AMERICAN JOURNAL OF HEALTH EDUCATION 2013. [DOI: 10.1080/19325037.2008.10599033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- David J. Eve
- a Center of Excellence for Aging and Brain Repair , University of South Florida College of Medicin, Department of Neurosurgery , 12901 Bruce B. Downs Blvd. (MDC 078), Tampa , FL , 33612
| | - Phillip J. Marty
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | - Robert J. McDermott
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | | | - Paul R. Sanberg
- d Center of Excellence for Aging and Brain Repair , University of South Florida
| |
Collapse
|
20
|
|
21
|
Ricordi C, Inverardi L, Domínguez-Bendala J. From cellular therapies to tissue reprogramming and regenerative strategies in the treatment of diabetes. Regen Med 2012; 7:41-8. [DOI: 10.2217/rme.12.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus represents a global epidemic affecting over 350 million patients worldwide and projected by the WHO to surpass the 500 million patient mark within the next two decades. Besides Type 1 and Type 2 diabetes mellitus, the study of the endocrine compartment of the pancreas is of great translational interest, as strategies aimed at restoring its mass could become therapies for glycemic dysregulation, drug-related diabetes following diabetogenic therapies, or hyperglycemic disturbances following the treatment of cancer and nesidioblastosis. Such strategies generally fall under one of the ‘three Rs’: replacement (islet transplantation and stem cell differentiation); reprogramming (e.g., from the exocrine compartment of the pancreas); and regeneration (replication and induction of endogenous stem cells). As the latter has been extensively reviewed in recent months by us and others, this article focuses on emerging reprogramming and replacement approaches.
Collapse
Affiliation(s)
- Camillo Ricordi
- University of Miami Cell Transplant Center and Diabetes Research Institute, Miami, FL, USA
| | - Luca Inverardi
- University of Miami Cell Transplant Center and Diabetes Research Institute, Miami, FL, USA
| | - Juan Domínguez-Bendala
- University of Miami Cell Transplant Center and Diabetes Research Institute, Miami, FL, USA
| |
Collapse
|
22
|
Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. Sci Rep 2011; 1:76. [PMID: 22355595 PMCID: PMC3216563 DOI: 10.1038/srep00076] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Umbilical cord blood (UCB)–derived myeloid progenitor cells have been shown to decrease neuronal damage associated with ischemia in the central nervous system. In this study we show that UCB-derived CD14+ progenitor cells provide rescue effects in a mouse model of ischemic retinopathy by promoting physiological angiogenesis and reducing associated inflammation. We use confocal microscopy to trace the fate of injected human UCB-derived CD14+ cells and PCR with species-specific probes to investigate their gene expression profile before and after injection. Metabolomic analysis measures changes induced by CD14+ cells. Our results demonstrate that human cells differentiate in vivo into M2 macrophages and induce the polarization of resident M2 macrophages. This leads to stabilization of the ischemia-injured retinal vasculature by modulating the inflammatory response, reducing oxidative stress and apoptosis and promoting tissue repair.
Collapse
|
23
|
Yang WZ, Zhang Y, Wu F, Zhang M, Cho SC, Li CZ, Li SH, Shu GJ, Sheng YX, Zhao N, Tang Y, Jiang S, Jiang S, Gandjian M, Ichim TE, Hu X. Human umbilical cord blood-derived mononuclear cell transplantation: case series of 30 subjects with hereditary ataxia. J Transl Med 2011; 9:65. [PMID: 21575250 PMCID: PMC3112442 DOI: 10.1186/1479-5876-9-65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 05/16/2011] [Indexed: 12/27/2022] Open
Abstract
Background The differential diagnosis for hereditary ataxia encompasses a variety of diseases characterized by both autosomal dominant and recessive inheritance. There are no curative treatments available for these neurodegenerative conditions. This open label treatment study used human umbilical cord blood-derived mononuclear cells (CBMC) combined with rehabilitation training as potential disease modulators. Methods 30 patients suffering from hereditary ataxia were treated with CBMCs administered systemically by intravenous infusion and intrathecally by either cervical or lumbar puncture. Primary endpoint measures were the Berg Balance Scale (BBS), serum markers of immunoglobulin and T-cell subsets, measured at baseline and pre-determined times post-treatment. Results A reduction of pathological symptoms and signs was shown following treatment. The BBS scores, IgG, IgA, total T cells and CD3+CD4 T cells all improved significantly compared to pre-treatment values (P < 0.01~0.001). There were no adverse events. Conclusion The combination of CBMC infusion and rehabilitation training may be a safe and effective treatment for ataxia, which dramatically improves patients' functional symptoms. These data support expanded double blind, placebo-controlled studies for these treatment modalities.
