1
|
Ruwanpathirana P, Poornima S, Dissanayake G, Amaratunga D, Galappaththi G. Left ventricular dissecting haematoma and aneurysm formation in a patient who uses methamphetamines: a case report. BMC Cardiovasc Disord 2024; 24:696. [PMID: 39633289 PMCID: PMC11616136 DOI: 10.1186/s12872-024-04382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Myocardial dissection is a rare complication of ischaemic heart disease. It occurs when a haematoma forms within the cardiac muscle, either due to an endocardial rupture or rupture of an intra-myocardial vessel. Higher ventricular wall tension and reduced myocardial tensile strength increase the risk of dissection. We describe a young male who developed a myocardial dissection following an ST elevation infarction. We explore the possible pathophysiological connection between myocardial dissection and his amphetamine use. CASE PRESENTATION A 37-year-old Sri Lankan patient presented with progressively worsening heart failure for two weeks. One month before the presentation, he had developed an ischaemic chest pain, for which he had not sought medical advice. He was abusing inhalational heroin, crystal methamphetamines and cigarette smoke daily for five years. On examination, the patient had a blood pressure of 90/60 mmHg and a pulse rate of 110 beats per minute. The cardiac apex was deviated. The jugular venous pressure was elevated, bilateral pitting ankle and pulmonary oedema were present. The ECG had Q-ST elevations in the lateral leads. Serum troponin was elevated. A transthoracic echocardiogram revealed a poorly functioning dilated left ventricle with a mass within the myocardial apex. Cardiac MRI established that the mass was an intra-myocardial haematoma. A coronary angiogram demonstrated a critical plaque stenosis at the mid left-anterior-descending artery with poor distal flow. The patient did not have HIV or infective endocarditis. We treated the patient with diuretics and guideline-directed medical therapy for heart failure with reduced ejection fraction. We did not attempt surgical repair as the dissection was non-expanding, and the patient was at a high risk of operative complications. CONCLUSIONS Myocardial dissection with aneurysm formation is a rare complication of ischaemic heart disease. Methamphetamines enhance the risk of myocardial dissection by inducing myocardial inflammation, causing a dilated cardiomyopathy and increasing the left ventricular pressures.
Collapse
Affiliation(s)
| | - Subhani Poornima
- Institute of Cardiology, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Gayan Dissanayake
- Institute of Cardiology, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Disna Amaratunga
- Institute of Cardiology, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | | |
Collapse
|
2
|
Sedláková V, Mourcos S, Pupkaitė J, Lunn Y, Visintini S, Guzman-Soto I, Ruel M, Suuronen E, Alarcon EI. Biomaterials for direct cardiac repair-A rapid scoping review 2012-2022. Acta Biomater 2024; 180:61-81. [PMID: 38588997 DOI: 10.1016/j.actbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czechia.
| | - Sophia Mourcos
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biomedical Science, Faculty of Science, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, Ontario K1N 9A7, Canada
| | - Justina Pupkaitė
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Yvonne Lunn
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sarah Visintini
- Berkman Library, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Irene Guzman-Soto
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
3
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
4
|
Wang Y, Li J, Han H, Huang H, Du H, Cheng L, Ma C, Cai Y, Li G, Tao J, Cheng P. Application of locally responsive design of biomaterials based on microenvironmental changes in myocardial infarction. iScience 2023; 26:107662. [PMID: 37670787 PMCID: PMC10475519 DOI: 10.1016/j.isci.2023.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Morbidity and mortality caused by acute myocardial infarction (AMI) are on the rise, posing a grave threat to the health of the general population. Up to now, interventional, surgical, and pharmaceutical therapies have been the main treatment methods for AMI. Effective and timely reperfusion therapy decreases mortality, but it cannot stimulate myocardial cell regeneration or reverse ventricular remodeling. Cell therapy, gene therapy, immunotherapy, anti-inflammatory therapy, and several other techniques are utilized by researchers to improve patients' prognosis. In recent years, biomaterials for AMI therapy have become a hot spot in medical care. Biomaterials furnish a microenvironment conducive to cell growth and deliver therapeutic factors that stimulate cell regeneration and differentiation. Biomaterials adapt to the complex microenvironment and respond to changes in local physical and biochemical conditions. Therefore, environmental factors and material properties must be taken into account when designing biomaterials for the treatment of AMI. This article will review the factors that need to be fully considered in the design of biological materials.
Collapse
Affiliation(s)
- Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China
| |
Collapse
|
5
|
Chen R, Buchmann S, Kroth A, Arias-Loza AP, Kohlhaas M, Wagner N, Grüner G, Nickel A, Cirnu A, Williams T, Maack C, Ergün S, Frantz S, Gerull B. Mechanistic Insights of the LEMD2 p.L13R Mutation and Its Role in Cardiomyopathy. Circ Res 2023; 132:e43-e58. [PMID: 36656972 DOI: 10.1161/circresaha.122.321929] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered. The aim was to unravel the molecular mechanisms of mutant LEMD2 in the pathogenesis of cardiomyopathy. METHODS We generated a Lemd2 p.L13R knock-in mouse model and a corresponding cell model via CRISPR/Cas9 technology and investigated the cardiac phenotype as well as cellular and subcellular mechanisms of nuclear membrane rupture and repair. RESULTS Knock-in mice developed a cardiomyopathy with predominantly endocardial fibrosis, left ventricular dilatation, and systolic dysfunction. Electrocardiograms displayed pronounced ventricular arrhythmias and conduction disease. A key finding of knock-in cardiomyocytes on ultrastructural level was a significant increase in nuclear membrane invaginations and decreased nuclear circularity. Furthermore, increased DNA damage and premature senescence were detected as the underlying cause of fibrotic and inflammatory remodeling. As the p.L13R mutation is located in the Lap2/Emerin/Man1 (LEM)-domain, we observed a disrupted interaction between mutant LEMD2 and BAF (barrier-to-autointegration factor), which is required to initiate the nuclear envelope rupture repair process. To mimic increased mechanical stress with subsequent nuclear envelope ruptures, we investigated mutant HeLa-cells upon electrical stimulation and increased stiffness. Here, we demonstrated impaired nuclear envelope rupture repair capacity, subsequent cytoplasmic leakage of the DNA repair factor KU80 along with increased DNA damage, and recruitment of the cGAS (cyclic GMP-AMP synthase) to the nuclear membrane and micronuclei. CONCLUSIONS We show for the first time that the Lemd2 p.L13R mutation in mice recapitulates human dilated cardiomyopathy with fibrosis and severe ventricular arrhythmias. Impaired nuclear envelope rupture repair capacity resulted in increased DNA damage and activation of the cGAS/STING/IFN pathway, promoting premature senescence. Hence, LEMD2 is a new player inthe disease group of laminopathies.