Collapse
Affiliation(s)
- Wan-Zhang Yang
- Shenzhen Beike Cell Engineering Research Institution, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev Rep 2011; 7:181-94. [PMID: 20532836 DOI: 10.1007/s12015-010-9163-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) develops primary and secondary damage to neural tissue and this often results in permanent disability of the motor and sensory functions. However, there is currently no effective treatment except methylprednisolone, and the use of methylprednisolone has also been questioned due to its moderate efficacy and the drug's downside. Regenerative medicine has remarkably developed since the discovery of stem cells, and many studies have suggested the potential of cell-based therapies for neural injury. Especially, the therapeutic potential of human umbilical cord blood cells (hUCB cells) for intractable neurological disorders has been demonstrated using in vitro and vivo models. The hUCB cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Their ability to produce several neurotropic factors and to modulate immune and inflammatory reactions has also been noted. Recent evidence has emerged suggesting alternative pathways of graft-mediated neural repair that involve neurotrophic effects. These effects are caused by the release of various growth factors that promote cell survival, angiogenesis and anti-inflammation, and this is all aside from a cell replacement mechanism. In this review, we present the recent findings on the stemness properties and the therapeutic potential of hUCB as a safe, feasible and effective cellular source for transplantation in SCI. These multifaceted protective and restorative effects from hUCB grafts may be interdependent and they act in harmony to promote therapeutic benefits for SCI. Nevertheless, clinical studies with hUCB are still rare because of the concerns about safety and efficiency. Among these concerns, the major histocompatibility in allogeneic transplantation is an important issue to be addressed in future clinical trials for treating SCI.
Collapse
Affiliation(s)
- Dong-Hyuk Park
- Department of Neurosurgery, Korea University Medical Center, Anam Hospital, Korea University College of Medicine, #126, 5-GA, Anam-Dong, Sungbuk-Ku, Seoul 136-705, Korea.
| | | | | | | | | | | |
Collapse
|
25
|
Zhao T, Li Y, Tang L, Li Y, Fan F, Jiang B. Protective effects of human umbilical cord blood stem cell intravitreal transplantation against optic nerve injury in rats. Graefes Arch Clin Exp Ophthalmol 2011; 249:1021-8. [PMID: 21360302 DOI: 10.1007/s00417-011-1635-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The majority of studies addressing traumatic optic neuropathy (TON) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reported that transplantation of human umbilical cord blood stem cells (hUCBSCs) achieved therapeutic effects on TON, but the exact effects on optic nerve injury are still unknown, and the mechanisms underlying nerve protection remain poorly understood. METHODS A total of 135 healthy Sprague-Dawley adult rats were randomly assigned to three groups: sham-surgery, model and transplantation, with 45 rats in each group. TON was induced in the model and transplantation groups via optic nerve crush injury. The crush injury was not performed in the sham-surgery group. Seven days after the injury, 10(6) hUCBSCs were injected into the rat vitreous cavity of transplantation group, and an equal volume of physiological saline was administered to the model and sham-surgery groups. Pathological observation of rat retina tissues was performed by hematoxylin-eosin (H&E) staining at days 3, 7, 14, 21 and 28 post-surgery. The number of retinal ganglion cells (RGCs) and mRNA expression levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) were assessed by the Fluorogold (FG) retrograde labeling and reverse transcriptase-polymerase chain reaction (RT-PCR) methods, respectively. RESULTS The number of labeled RGCs and the expression of BDNF and GDNF mRNA obviously increased, and pathological injury was significantly ameliorated in the transplantation group compared to the model group (P < 0.05). CONCLUSIONS Via intravitreal transplantation, the hUCBSCs resulted in a significant increase in the survival of the RGCs, and improved pathological changes in the rat retina, following TON. The protective mechanism is correlated with the continuous secretion of BDNF and GDNF in vivo of retina in optic nerve injury rats by the transplanted hUCBSCs.