Collapse
Affiliation(s)
- Ruping Chen
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Simone Buchmann
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Amos Kroth
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Anahi-Paula Arias-Loza
- Department of Nuclear Medicine, Comprehensive Heart Failure Center (A.-P.A.-L.), University Hospital Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Gianna Grüner
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Alexandra Cirnu
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Tatjana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Stefan Frantz
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Comprehensive Heart Failure Center (S.F.), University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| |
Collapse
|
6
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
7
|
Montazeri L, Kowsari-Esfahan R, Pahlavan S, Sobat M, Rabbani S, Ansari H, Varzideh F, Barekat M, Rajabi S, Navaee F, Bonakdar S, Renaud P, Braun T, Baharvand H. Oxygen-rich Environment Ameliorates Cell Therapy Outcomes of Cardiac Progenitor Cells for Myocardial Infarction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111836. [PMID: 33579474 DOI: 10.1016/j.msec.2020.111836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
To some extent, cell therapy for myocardial infarction (MI) has supported the idea of cardiac repair; however, further optimizations are inevitable. Combined approaches that comprise suitable cell sources and supporting molecules considerably improved its effect. Here, we devised a strategy of simultaneous transplantation of human cardiac progenitor cells (CPCs) and an optimized oxygen generating microparticles (MPs) embedded in fibrin hydrogel, which was injected into a left anterior descending artery (LAD) ligating-based rat model of acute myocardial infarction (AMI). Functional parameters of the heart, particularly left ventricular systolic function, markedly improved and reached pre-AMI levels. This functional restoration was well correlated with substantially lower fibrotic tissue formation and greater vascular density in the infarct area. Our novel approach promoted CPCs retention and differentiation into cardiovascular lineages. We propose this novel co-transplantation strategy for more efficient cell therapy of AMI which may function by providing an oxygen-rich microenvironment, and thus regulate cell survival and differentiation.
Collapse
Affiliation(s)
- Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Reza Kowsari-Esfahan
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Motahareh Sobat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Medical Sciences University of Tehran, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Varzideh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Navaee
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL-STIIMT- LMIS4, Station 17, Lausanne, 1015, Switzerland
| | | | - Philippe Renaud
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL-STIIMT- LMIS4, Station 17, Lausanne, 1015, Switzerland
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
8
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Karimi Hajishoreh N, Baheiraei N, Naderi N, Salehnia M. Reduced graphene oxide facilitates biocompatibility of alginate for cardiac repair. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520933913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The benefits of combined cell/material therapy appear promising for myocardial infarction treatment. The safety of alginate, along with its excellent biocompatibility and biodegradability, has been extensively investigated for cardiac tissue engineering. Among graphene-based nanomaterials, reduced graphene oxide has been considered as a promising candidate for cardiac treatment due to its unique physicochemical properties. In this study, the reduced graphene oxide incorporation effect within alginate hydrogels was investigated for cardiac repair application. Reduced graphene oxide reinforced alginate properties, resulting in an increase in gel stiffness. The cytocompatibility of the hydrogels prepared with human bone marrow–derived mesenchymal stem cells was assessed by the 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) assay. Following reduced graphene oxide addition, alginate-reduced graphene oxide retained significantly higher cell viability compared to that of alginate and cells cultured on tissue culture plates. Acridine orange/propidium iodide staining was also used to identify both viable and necrotic human bone marrow–derived mesenchymal stem cells within the prepared hydrogels. After a 72-h culture, the percentage of viable cells was twice as much as those cultured on either alginate or tissue culture plate, reaching approximately 80%. Quantitative reverse transcription polymerase chain reaction analysis was performed to assess gene expression of neonatal rat cardiac cells encapsulated on hydrogels for TrpT-2, Conx43, and Actn4 after 7 days. The expression of all genes in alginate-reduced graphene oxide increased significantly compared to that in alginate or tissue culture plate. The results obtained confirmed that the presence of reduced graphene oxide, as an electro-active moiety within alginate, could tune the physicochemical properties of this material, providing a desirable electroactive hydrogel for stem cell therapy in patients with ischemic heart disease.
Collapse
Affiliation(s)
- Negar Karimi Hajishoreh
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Gu K, Guan Z, Chang Y, Gao B, Ling Y, Song Z, Wan F. Hemodynamic effects of pulsatile unloading of left ventricular assist devices (LVAD) on intraventricular flow and ventricular stress. J Biomech 2020; 103:109425. [DOI: 10.1016/j.jbiomech.2019.109425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 12/21/2022]
|
11
|
Feng J, Wu Y, Chen W, Li J, Wang X, Chen Y, Yu Y, Shen Z, Zhang Y. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J Mater Chem B 2019; 8:308-315. [PMID: 31808500 DOI: 10.1039/c9tb01971e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low circulating levels of insulin-like growth factor 1 (IGF-1) have been correlated with an increased risk for cardiovascular diseases in humans. In this work, an injectable alginate hydrogel containing silk fibroin (SF) microspheres with the capability to sustain the release of IGF-1 was prepared to induce myocardial repair after myocardial infarction (MI). First, IGF-1 was physically adsorbed onto SF microspheres prepared by the coaxial needle system, and these IGF-1-containing microspheres were subsequently encapsulated into sodium alginate solutions at different concentrations (1.0-2.5%). Finally, this solution was crosslinked with 0.68% calcium gluconate solution to prepare the composite injectable hydrogel. The composite hydrogel prepared using a sodium alginate solution at a concentration of 1.5% could promote proliferation of H9C2 cardiomyocytes and reduce the cellular apoptosis rate under hypoxic conditions. The enzyme-linked immunosorbent assay results indicated that SF microspheres as microcarriers could effectively enhance the sustained release of IGF-1 from the hydrogels, causing the composite hydrogel to possess a better sustained release ability than the system without the SF microspheres. Moreover, echocardiography, hematoxylin-eosin staining, and Masson trichrome staining results indicated that an intramyocardial injection of the composite hydrogel into the peripheral region of a MI rat model could reduce the infarct size and improve the cardiac function after 28 days. The applications of such a composite hydrogel may comprise a powerful platform in cardiac tissue engineering.