Collapse
Affiliation(s)
- Tantai Zhao
- Department of Ophthalmology, Second Xiang Ya Hospital, Central South University, No. 139, Renmin Road, Changsha, Hunan Province, 410011, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The promise of islet transplantation for type 1 diabetes has been hampered by the lack of a renewable source of insulin-producing cells. However, steadfast advances in the field have set the stage for stem cell-based approaches to take over in the near future. This review focuses on the most intriguing findings reported in recent years, which include not only progress in adult and embryonic stem cell differentiation, but also the direct reprogramming of nonendocrine tissues into insulin-producing beta cells. RECENT FINDINGS In spite of their potential for tumorigenesis, human embryonic stem (hES) cells are poised to be in clinical trials within the next decade. This situation is mainly due to the preclinical success of a differentiation method that recapitulates beta cell development. In contrast, adult stem cells still need one such gold standard of differentiation, and progress is somewhat impeded by the lack of consensus on the best source. A concerted effort is necessary to bring their potential to clinical fruition. In the meantime, reported success in reprogramming might offer a 'third way' towards the rescue of pancreatic endocrine function. SUMMARY Here we discuss the important strategic decisions that need to be made in order to maximize the therapeutic chances of each of the presented approaches.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine; 1450 NW 10 Ave, Miami, FL 33136
- Department of Surgery, University of Miami Miller School of Medicine
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine; 1450 NW 10 Ave, Miami, FL 33136
- Department of Medicine, University of Miami Miller School of Medicine
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine; 1450 NW 10 Ave, Miami, FL 33136
- Department of Surgery, University of Miami Miller School of Medicine
| |
Collapse
|
27
|
Gonzalez R, Griparic L, Umana M, Burgee K, Vargas V, Nasrallah R, Silva F, Patel A. An Efficient Approach to Isolation and Characterization of Pre- and Postnatal Umbilical Cord Lining Stem Cells for Clinical Applications. Cell Transplant 2010; 19:1439-49. [DOI: 10.3727/096368910x514260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There have been various forms of mesenchymal stem cell-like (MSC-like) cells isolated from umbilical cords (UCs). The isolation of umbilical cord lining stem cells (ULSCs) may be of great value for those interested in a possible treatment to several disease/disorders. Unlike umbilical cord blood cells, these cells are unique because they can be expanded to therapeutically relevant numbers and cryopreserved for several different uses. Here we efficiently isolate stem cells from a small segment of pre- and postnatal UCs, and obtain therapeutically relevant amounts of ULSCs within 3 weeks. We demonstrate their growth potential and characterize them using immunocytochemistry, flow cytometry, and RT-PCR. In addition, we differentiate ULSCs into multiple lineages. Pre- and postnatal ULSCs are morphologically similar to mesenchymal stem cells (MSCs) and easily expand to greater than 70 population doublings. They express pluripotent markers Oct4 and nanog at the protein and RNA level. Flow cytometry demonstrates that they express markers indicative of MSCs in addition to high SSEA-4 expression. ULSCs are easily differentiated into osteogenic, adipogenic, chondrogenic, cardiogenic, and neurogenic cells. Pre- and postnatal ULSCs are characteristically similar in respect to their growth, marker expression, and plasticity, demonstrating they are highly conserved throughout development. ULSCs have phenotypic and genotypic properties of MSCs. These studies demonstrate the therapeutic potential of an otherwise discarded tissue. They are a perfect HLA match for the donor and an excellent match for immediate family members; therefore, they may serve as a therapeutic cell source.