Collapse
Affiliation(s)
- Jianguo Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China and The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, P. R. China
| | - Yong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Weiqian Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Jingjing Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Xiaoyu Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| |
Collapse
|
12
|
Liu J, Jing H, Qin Y, Li B, Sun Z, Kong D, Leng X, Wang Z. Nonglutaraldehyde Fixation for off the Shelf Decellularized Bovine Pericardium in Anticalcification Cardiac Valve Applications. ACS Biomater Sci Eng 2019; 5:1452-1461. [DOI: 10.1021/acsbiomaterials.8b01311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Huimin Jing
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yibo Qin
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Binhan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhiting Sun
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
13
|
Efficacy of intramyocardial injection of Algisyl-LVR for the treatment of ischemic heart failure in swine. Int J Cardiol 2018; 255:129-135. [PMID: 29425550 DOI: 10.1016/j.ijcard.2017.09.179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/15/2017] [Accepted: 09/20/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Progressive thinning and dilation of the LV due to ischemic heart failure (IHF) increases wall stress and myocardial oxygen consumption. Injectable biopolymers implanted in the myocardial wall have been used to increase wall thickness to reduce chamber volume, decrease wall stress, and improve cardiac function. We sought to evaluate the efficacy of a biopolymer (Algisyl-LVR) to prevent left ventricular (LV) remodeling in a swine model of IHF. METHODS IHF was induced in 11 swine by occluding the marginal obtuse branches of the left circumflex artery. Eight weeks later, Algisyl-LVR was injected into the LV myocardial free wall in five of the 11 animals. Echocardiographic examinations were done every 2weeks for 16weeks. RESULTS Within eight weeks of treatment, the ejection fraction increased from 30.5%±7.7% to 42.4%±3.5% (treated group) vs. 37.3%±3.8% to 34.3%±2.9% (control), p<0.01. Stroke volume increased from 18.5±9.3mL to 41.3±13.3mL (treated group) vs. 25.4±2.3mL to 31.4±5.3mL (control), p<0.05. Wall thickness in end-diastole of the infarcted region changed from 0.69±0.06cm to 0.81±0.13cm (treated group) vs. 0.73±0.09cm to 0.68±0.11cm (control), p<0.05. Sphericity index remained almost unchanged after treatment, although differences were found at the end of the study between both groups (p<0.001). Average myofiber stress changed from 16.3±5.8kPa to 10.2±4.0kPa (treated group) vs. 15.2±4.8kPa to 17.9±5.6kPa (control), p<0.05. CONCLUSIONS Algisyl-LVR is an effective strategy that serves as a micro-LV assist device to reduce stress and hence prevent or reverse maladaptive cardiac remodeling caused by IHF in swine.
Collapse
|
14
|
Fakoya AOJ, Otohinoyi DA, Yusuf J. Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells Int 2018; 2018:3123961. [PMID: 29853910 PMCID: PMC5949153 DOI: 10.1155/2018/3123961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
The cardiopulmonary system is made up of the heart and the lungs, with the core function of one complementing the other. The unimpeded and optimal cycling of blood between these two systems is pivotal to the overall function of the entire human body. Although the function of the cardiopulmonary system appears uncomplicated, the tissues that make up this system are undoubtedly complex. Hence, damage to this system is undesirable as its capacity to self-regenerate is quite limited. The surge in the incidence and prevalence of cardiopulmonary diseases has reached a critical state for a top-notch response as it currently tops the mortality table. Several therapies currently being utilized can only sustain chronically ailing patients for a short period while they are awaiting a possible transplant, which is also not devoid of complications. Regenerative therapeutic techniques now appear to be a potential approach to solve this conundrum posed by these poorly self-regenerating tissues. Stem cell therapy alone appears not to be sufficient to provide the desired tissue regeneration and hence the drive for biomaterials that can support its transplantation and translation, providing not only physical support to seeded cells but also chemical and physiological cues to the cells to facilitate tissue regeneration. The cardiac and pulmonary systems, although literarily seen as just being functionally and spatially cooperative, as shown by their diverse and dissimilar adult cellular and tissue composition has been proven to share some common embryological codevelopment. However, necessitating their consideration for separate review is the immense adult architectural difference in these systems. This review also looks at details on new biological and synthetic biomaterials, tissue engineering, nanotechnology, and organ decellularization for cardiopulmonary regenerative therapies.
Collapse
Affiliation(s)
| | | | - Joshua Yusuf
- All Saints University School of Medicine, Roseau, Dominica
- All Saints University School of Medicine, Kingstown, Saint Vincent and the Grenadines
| |
Collapse
|
15
|
Sack KL, Davies NH, Guccione JM, Franz T. Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction. Heart Fail Rev 2018; 21:815-826. [PMID: 26833320 PMCID: PMC4969231 DOI: 10.1007/s10741-016-9528-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Predictive computational modelling in biomedical research offers the potential to integrate diverse data, uncover biological mechanisms that are not easily accessible through experimental methods and expose gaps in knowledge requiring further research. Recent developments in computing and diagnostic technologies have initiated the advancement of computational models in terms of complexity and specificity. Consequently, computational modelling can increasingly be utilised as enabling and complementing modality in the clinic—with medical decisions and interventions being personalised. Myocardial infarction and heart failure are amongst the leading causes of death globally despite optimal modern treatment. The development of novel MI therapies is challenging and may be greatly facilitated through predictive modelling. Here, we review the advances in patient-specific modelling of cardiac mechanics, distinguishing specificity in cardiac geometry, myofibre architecture and mechanical tissue properties. Thereafter, the focus narrows to the mechanics of the infarcted heart and treatment of myocardial infarction with particular attention on intramyocardial biomaterial delivery.
Collapse
Affiliation(s)
- Kevin L Sack
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, 7935, Observatory, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, MRC IUCHRU, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Julius M Guccione
- Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, 7935, Observatory, South Africa.
| |
Collapse
|
16
|
Artificial Cardiac Muscle with or without the Use of Scaffolds. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8473465. [PMID: 28875152 PMCID: PMC5569873 DOI: 10.1155/2017/8473465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
During the past several decades, major advances and improvements now promote better treatment options for cardiovascular diseases. However, these diseases still remain the single leading cause of death worldwide. The rapid development of cardiac tissue engineering has provided the opportunity to potentially restore the contractile function and retain the pumping feature of injured hearts. This conception of cardiac tissue engineering can enable researchers to produce autologous and functional biomaterials which represents a promising technique to benefit patients with cardiovascular diseases. Such an approach will ultimately reshape existing heart transplantation protocols. Notable efforts are accelerating the development of cardiac tissue engineering, particularly to create larger tissue with enhanced functionality. Decellularized scaffolds, polymer synthetics fibrous matrix, and natural materials are used to build robust cardiac tissue scaffolds to imitate the morphological and physiological patterns of natural tissue. This ultimately helps cells to implant properly to obtain endogenous biological capacity. However, newer designs such as the hydrogel scaffold-free matrix can increase the applicability of artificial tissue to engineering strategies. In this review, we summarize all the methods to produce artificial cardiac tissue using scaffold and scaffold-free technology, their advantages and disadvantages, and their relevance to clinical practice.