Collapse
Affiliation(s)
- R. Gonzalez
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - L. Griparic
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - M. Umana
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - K. Burgee
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - V. Vargas
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | | | - F. Silva
- DaVinci Biosciences LLC, Costa Mesa, CA, USA
| | - A. Patel
- Cardiovascular Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
28
|
Bordet S, Nguyen TM, Knoppers BM, Isasi R. Use of umbilical cord blood for stem cell research. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2010; 32:58-61. [PMID: 20370983 DOI: 10.1016/s1701-2163(16)34406-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Umbilical cord blood (UCB), long treated as waste material, is today considered a valuable source of hematopoietic stem cells. UCB is used, mostly in children, for the treatment of blood malignancies and inherited blood and metabolic disorders. In addition to blood precursor cells, UCB also contains stem cells that can differentiate into other types, such as cartilage, fat, hepatic, cardiac, and neural cells, fuelling speculation about the use of cord blood stem cells for regenerative medicine. Further research is therefore needed to investigate the expanded potential of UCB and its therapeutic use in cell and tissue therapies. According to a recent survey, practices for the procurement of UCB for research vary widely across Canada, so this area may not yet be ready for uniform regulation. However, some harmonization of practices to increase the availability of UCB for research would be useful for Canadian investigators. In this article, we address several important ethical and legal issues relating to the use of UCB in research and recommend guidelines to serve as a source of useful information for researchers. While their legal acceptability may vary across Canada, it is hoped that these recommendations foster more harmonized UCB research practices.
Collapse
Affiliation(s)
- Sylvie Bordet
- Centre of Genomics and Policy, Faculty of Medicine, Department of Human Genetics, McGill University, Montreal QC
| | - Thu Minh Nguyen
- Centre of Genomics and Policy, Faculty of Medicine, Department of Human Genetics, McGill University, Montreal QC
| | - Bartha Maria Knoppers
- Centre of Genomics and Policy, Faculty of Medicine, Department of Human Genetics, McGill University, Montreal QC
| | - Rosario Isasi
- Centre of Genomics and Policy, Faculty of Medicine, Department of Human Genetics, McGill University, Montreal QC
| |
Collapse
|
29
|
Park DH, Borlongan CV, Willing AE, Eve DJ, Cruz LE, Sanberg CD, Chung YG, Sanberg PR. Human Umbilical Cord Blood Cell Grafts for Brain Ischemia. Cell Transplant 2009; 18:985-98. [DOI: 10.3727/096368909x471279] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Irreversible and permanent damage develop immediately adjacent to the region of reduced cerebral blood perfusion in stroke patients. Currently, the proven thrombolytic treatment for stroke, tissue plasminogen activator, is only effective when administered within 3 h after stroke. These disease characteristics should be taken under consideration in developing any therapeutic intervention designed to widen the narrow therapeutic range, especially cell-based therapy. Over the past several years, our group and others have characterized the therapeutic potential of human umbilical cord blood cells for stroke and other neurological disorders using in vitro and vivo models focusing on the cells' ability to differentiate into nonhematopoietic cells including neural lineage, as well as their ability to produce several neurotrophic factors and modulate immune and inflammatory reaction. Rather than the conventional cell replacement mechanism, we advance alternative pathways of graft-mediated brain repair involving neurotrophic effects resulting from release of various growth factors that afford cell survival, angiogenesis, and anti-inflammation. Eventually, these multiple protective and restorative effects from umbilical cord blood cell grafts may be interdependent and act in harmony in promoting therapeutic benefits for stroke.