Collapse
|
17
|
Zhu Y, Matsumura Y, Wagner WR. Ventricular wall biomaterial injection therapy after myocardial infarction: Advances in material design, mechanistic insight and early clinical experiences. Biomaterials 2017; 129:37-53. [PMID: 28324864 PMCID: PMC5827941 DOI: 10.1016/j.biomaterials.2017.02.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Intramyocardial biomaterial injection therapy for myocardial infarction has made significant progress since concept initiation more than 10 years ago. The interim successes and progress in the first 5 years have been extensively reviewed. During the last 5 years, two phase II clinical trials have reported their long term follow up results and many additional biomaterial candidates have reached preclinical and clinical testing. Also in recent years deeper investigations into the mechanisms behind the beneficial effects associated with biomaterial injection therapy have been pursued, and a variety of process and material parameters have been evaluated for their impact on therapeutic outcomes. This review explores the advances made in this biomaterial-centered approach to ischemic cardiomyopathy and discusses potential future research directions as this therapy seeks to positively impact patients suffering from one of the world's most common sources of mortality.
Collapse
Affiliation(s)
- Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
18
|
Best C, Onwuka E, Pepper V, Sams M, Breuer J, Breuer C. Cardiovascular Tissue Engineering: Preclinical Validation to Bedside Application. Physiology (Bethesda) 2017; 31:7-15. [PMID: 26661524 DOI: 10.1152/physiol.00018.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use.
Collapse
Affiliation(s)
- Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio; and
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Malik Sams
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jake Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio; and Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
19
|
Spinale FG. Improving Delivery of a Biomaterial Payload in Myocardial Infarction. Circ Cardiovasc Interv 2016; 9:CIRCINTERVENTIONS.116.004489. [PMID: 27729420 DOI: 10.1161/circinterventions.116.004489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francis G Spinale
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia.
| |
Collapse
|
20
|
O'Neill HS, Gallagher LB, O'Sullivan J, Whyte W, Curley C, Dolan E, Hameed A, O'Dwyer J, Payne C, O'Reilly D, Ruiz-Hernandez E, Roche ET, O'Brien FJ, Cryan SA, Kelly H, Murphy B, Duffy GP. Biomaterial-Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5648-5661. [PMID: 26840955 DOI: 10.1002/adma.201505349] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Heart failure is a significant clinical issue. It is the cause of enormous healthcare costs worldwide and results in significant morbidity and mortality. Cardiac regenerative therapy has progressed considerably from clinical and preclinical studies delivering simple suspensions of cells, macromolecule, and small molecules to more advanced delivery methods utilizing biomaterial scaffolds as depots for localized targeted delivery to the damaged and ischemic myocardium. Here, regenerative strategies for cardiac tissue engineering with a focus on advanced delivery strategies and the use of multimodal therapeutic strategies are reviewed.
Collapse
Affiliation(s)
- Hugh S O'Neill
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Laura B Gallagher
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Janice O'Sullivan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - William Whyte
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Clive Curley
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Eimear Dolan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Joanne O'Dwyer
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Christina Payne
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Daniel O'Reilly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Eduardo Ruiz-Hernandez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Ellen T Roche
- Department of Biomedical Engineering, Eng-2053, Engineering Building, National University of Ireland, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally Ann Cryan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Helena Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Bruce Murphy
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
21
|
Liberski AR. Three-dimensional printing of alginate: From seaweeds to heart valve scaffolds. QSCIENCE CONNECT 2016. [DOI: 10.5339/connect.2016.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) printing is a resourceful technology that offers a large selection of solutions that are readily adaptable to tissue engineering of artificial heart valves (HVs). Different deposition techniques could be used to produce complex architectures, such as the three-layered architecture of leaflets. Once the assembly is complete, the growth of cells in the scaffold would enable the deposition of cell-specific extracellular matrix proteins. 3D printing technology is a rapidly evolving field that first needs to be understood and then explored by tissue engineers, so that it could be used to create efficient scaffolds. On the other hand, to print the HV scaffold, a basic understanding of the fundamental structural and mechanical aspects of the HV should be gained. This review is focused on alginate that can be used as a building material due to its unique properties confirmed by the successful application of alginate-based biomaterials for the treatment of myocardial infarction in humans. Within the field of biomedicine, there is a broad scope for the application of alginate including wound healing, cell transplantation, delivery of bioactive agents, such as chemical drugs and proteins, heat burns, acid reflux, and weight control applications. The non-thrombogenic nature of this polymer has made it an attractive candidate for cardiac applications, including scaffold fabrication for heart valve tissue engineering (HVTE). The next essential property of alginate is its ability to form films, fibers, beads, and virtually any shape in a variety of sizes. Moreover, alginate possesses several prime properties that make it suitable for use in free-form fabrication techniques. The first property is its ability, when dissolved, to increase the viscosity of aqueous solutions, which is particularly important in formulating extrudable mixtures for 3D printing. The second property is its ability to form gels in mild conditions, for example, by adding calcium salt to an aqueous solution of alginate. The latter property is a basis for reactive extrusion- and inkjet printing-based solid free-form fabrication. Both techniques enable the production of scaffolds for cell encapsulation, which increases the seeding efficiency of fabricated structures. The objective of this article is to review methods for the fabrication of alginate hydrogels in the context of HVTE.
Collapse
|
22
|
Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob Cardiol Sci Pract 2016; 2016:e201604. [PMID: 29043254 PMCID: PMC5642828 DOI: 10.21542/gcsp.2016.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a growing endemic in the aging Western population with a prevalence of over 20 million people worldwide1. Existing heart failure therapies are unable to reverse heart failure and do not address its fundamental cause, the loss of cardiomyocytes2. In order to induce myocardial regeneration for the myocardium and the heart valve, facilitate self-repair, improve tissue salvage, reduce or reverse the adverse-remodeling and ultimately achieve long-term functional stabilization and improvement in the heart function, novel strategies for therapeutic regeneration are being developed which are aiming to compensate for the insufficient and low intrinsic regenerative ability of the adult heart3. Similarly, valve replacement with mechanical or biological substitutes meets numerous hurdles. New approaches using multicellular approaches and new material are extensively studied. Most of those strategies depend on biomaterials that help to achieve functional integrated vasculogenesis and myogenesis in the heart/tissue. Especially for failed heart valve function a number of therapeutic approaches are common from corrective intervention to complete replacement4. However the complexity of the heart valve tissue and its high physical exposure has led to a variety of approaches, however therapeutic regeneration needs to be established. Beside other approaches alginate has been identified as one building block to achieve therapeutic regeneration. Alginate is a versatile and adaptable biomaterial that has found numerous biomedical applications which include wound healing, drug delivery and tissue engineering. Due to its biologically favorable properties including the ease of gelation and its biocompatibility, alginate-based hydrogels have been considered a particularly attractive material for the application in cardiac regeneration and valve replacement techniques. Here, we review current applications of alginate in cardiac regeneration as well as perspectives for the alginate-dependent, cardiac regeneration strategies.
Collapse
Affiliation(s)
| | - Najma Latif
- Qatar Cardiovascular Research Center, Doha, Qatar
| | | | | | - Magdi Yacoub
- Qatar Cardiovascular Research Center, Doha, Qatar
| |
Collapse
|
23
|
Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv Drug Deliv Rev 2016; 96:54-76. [PMID: 25962984 DOI: 10.1016/j.addr.2015.04.021] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022]
Abstract
Alginate biomaterial is widely utilized for tissue engineering and regeneration due to its biocompatibility, non-thrombogenic nature, mild and physical gelation process, and the resemblance of its hydrogel matrix texture and stiffness to that of the extracellular matrix. In this review, we describe the versatile biomedical applications of alginate, from its use as a supporting cardiac implant in patients after acute myocardial infarction (MI) to its employment as a vehicle for stem cell delivery and for the controlled delivery and presentation of multiple combinations of bioactive molecules and regenerative factors into the heart. Preclinical and first-in-man clinical trials are described in details, showing the therapeutic potential of injectable acellular alginate implants to inhibit the damaging processes after MI, leading to myocardial repair and tissue reconstruction.
Collapse
Affiliation(s)
- Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
24
|
Perea-Gil I, Prat-Vidal C, Bayes-Genis A. In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin'. Stem Cell Res Ther 2015; 6:248. [PMID: 26670389 PMCID: PMC4681026 DOI: 10.1186/s13287-015-0237-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treating a myocardial infarction (MI), the most frequent cause of death worldwide, remains one of the most exciting medical challenges in the 21st century. Cardiac tissue engineering, a novel emerging treatment, involves the use of therapeutic cells supported by a scaffold for regenerating the infarcted area. It is essential to select the appropriate scaffold material; the ideal one should provide a suitable cellular microenvironment, mimic the native myocardium, and allow mechanical and electrical coupling with host tissues. Among available scaffold materials, natural scaffolds are preferable for achieving these purposes because they possess myocardial extracellular matrix properties and structures. Here, we review several natural scaffolds for applications in MI management, with a focus on pre-clinical studies and clinical trials performed to date. We also evaluate scaffolds combined with different cell types and proteins for their ability to promote improved heart function, contractility and neovascularization, and attenuate adverse ventricular remodeling. Although further refinement is necessary in the coming years, promising results indicate that natural scaffolds may be a valuable translational therapeutic option with clinical impact in MI repair.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain
| | - Cristina Prat-Vidal
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain.
| | - Antoni Bayes-Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
25
|
Hinderer S, Brauchle E, Schenke-Layland K. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2015; 4:2326-41. [PMID: 25778713 PMCID: PMC4745029 DOI: 10.1002/adhm.201400762] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Indexed: 12/27/2022]
Abstract
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
| | - Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Nobelstrasse 12, Stuttgart, 70569, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at the, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
26
|
Zhang B, Montgomery M, Davenport-Huyer L, Korolj A, Radisic M. Platform technology for scalable assembly of instantaneously functional mosaic tissues. SCIENCE ADVANCES 2015; 1:e1500423. [PMID: 26601234 PMCID: PMC4643798 DOI: 10.1126/sciadv.1500423] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/13/2015] [Indexed: 05/05/2023]
Abstract
Engineering mature tissues requires a guided assembly of cells into organized three-dimensional (3D) structures with multiple cell types. Guidance is usually achieved by microtopographical scaffold cues or by cell-gel compaction. The assembly of individual units into functional 3D tissues is often time-consuming, relying on cell ingrowth and matrix remodeling, whereas disassembly requires an invasive method that includes either matrix dissolution or mechanical cutting. We invented Tissue-Velcro, a bio-scaffold with a microfabricated hook and loop system. The assembly of Tissue-Velcro preserved the guided cell alignment realized by the topographical features in the 2D scaffold mesh and allowed for the instant establishment of coculture conditions by spatially defined stacking of cardiac cell layers or through endothelial cell coating. The assembled cardiac 3D tissue constructs were immediately functional as measured by their ability to contract in response to electrical field stimulation. Facile, on-demand tissue disassembly was demonstrated while preserving the structure, physical integrity, and beating function of individual layers.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Locke Davenport-Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Corresponding author. E-mail:
| |
Collapse
|
27
|
Conradi L, Schmidt S, Neofytou E, Deuse T, Peters L, Eder A, Hua X, Hansen A, Robbins RC, Beygui RE, Reichenspurner H, Eschenhagen T, Schrepfer S. Immunobiology of fibrin-based engineered heart tissue. Stem Cells Transl Med 2015; 4:625-31. [PMID: 25947338 DOI: 10.5966/sctm.2013-0202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/05/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Different tissue-engineering approaches have been developed to induce and promote cardiac regeneration; however, the impact of the immune system and its responses to the various scaffold components of the engineered grafts remains unclear. Fibrin-based engineered heart tissue (EHT) was generated from neonatal Lewis (Lew) rat heart cells and transplanted onto the left ventricular surface of three different rat strains: syngeneic Lew, allogeneic Brown Norway, and immunodeficient Rowett Nude rats. Interferon spot frequency assay results showed similar degrees of systemic immune activation in the syngeneic and allogeneic groups, whereas no systemic immune response was detectable in the immunodeficient group (p < .001 vs. syngeneic and allogeneic). Histological analysis revealed much higher local infiltration of CD3- and CD68-positive cells in syngeneic and allogeneic rats than in immunodeficient animals. Enzyme-linked immunospot and immunofluorescence experiments revealed matrix-directed TH1-based rejection in syngeneic recipients without collateral impairment of heart cell survival. Bioluminescence imaging was used for in vivo longitudinal monitoring of transplanted luciferase-positive EHT constructs. Survival was documented in syngeneic and immunodeficient recipients for a period of up to 110 days after transplant, whereas in the allogeneic setting, graft survival was limited to only 14 ± 1 days. EHT strategies using autologous cells are promising approaches for cardiac repair applications. Although fibrin-based scaffold components elicited an immune response in our studies, syngeneic cells carried in the EHT were relatively unaffected. SIGNIFICANCE An initial insight into immunological consequences after transplantation of engineered heart tissue was gained through this study. Most important, this study was able to demonstrate cell survival despite rejection of matrix components. Generation of syngeneic human engineered heart tissue, possibly using human induced pluripotent stem cell technology with subsequent directed rejection of matrix components, may be a potential future approach to replace diseased myocardium.