Collapse
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Cesar V. Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Alison E. Willing
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - David J. Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - L. Eduardo Cruz
- Cryopraxis and Silvestre Laboratory, Cryopraxis, BioRio, Pólo de Biotechnologia do Rio de Janeiro, Rio di Janiero, Brazil
| | | | - Yong-Gu Chung
- Cryopraxis and Silvestre Laboratory, Cryopraxis, BioRio, Pólo de Biotechnologia do Rio de Janeiro, Rio di Janiero, Brazil
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
- Office of Research and Innovation, University of South Florida, Tampa, FL, USA
| |
Collapse
|
30
|
Garbuzova-Davis S, Klasko SK, Sanberg PR. Intravenous administration of human umbilical cord blood cells in an animal model of MPS III B. J Comp Neurol 2009; 515:93-101. [DOI: 10.1002/cne.21949] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Park DH, Eve DJ, Musso J, Klasko SK, Cruz E, Borlongan CV, Sanberg PR. Inflammation and Stem Cell Migration to the Injured Brain in Higher Organisms. Stem Cells Dev 2009; 18:693-702. [DOI: 10.1089/scd.2009.0008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
- Department of Neurosurgery, Korea University Medical Center, Korea University, Seoul, Korea
| | - David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - James Musso
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | | | - Eduardo Cruz
- Cryopraxis, CellPraxis, BioRio, Pólo de Biotecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| |
Collapse
|
32
|
Koestenbauer S, Zisch A, Dohr G, Zech NH. Protocols for hematopoietic stem cell expansion from umbilical cord blood. Cell Transplant 2009; 18:1059-68. [PMID: 19523346 DOI: 10.3727/096368909x471288] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The reconstitution of adult stem cells may be a promising source for the regeneration of damaged tissues and for the reconstitution of organ dysfunction. However, there are two major limitations to the use of such cells: they are rare, and only a few types exist that can easily be isolated without harming the patient. The best studied and most widely used stem cells are of the hematopoietic lineage. Pioneering work on hematopoietic stem cell (HSC) transplantation was done in the early 1970s by ED. Thomas and colleagues. Since then HSCs have been used in allogenic and autologous transplantation settings to reconstitute blood formation after high-dose chemotherapy for various blood disorders. The cells can be easily harvested from donors, but the cell number is limited, especially when the HSCs originate from umbilical cord blood (UCB). It would be desirable to set up an ex vivo strategy to expand HSCs in order to overcome the cell dose limit, whereby the expansion would favor cell proliferation over cell differentiation. This review provides an overview of the various existing HSC expansion strategies-focusing particularly on stem cells derived from UCB-of the parameters that might affect the outcome, and of the difficulties that may occur when trying to expand such cells.
Collapse
Affiliation(s)
- Sonja Koestenbauer
- Institute for Cell Biology, Histology and Embryology, Centre of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria.
| | | | | | | |
Collapse
|
33
|
Lu X, Proctor SJ, Dickinson AM. The Effect of Cryopreservation on Umbilical Cord Blood Endothelial Progenitor Cell Differentiation. Cell Transplant 2008; 17:1423-8. [DOI: 10.3727/096368908787648155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endothelial progenitor cells (EPCs) has been shown to be present in umbilical cord blood (UCB) in addition to hematopoietic stem cells. Cryopreservation is the accepted method for long-term storage of UCB. However, whether EPCs can be derived from cryopreserved UCB samples is unclear. The aim of this study was to investigate the differentiation potential of EPCs from cryopreserved CB samples. CD34+ cells were isolated from fresh or frozen and thawed UCB using magnetic beads. Cells were then cultured on fibronectincoated plates containing endothelial differentiation medium. After 4–5 weeks in culture, endothelial-like cells were generated from fresh UCB samples, but not cryopreserved UCB samples. Examining this further, both fresh and frozen/thawed UCB MNCs were stained with Annexin V-PE and 7-actinomycin D (7-AAD) using flow cytometry. We found that there were a significant number of apoptotic cells in cryopreserved UCB samples compared to fresh UCB samples. In conclusion, cryopreservation induced UCB cell apoptosis and impaired EPC differentiation.