Collapse
Affiliation(s)
- Lenard Conradi
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Stephanie Schmidt
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Evgenios Neofytou
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Tobias Deuse
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Laura Peters
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Alexandra Eder
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Xiaoqin Hua
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Arne Hansen
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Robert C Robbins
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Ramin E Beygui
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Hermann Reichenspurner
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Thomas Eschenhagen
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Sonja Schrepfer
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| |
Collapse
|
28
|
Larsen BE, Bjørnstad J, Pettersen EO, Tønnesen HH, Melvik JE. Rheological characterization of an injectable alginate gel system. BMC Biotechnol 2015; 15:29. [PMID: 25944125 PMCID: PMC4419456 DOI: 10.1186/s12896-015-0147-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/21/2015] [Indexed: 11/12/2022] Open
Abstract
Background This work investigates a general method for producing alginate gel matrices using an internal mode of gelation that depends solely on soluble alginate and alginate/gelling ion particles. The method involves the formulation of two-component kits comprised of soluble alginate and insoluble alginate/gelling ion particles. Gelling kinetics, elastic and Young’s moduli were investigated for selected parameters with regard to soluble alginate guluronate content, molecular weight, calcium or strontium gelling ions and alginate gelling ion particle sizes in the range between 25 and 125 micrometers. Results By mixing the two components and varying the parameters mentioned above, alginate gel matrices with tailor-made viscoelastic properties and gelling kinetics were obtained. Final gel elasticity depended on alginate type, concentration and gelling ion. The gelling rate could be manipulated, e.g. through selection of the alginate type and molecular weight, particle sizes and the concentration of non-gelling ions. Conclusions Formulations of the injectable and moldable alginate system presented have recently been used within specific medical applications and may have potential within regenerative medicine or other fields.
Collapse
Affiliation(s)
| | - Jorunn Bjørnstad
- FMC Biopolymer AS, Sandvika, Norway. .,Current address: Elopak AS, Spikkestad, Norway.
| | | | | | - Jan Egil Melvik
- FMC Biopolymer AS, Sandvika, Norway. .,Current address: Origomar AS, Oslo, Norway.
| |
Collapse
|
29
|
Mejía Oneto JM, Gupta M, Leach JK, Lee M, Sutcliffe JL. Implantable biomaterial based on click chemistry for targeting small molecules. Acta Biomater 2014; 10:5099-5105. [PMID: 25162537 DOI: 10.1016/j.actbio.2014.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/12/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
Specific and targeted delivery of medical therapies continues to be a challenge for the optimal treatment of multiple medical conditions. Technological advances permit physicians to target most sites of the body. However, after the intervention, physicians rely on systemic medications that need frequent dosing and may have noxious side effects. A novel system combining the temporal flexibility of systemic drug delivery and the spatial control of injectable biomaterials would improve the spatiotemporal control of medical therapies. Here we present an implantable biomaterial that harnesses in vivo click chemistry to enhance the delivery of suitable small molecules by an order of magnitude. The results demonstrate a simple and modular method to modify a biomaterial with small molecules in vitro and present an example of a polysaccharide modified hours after in vivo implantation. This approach provides the ability to precisely control the moment when biochemical and/or physical signals may appear in an implanted biomaterial. This is the first step towards the construction of a biomaterial that enhances the spatial location of systemic small molecules via in vivo chemical delivery.
Collapse
|
30
|
Eckhouse SR, Purcell BP, McGarvey JR, Lobb D, Logdon CB, Doviak H, O'Neill JW, Shuman JA, Novack CP, Zellars KN, Pettaway S, Black RA, Khakoo A, Lee T, Mukherjee R, Gorman JH, Gorman RC, Burdick JA, Spinale FG. Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci Transl Med 2014; 6:223ra21. [PMID: 24523321 DOI: 10.1126/scitranslmed.3007244] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) contributes to the left ventricle (LV) remodeling that occurs after myocardial infarction (MI). However, translation of these observations into a clinically relevant, therapeutic strategy remains to be established. The present study investigated targeted TIMP augmentation through regional injection of a degradable hyaluronic acid hydrogel containing recombinant TIMP-3 (rTIMP-3) in a large animal model. MI was induced in pigs by coronary ligation. Animals were then randomized to receive targeted hydrogel/rTIMP-3, hydrogel alone, or saline injection and followed for 14 days. Instrumented pigs with no MI induction served as referent controls. Multimodal imaging (fluoroscopy/echocardiography/magnetic resonance imaging) revealed that LV ejection fraction was improved, LV dilation was reduced, and MI expansion was attenuated in the animals treated with rTIMP-3 compared to all other controls. A marked reduction in proinflammatory cytokines and increased smooth muscle actin content indicative of myofibroblast proliferation occurred in the MI region with hydrogel/rTIMP-3 injections. These results provide the first proof of concept that regional sustained delivery of an MMP inhibitor can effectively interrupt adverse post-MI remodeling.
Collapse
Affiliation(s)
- Shaina R Eckhouse
- Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC-HEART FAILURE 2014; 1:252-8. [PMID: 23998003 DOI: 10.1016/j.jchf.2013.02.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The study tested the hypothesis that augmentation of the left ventricular (LV) wall thickness with direct intramyocardial injections of alginate hydrogel implants (AHI) reduces LV cavity size, restores LV shape, and improves LV function in dogs with heart failure (HF). BACKGROUND Progressive LV dysfunction, enlargement, and chamber sphericity are features of HF associated with increased mortality and morbidity. METHODS Studies were performed in 14 dogs with HF produced by intracoronary microembolizations (LV ejection fraction [EF] <30%). Dogs were randomized to AHI treatment (n = 8) or to sham-operated control (n = 6). During an open-chest procedure, dogs received either intramyocardial injections of 0.25 to 0.35 ml of alginate hydrogel (Algisyl-LVR, LoneStar Heart, Inc., Laguna Hills, California) or saline. Seven injections were made ∼ 1.0 to 1.5 cm apart (total volume 1.8 to 2.1 ml) along the circumference of the LV free wall halfway between the apex and base starting from the anteroseptal groove and ending at the posteroseptal groove. Hemodynamic and ventriculographic measurements were made before treatment (PRE) and repeated post-surgery for up to 17 weeks (POST). RESULTS Compared to control, AHI significantly reduced LV end-diastolic and end-systolic volumes and improved LV sphericity. AHI treatment significantly increased EF (26 ± 0.4% at PRE to 31 ± 0.4% at POST; p < 0.05) compared to the decreased EF seen in control dogs (27 ± 0.3% at PRE to 24 ± 1.3% at POST; p < 0.05). AHI treatment was well tolerated and was not associated with increased LV diastolic stiffness. CONCLUSIONS In HF dogs, circumferential augmentation of LV wall thickness with AHI improves LV structure and function. The results support continued development of AHI for the treatment of patients with advanced HF.
Collapse
|
32
|
Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med 2014; 10:11-28. [PMID: 25066525 DOI: 10.1002/term.1944] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 04/17/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternative sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augmenting injured or impaired myocardium, with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds - composed of natural or synthetic biomaterials or decellularized extracellular matrix - that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue; and finally, injectable biomaterials (hydrogels) designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed.
Collapse
Affiliation(s)
- Lewis A Reis
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Loraine L Y Chiu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Nicole Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Lara Fu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| |
Collapse
|
33
|
Ungerleider JL, Christman KL. Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med 2014; 3:1090-9. [PMID: 25015641 DOI: 10.5966/sctm.2014-0049] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, injectable biomaterial-based therapies for cardiovascular disease have been gaining attention, because they have shown therapeutic potential in preclinical models for myocardial infarction (MI) and peripheral artery disease (PAD). Naturally derived (e.g., alginate, hyaluronic acid, collagen, or extracellular matrix-based) or synthetic (e.g., peptide or polymer-based) materials can enhance stem cell survival and retention in vivo, prolong growth factor release from bulk hydrogel or particle constructs, and even stimulate endogenous tissue regeneration as a standalone therapy. Although there are many promising preclinical examples, the therapeutic potential of biomaterial-based products for cardiovascular disease has yet to be proved on a clinical and commercial scale. This review aims to briefly summarize the latest preclinical and clinical studies on injectable biomaterial therapies for MI and PAD. Furthermore, our overall goal is to highlight the major challenges facing translation of these therapies to the clinic (e.g., regulatory, manufacturing, and delivery), with the purpose of increasing awareness of the barriers for translating novel biomaterial therapies for MI and PAD and facilitating more rapid translation of new biomaterial technologies.
Collapse
Affiliation(s)
- Jessica L Ungerleider
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, USA
| | - Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
34
|
Utsunomiya H, Yamamoto H, Kunita E, Hidaka T, Kihara Y. Insulin resistance and subclinical abnormalities of global and regional left ventricular function in patients with aortic valve sclerosis. Cardiovasc Diabetol 2014; 13:86. [PMID: 24767168 PMCID: PMC4012518 DOI: 10.1186/1475-2840-13-86] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/20/2014] [Indexed: 12/26/2022] Open
Abstract
Background Insulin resistance, as a key mediator of metabolic syndrome, is thought to be associated with pathogenesis of calcific aortic valve disease and altered left ventricular (LV) function and structure. However, in patients with aortic valve sclerosis (AVS), the association between insulin resistance and subclinical impairment of LV function is not fully elucidated. Methods We studied 57 patients (mean age 70 ± 8 years, 22 women) with asymptomatic AVS but normal LV ejection fraction in echocardiography. LV longitudinal and circumferential strain and strain rate was analyzed using two-dimensional speckle tracking echocardiography. Patients with uncontrolled hypertension and diabetes mellitus, chronic kidney disease, and concomitant coronary artery disease were excluded. They were divided into the insulin-resistant group (AVS+IR; N = 28) and no insulin-resistant group (AVS-IR; N = 29) according to the median value of homeostatic model assessment index. Computed tomography scans were also performed to measure the aortic valve calcium score and the visceral adipose tissue (VAT) area. In addition, age- and sex- adjusted 28 control subjects were recruited for the comparison. Results There were no significant differences in LV ejection fraction or mass index among the groups. The AVS+IR group had a higher aortic valve calcium score (median 94 versus 21, P = 0.022) and a larger VAT area (113 ± 42 cm2 versus 77 ± 38 cm2, P = 0.001) than the AVS-IR group. Notably, LV global longitudinal strain, strain rate (SR), and early diastolic SR were significantly lower in the AVS+IR group than in the AVS-IR group and in control subjects (strain: -16.2 ± 1.6% versus -17.2 ± 1.2% and -18.9 ± 0.8%; SR: -1.18 ± 0.26 s-1 versus -1.32 ± 0.21 s-1 and -1.52 ± 0.08 s-1; early diastolic SR: -1.09 ± 0.23 s-1 versus -1.23 ± 0.18 s-1 and -1.35 ± 0.12 s-1; P < 0.05 for all comparison), whereas circumferential function were not significantly different. Multiple linear regression analyses revealed insulin resistance as an independent determinant of LV longitudinal strain (P = 0.017), SR (P = 0.047), and early diastolic SR (P = 0.049) regardless of LV mass index or VAT area. Conclusions Insulin resistance is a powerful independent predictor of subclinical LV dysfunction regardless of concomitant visceral obesity and LV hypertrophy. Thus, it may be a novel therapeutic target to prevent subsequent heart failure in patients with AVS.
Collapse
Affiliation(s)
| | - Hideya Yamamoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | | | | | | |
Collapse
|
35
|
The effect of a peptide-modified thermo-reversible methylcellulose on wound healing and LV function in a chronic myocardial infarction rodent model. Biomaterials 2013; 34:8869-77. [DOI: 10.1016/j.biomaterials.2013.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/08/2013] [Indexed: 11/23/2022]
|
36
|
Levit RD, Landázuri N, Phelps EA, Brown ME, García AJ, Davis ME, Joseph G, Long R, Safley SA, Suever JD, Lyle AN, Weber CJ, Taylor WR. Cellular encapsulation enhances cardiac repair. J Am Heart Assoc 2013; 2:e000367. [PMID: 24113327 PMCID: PMC3835246 DOI: 10.1161/jaha.113.000367] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Rebecca D. Levit
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 30322, GA (R.D.L., N.L., M.E.B., M.E.D., G.J., A.N.L., R.T.)
| | - Natalia Landázuri
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 30322, GA (R.D.L., N.L., M.E.B., M.E.D., G.J., A.N.L., R.T.)
| | - Edward A. Phelps
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, GA (E.A.P., A.G.)
| | - Milton E. Brown
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 30322, GA (R.D.L., N.L., M.E.B., M.E.D., G.J., A.N.L., R.T.)