Collapse
Affiliation(s)
- Xiaomei Lu
- Haematological Sciences, School of Clinical & Laboratory Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Steve J. Proctor
- Haematological Sciences, School of Clinical & Laboratory Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M. Dickinson
- Haematological Sciences, School of Clinical & Laboratory Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Álvarez-Mercado AI, Sáez-Lara MJ, García-Mediavilla MV, Sánchez-Campos S, Abadía F, Cabello-Donayre M, Gil Á, Gonzalez-Gallego J, Fontana L. Xenotransplantation of Human Umbilical Cord Blood Mononuclear Cells to Rats with D-Galactosamine-Induced Hepatitis. Cell Transplant 2008; 17:845-57. [DOI: 10.3727/096368908786516837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cord blood is an attractive cell source in regenerative medicine and represents an alternative to bone marrow. The aim of this study was to investigate whether human umbilical cord blood mononuclear (HUCBM) cells might be valuable in hepatic regenerative medicine. HUCBM cells differentiated in vitro into hepatocytes, as suggested by expression of albumin, cytokeratin-18, glutamine synthetase, α-fetoprotein, and cytochrome P450 3A4 at both mRNA and protein levels in a time-dependent fashion. In contrast, the hematopoietic phenotype was gradually lost, as demonstrated by disappearance of CD45 expression. The regenerative potential of HUCBM cells was tested by using a human-to-rat xenotransplant model in which HUCBM cells were intraportally injected into rats with D-galactosamine-induced hepatitis. Liver histology and biochemical markers of hepatic damage were determined. Presence of human cells was detected in blood and liver of both control and D-galactosamine-treated animals. Cell transplantation produced an improvement in both the histological damage and liver function, as demonstrated by plasma values of alkaline phosphatase, γ-glutamyl transferase, lactate dehydrogenase, and total and direct bilirubins. Results obtained suggest that HUCBM cells are capable of hepatic engraftment in this human-to-rat xenotransplant model and that transplantation of HUCBM cells may be a suitable therapy for liver disease.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - María J. Sáez-Lara
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - María V. García-Mediavilla
- Centro de Investigacion Biomédica en Red de Enferemedades Hepáticas y Digestivas (CIBEREHD), and Institute of Biomedicine, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Sonia Sánchez-Campos
- Centro de Investigacion Biomédica en Red de Enferemedades Hepáticas y Digestivas (CIBEREHD), and Institute of Biomedicine, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Francisco Abadía
- Department of Cell Biology, School of Sciences, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - María Cabello-Donayre
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Javier Gonzalez-Gallego
- Centro de Investigacion Biomédica en Red de Enferemedades Hepáticas y Digestivas (CIBEREHD), and Institute of Biomedicine, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain
| |
Collapse
|
35
|
Ballen KK, Barker JN, Stewart SK, Greene MF, Lane TA. Collection and preservation of cord blood for personal use. Biol Blood Marrow Transplant 2008; 14:356-63. [PMID: 18275904 DOI: 10.1016/j.bbmt.2007.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Unrelated-donor umbilical cord blood (CB) is a useful alternative hematopoietic stem cell source for patients without suitably matched and readily available related or unrelated stem cell donors. Expectant parents today may have the option of either donating the CB to a public CB bank or keeping and storing the CB in a private bank for potential use in the future. The alternatives are often referred to as public banking and private banking. On behalf of the American Society of Blood and Marrow Transplantation (ASBMT), we have reviewed the currently available data and opinions and offer the following recommendations: The committee acknowledges the expanding potential of indications for CB in the future, and suggests review of these recommendations at regular intervals.
Collapse
Affiliation(s)
- Karen K Ballen
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Lin SZ. 9th International Conference on Neural Transplantation and Repair. Cell Transplant 2007; 16:99. [PMID: 28863741 DOI: 10.3727/000000007783464641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Shinn-Zong Lin
- Neurosurgery of Tzu-Chi University, Superintendent of Buddhist Tzu-Chi General Hospital Hualien, Taiwan
| |
Collapse
|