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, GA (E.A.P., A.G.)
| | - Michael E. Davis
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 30322, GA (R.D.L., N.L., M.E.B., M.E.D., G.J., A.N.L., R.T.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA (M.E.D., J.D.S., R.T.)
| | - Giji Joseph
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 30322, GA (R.D.L., N.L., M.E.B., M.E.D., G.J., A.N.L., R.T.)
| | - Robert Long
- Department of Radiology and Imaging Science, Emory University, Atlanta, 30322, GA (R.L., J.D.S.)
| | - Susan A. Safley
- Department of Surgery, Emory University, Atlanta, 30322, GA (S.A.S., C.J.W.)
| | - Jonathan D. Suever
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA (M.E.D., J.D.S., R.T.)
- Department of Radiology and Imaging Science, Emory University, Atlanta, 30322, GA (R.L., J.D.S.)
| | - Alicia N. Lyle
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 30322, GA (R.D.L., N.L., M.E.B., M.E.D., G.J., A.N.L., R.T.)
| | - Collin J. Weber
- Department of Surgery, Emory University, Atlanta, 30322, GA (S.A.S., C.J.W.)
| | - W. Robert Taylor
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 30322, GA (R.D.L., N.L., M.E.B., M.E.D., G.J., A.N.L., R.T.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA (M.E.D., J.D.S., R.T.)
- Cardiology Division, Atlanta Veterans Affairs Medical Center, Decatur, 30033, GA (R.T.)
- Correspondence to: W. Robert Taylor, MD, PhD, Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 319 WMB, Atlanta, GA 30322. E‐mail:
| |
Collapse
|
37
|
Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 2013; 14:529-41. [PMID: 23839576 DOI: 10.1038/nrm3619] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As the adult mammalian heart has limited potential for regeneration and repair, the loss of cardiomyocytes during injury and disease can result in heart failure and death. The cellular processes and regulatory mechanisms involved in heart growth and development can be exploited to repair the injured adult heart through 'reawakening' pathways that are active during embryogenesis. Heart function has been restored in rodents by reprogramming non-myocytes into cardiomyocytes, by expressing transcription factors (GATA4, HAND2, myocyte-specific enhancer factor 2C (MEF2C) and T-box 5 (TBX5)) and microRNAs (miR-1, miR-133, miR-208 and miR-499) that control cardiomyocyte identity. Stimulating cardiomyocyte dedifferentiation and proliferation by activating mitotic signalling pathways involved in embryonic heart growth represents a complementary approach for heart regeneration and repair. Recent advances in understanding the mechanistic basis of heart development offer exciting opportunities for effective therapies for heart failure.
Collapse
|
38
|
Shuman JA, Zurcher JR, Sapp AA, Burdick JA, Gorman RC, Gorman JH, Goldsmith EC, Spinale FG. Localized targeting of biomaterials following myocardial infarction: a foundation to build on. Trends Cardiovasc Med 2013; 23:301-11. [PMID: 23746937 DOI: 10.1016/j.tcm.2013.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 01/01/2023]
Abstract
Acute coronary syndromes can give rise to myocardial injury infarction (MI), which in turn promulgates a series of cellular and extracellular events that result in left ventricular (LV) dilation and dysfunction. Localized strategies focused upon interrupting this inexorable process include delivery of bioactive molecules and stem cell derivatives. These localized treatment strategies are often delivered in a biomaterial complex in order to facilitate elution of the bioactive molecules or stem cell engraftment. However, these biomaterials can impart significant and independent effects upon the MI remodeling process. In addition, significant changes in local cell and interstitial biology within the targeted MI region can occur following injection of certain biomaterials, which may hold important considerations when using these materials as matrices for adjuvant drug/cell therapies.
Collapse
Affiliation(s)
- James A Shuman
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee LC, Zhihong Z, Hinson A, Guccione JM. Reduction in left ventricular wall stress and improvement in function in failing hearts using Algisyl-LVR. J Vis Exp 2013. [PMID: 23608998 PMCID: PMC3653384 DOI: 10.3791/50096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na(+)-Alginate and Ca(2+)-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship.
Collapse
|
40
|
Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, Hinson A, Gorman JH, Gorman RC, Guccione JM. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol 2013; 168:2022-8. [PMID: 23394895 DOI: 10.1016/j.ijcard.2013.01.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Left ventricular (LV) wall stress reduction is a cornerstone in treating heart failure. Large animal models and computer simulations indicate that adding non-contractile material to the damaged LV wall can potentially reduce myofiber stress. We sought to quantify the effects of a novel implantable hydrogel (Algisyl-LVR™) treatment in combination with coronary artery bypass grafting (i.e. Algisyl-LVR™+CABG) on both LV function and wall stress in heart failure patients. METHODS AND RESULTS Magnetic resonance images obtained before treatment (n=3), and at 3 months (n=3) and 6 months (n=2) afterwards were used to reconstruct the LV geometry. Cardiac function was quantified using end-diastolic volume (EDV), end-systolic volume (ESV), regional wall thickness, sphericity index and regional myofiber stress computed using validated mathematical modeling. The LV became more ellipsoidal after treatment, and both EDV and ESV decreased substantially 3 months after treatment in all patients; EDV decreased from 264 ± 91 ml to 146 ± 86 ml and ESV decreased from 184 ± 85 ml to 86 ± 76 ml. Ejection fraction increased from 32 ± 8% to 47 ± 18% during that period. Volumetric-averaged wall thickness increased in all patients, from 1.06 ± 0.21 cm (baseline) to 1.3 ± 0.26 cm (3 months). These changes were accompanied by about a 35% decrease in myofiber stress at end-of-diastole and at end-of-systole. Post-treatment myofiber stress became more uniform in the LV. CONCLUSIONS These results support the novel concept that Algisyl-LVR™+CABG treatment leads to decreased myofiber stress, restored LV geometry and improved function.
Collapse
Affiliation(s)
- Lik Chuan Lee
- Department of Surgery, University of California, San Francisco, CA, USA; Department of Bioengineering, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|